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Abstract: Blood cancer, or leukemia, has a negative impact on the blood and/or bone marrow of
children and adults. Acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML) are
two sub-types of acute leukemia. The Internet of Medical Things (IoMT) and artificial intelligence
have allowed for the development of advanced technologies to assist in recently introduced medical
procedures. Hence, in this paper, we propose a new intelligent IoMT framework for the automated
classification of acute leukemias using microscopic blood images. The workflow of our proposed
framework includes three main stages, as follows. First, blood samples are collected by wireless digital
microscopy and sent to a cloud server. Second, the cloud server carries out automatic identification of
the blood conditions—either leukemias or healthy—utilizing our developed generative adversarial
network (GAN) classifier. Finally, the classification results are sent to a hematologist for medical
approval. The developed GAN classifier was successfully evaluated on two public data sets: ALL-IDB
and ASH image bank. It achieved the best accuracy scores of 98.67% for binary classification (ALL or
healthy) and 95.5% for multi-class classification (ALL, AML, and normal blood cells), when compared
with existing state-of-the-art methods. The results of this study demonstrate the feasibility of our
proposed IoMT framework for automated diagnosis of acute leukemia tests. Clinical realization of
this blood diagnosis system is our future work.

Keywords: acute leukemia; generative adversarial networks; computer-aided diagnosis; internet of
medical things; wireless microscopic imaging

1. Introduction

Blood cancers, named leukemias [1], can be classified as aggressive illnesses. This
illness is correlated with the white blood cells (WBCs) or leukocytes; thus, the human
body can be adversely affected by this disease, the blood and bone marrow in particular.
The prevalence of blood cancers has been increasing annually, due to genetic factors and/or
environmental factors such as the presence of chemicals, among other unknown factors [2].
Their incidence and mortality rates have been ranked as 15th and 10th for all malignant
cases, respectively [3,4]. Acute leukemia can be categorized into two main classes: myeloid
and lymphoid [5]. Acute lymphocytic leukemia (ALL) is the most common leukemia in
children, while acute myeloid leukemia (AML) is the most common malignant blood cancer
in adults [1]. Male patients are the predominant focus of cases of both ALL and AML.

The traditional method used to detect leukemia is microscopic blood tests [6]. Another
well-known technique to detect leukemia is through blood smear analysis. A further
mechanism utilized to diagnose leukemia is interventional radiology. Other methods
can also be used to detect leukemia, such as molecular cytogenetics and array-based
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comparative genomic hybridization (ACGH). However, all of these techniques are time-
consuming and relatively expensive. In addition, the experience of the hematologist
plays a major role in accomplishing diagnostic procedures on blood images. Therefore,
the application of medical image analysis and computer-aided diagnosis (CAD) systems
can provide the powerful capabilities of automatic detection and classification of leukemia,
in order to provide support to medical staff [7,8].

It is of paramount significance for hematologists to detect leukemia and to distinguish
between its sub-classes, to both avert medical risks and select the right medical treatment.
The early detection of leukemia can be accomplished through the use of artificial intelligence
(AI) techniques utilizing blood cell images (e.g., blood smears) [9]. Various CAD techniques
utilizing machine learning and deep learning algorithms for the quantitative analysis of
peripheral blood samples have been proposed [7]. Nevertheless, these techniques suffer
from some shortcomings related to low accuracy, inefficiency, and learning process issues,
affected by the availability of high computational resources.

To overcome the above limitations, the Internet of Things (IoT) paradigm presents
advanced key solutions to establish new and accurate diagnosis systems for microscopic
blood images, as is described in this study. The IoT has been deployed in diverse areas,
such as smart cities [10,11], vehicular communications [12], smart ecosystems [13], smart
farming and precision agriculture [14–16], and smart campuses [17,18]. Consequently,
the Internet of Medical Things (IoMT) or smart healthcare [19,20] has been proposed
for the improvement of quality of life for patients. IoMT, in a simple form, consists of
both Wi-Fi-based smart medical gadgets and smart applications. These smart things
should be connected, through computer networks, to IT health systems [21,22]. Sensors
or other computing resources are integrated with the smart medical devices and spread
throughout homes, clinics, communities, and hospitals [23]. These smart medical devices
can collect and transmit data to cloud platforms for further processing and analysis [24].
In general, the IoMT paradigm consists of long-distance care for people with long-term
diseases, patient medication monitoring, hospitalized patient tracking, and information
supply to healthcare providers [25]. Therefore, with the help of IoMT technology, time
and effort can be saved for both patients and doctors. The burden on healthcare systems
can be decreased by IoMT, through the secure communication that links patients to their
doctors [26]. The swift utilization of IoMT is expected to initiate the development of
various frameworks that can rapidly and precisely diagnose the health of patients and heal
various illnesses remotely and in a secure manner. There exist a considerable number of
applications based on IoMT, especially for illnesses that threaten the lives of patients, such
as COVID-19 [27] and heart failure [28].

In this paper, a new medical IoT-based framework is proposed, which aids hematolo-
gists by automatically diagnosing microscopic images of acute leukemia patients. The main
contributions of our study are as follows:

• Showing the feasibility of applying our IoT-based diagnosis systems for cancer pa-
tients, saving leukemia test times and requiring minimal hardware resources at the
clinical laboratories.

• Diagnosing acute leukemia diseases for COVID-19 patients can be done in a safe
clinical environment using our proposed medical IoT framwork.

• Developing a new generative adversarial network (GAN) classifier to handle a small
image data set of blood cells without using data augmentation and/or transfer learn-
ing techniques.

• Conducting comparative evaluation between our developed GAN model with other
deep classification models, in order to demonstrate the superior performance of our
IoT-based framework when identifying cancer blood cases.

The remainder of this paper is structured as follows. Section 2 provides a review
of related research works focused on automated classification of leukemia images using
machine and deep learning techniques in medical IoT environments. Section 3 describes
the proposed medical IoT-based framework, including our developed microscopic blood
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image classifier. The results and evaluation of extensive experiments are presented in
Section 5. A discussion and our conclusions, along with future directions of study, are
given in Sections 5 and 6, respectively.

2. Related Works

Numerous IoMT CAD systems have been proposed in previous studies for the di-
agnosis of leukemia. These studies have utilized different machine learning and deep
learning models for early detection of leukemia and its sub-classes. Mohamed et al. [29]
have adopted a random forest (RF) ensemble method to detect WBC cancers. The proposed
method achieved an acceptable accuracy of 94.3%. The K-means clustering algorithm has
been exploited for the detection of ALL [30]. The proposed model achieved an accuracy
score of 92.8%; however, the model was only trained and validated on a small number of
samples (i.e., 60 samples).

Sharma and Kumar [31] have presented a modified version of principal component
analysis (PCA) to reduce the number of features and combined the artificial bee colony
(ABC) algorithm and a back-propagation neural network (BPNN) to differentiate leukemia
cells from each other. The proposed technique achieved good average accuracy (i.e., 98.72%)
and computation time. Jothi et al. [32] have conducted a comparative study evaluating the
detection performance for leukemia diseases using various machine learning algorithms,
such as Jaya, naïve Bayes (NB), support vector machine (SVM), linear discriminant analysis
(LDA), and decision tree (DT). The authors first segmented the blood images using a
clustering technique known as the backtracking search algorithm (BSA). The performance,
in terms of accuracy, was better when combining Jaya and SVM or DT, compared to
the other techniques. Huang et al. [4] have investigated the effectiveness of utilizing
the bone marrow cell microscopy images in the diagnosis of three leukemia sub-classes
(i.e., AML, CML, and ALL). The proposed framework adopted both transfer learning and
a CNN for the early detection of the leukemia sub-classes. The authors collected their
own dataset, consisting of 104 bone marrow smears (18 subjects were healthy, 53 were
AML patients, 18 were CML patients, and 23 were ALL patients). The authors first utilized
two algorithms for pre-processing purposes: A self-adaptive filter algorithm and the
perfect reflection algorithm. Thereafter, they used three CNN architectures (i.e., ResNet-50,
Inception-V3, and DenseNet121) to classify the data generated in the pre-processing step.
Their experimental results showed that DenseNet121 outperformed the other methods,
in terms of classification accuracy (its accuracy is 74.8%). The authors then conducted
another experiment to evaluate the performance of the algorithms after pre-training the
models using transfer learning. DenseNet121 outperformed the other algorithms again,
yielding a prediction accuracy of 95.3%.

Bibi et al. [33] have proposed an IoMT-based residual convolutional neural network
(ResNet-34) and dense convolutional neural network (DenseNet-121) for leukemia sub-class
classification. They conducted experiments involving the detection of healthy vs. leukemia
sub-class patients, and showed that the proposed framework could outperform some
famous traditional machine learning algorithms. However, their results were misleading,
as the data augmentation technique was applied to both training and testing samples,
in order to handle the small number of microscopic images. Consequently, the accuracy
scores of the proposed ResNet-34 and DenseNet-121 models on augmented or synthetic
tested images were not realistic.

Ahmed et al. [34] have presented an automated deep model to classify leukemia and
healthy blood microscopic images using a CNN-based approach. Due to the limited number
of training samples, the authors applied seven data augmentation techniques to increase the
number of training instances. To prove the effectiveness of their method, it was compared
with other machine learning algorithms. The two conducted experiments demonstrated
the effectiveness of the proposed method, in terms of accuracy, in comparison with the
other algorithms. The data set was divided into two classes—healthy and leukemia—in the
first experiment, and into five classes in the second experiment (i.e., the four sub-classes
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and the healthy class). The resulting accuracy scores were 88.25% in the first experiment
and 81.74% in the second experiment. The proposed model proved its effectiveness and
achieved high accuracy in binary classification of the two classes: Healthy vs. leukemia.

3. Methods
3.1. Microscopic Blood Data Set

In this study, all microscopic blood cell images with acute leukemia diseases were se-
lected, including three classes: ALL, AML and normal blood smears (see Figure 1). The data
set was collected from two different public sources, ALL-IDB [35] and the American So-
ciety of Hematology (ASH) image bank [36]. The ALL-IDB data set provides annotated
microscopic images of blood cells for ALL types of leukemia and normal cases only. It was
established by experienced oncologists for classification and segmentation tasks, as well
as for the evaluation of new relevant machine learning and deep learning algorithms in
the field. Images of the AML type of leukemia were provided the through freely available
ASH image bank, which aims to support various hematological research subjects. Table 1
illustrates the total number of microscopic blood images (i.e., 445 images for all conditions
of healthy and blood cancers).

(a) (b) (c)

Figure 1. Three different samples from microscopic blood data set, representing: (a) Acute lympho-
cytic leukemia; (b) Acute myelogenous leukemia; and (c) Normal blood cells.

Table 1. Summary of microscopic image data sets for the different blood conditions considered in
this study.

Condition of Blood Cells Data Set Number of Images

ALL ALL-IDB 179
AML ASH Image Bank 77

Normal ALL-IDB 189
Total 445

3.2. Generative Adversarial Networks

Goodfellow et al. [37] developed the GAN model, which has recently become an
increasingly attractive topic for AI researchers and experts. GANs have shown effec-
tive performance as a major class of deep neural networks, due to their advantageous
built-in capabilities to generate synthetic images, instead of using data augmentation
techniques [38,39]. This has allowed GANs to successfully handle the training phase
of proposed deep network models while using small data sets, especially for medical
applications such as COVID-19 detection [40], or biomedical image enhancement and
segmentation [41,42].
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Figure 2 depicts a basic GAN model including two different networks, named the
generator and discriminator [37]. Training of these networks is carried out simultaneously.
The generator is responsible for producing synthetic or fake images, while the discriminator
performs binary classification of real and fake images [43]. The probability of both real
images from the data set and fake images from the generator G are estimated by the
discriminator D. Hence, the training procedure of a GAN model can be considered as
min-max competitive learning between the networks G and D, as described in Equation (1),
where z is a random noise, the real and generated data distributions are pdata and pz,
respectively, G(z) is the noisy sample output of the generator, and D(x) represents the
probability value of the discriminator for a real sample x [44], where D(x) = 1 in the case
where the input data source is real, and D(G(z)) = 0 for a fake image produced by G(z).
Maximizing the training accuracy of the discriminator D is important for achieving the
iterative binary classification procedure [45].

min
G

max
D

= Ex∼Pdata(x)[logD(x) + Ez∼Pz(x)[log(1− D(G(z)))]]. (1)

The Auxiliary classifier with GAN (AC-GAN) model [46] is the focus of this study,
which is shown in Figure 2b. The traditional AC-GAN method was mainly developed for
the creation of synthetic images with high resolution in an unsupervised learning manner.
However, we consider the semi-supervised classification of the AC-GAN model, in order
to accomplish the accurate identification of microscopic blood images. Hence, the class
labels C of real images were also used to train the discriminator D. In addition to the
binary classification results of the discriminator, the expected classes of real samples are
also linked with the D outputs, as depicted in Figure 2a.

(a) (b)

Figure 2. (a) Basic structures of the GAN model; and (b) the GAN with auxiliary classifier.

3.3. Proposed Blood Diagnosis System

Our developed AC-GAN classifier is similar to the basic AC-GAN, using conditional
class labels in order to produce fake images of acceptable resolution. The role of the
auxiliary classifier is still to predict the real class labels, integrated with the real and fake
image classification of the discriminator D. We designed our AC-GAN model to include
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both semi-supervised and unsupervised learning modes, to achieve the classification of real
blood images linked with real class labels, as shown in Figure 3. The developed AC-GAN
assigns a class label to each generated image, c ∼ pc. In this scenario, the fake images are
generated by adding the noise z to the output of generator G : X f ake = G(c, z). As shown
in Equations (2) and (3), the objective function Vacgan includes the log-likehood of the
correct source, Ls, and the correct class, Lc, where the training of G aims to minimize the
difference (Lc − Ls). In contrast, the goal of D is to maximize the sum (Ls + Lc) [46].

Vacgan(G, D) = Ls + Lc, (2)

Ls = E[logP(S = real|Xreal)] + E[logP(S = f ake|X f ake)], (3)

Lc = E[logP(C = c|Xreal)] + E[logP(C = c|X f ake)]. (4)

Figure 3 shows that our developed AC-GAN performs the same operations as a basic
GAN. Binary classification is used to identify whether the microscopic image is real or
not. Then, utilizing the unsupervised learning mode, the output of the auxiliary classifier
predicts the class label matching the corresponding real blood image only. As a result,
in supervised learning mode, we included the operator (⊗) as a switch to handle the
output of D, in order to conduct the link between real microscopic images and the true
predicted class labels [47]. This eliminates the need to develop extra samples for all classes
in this study, by using the same discriminator and generator, resulting in the effective
identification of ALL and AML diseases for all tested blood images. We did not consider
the class labels of fake images, as the generation of high-resolution synthetic microscopic
images was not the goal of this study.

Figure 3. Workflow of our developed GAN classifier for identifying acute leukemias and normal
cases from microscopic blood images.
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The overall framework of our proposed IoMT-based microscopic blood image diagno-
sis method is depicted in Figure 4. It is composed of three main stages, as follows: First,
the blood samples are taken from patients and collected for leukemia tests. Based on a
wireless microscopic imaging system, the blood smear images are sent to cloud medical
server to provide further options. For instance, the blood samples, including dates and
results, can be automatically recorded in patient medical files. Second, the acquired blood
images are analyzed using our developed AC-GAN classifier, as shown in Figure 3. In our
proposed framework, utilizing cloud computing services is highly recommended for the
automated classification of all uploaded microscopic images, in order to lessen the required
hardware resources and storage; for example, reducing the need for Graphical Processing
Units (GPUs) and large memory capacities. Third, the blood diagnosis results are sent to
the hematologist’s monitor or smartphone, in order to verify and finalize the blood analysis
report with medical recommendations.

Figure 4. Schematic diagram of our proposed medical IoT-based diagnosis framework for automatic
identification of the blood conditions of patients using wireless microscopic imaging of samples and
the developed GAN classifier.

3.4. Performance Analysis of GAN Classifier

The following metrics were used to assess the performance of our AC-GAN model
for classification of acute leukemias in microscopic images, based on cross-validation
estimation [48]: a confusion matrix and four evaluation metrics were used, as shown in
Figure 5. True positive (TP), false positive (FP), false negative (FN), and true negative
(TN) are the expected outputs of the confusion matrix. The diagnosis results of hypothesis
testing for each anticipated class, with respect to its true class, are reflected in these results.
Accuracy is the essential metric for most image-based classifiers. It is calculated by dividing
the sum of true positives (TP) and true negatives (TN) by all possible cases, as shown in
Figure 5. The accuracy is usually presented as a percentage (e.g., 100%). The precision is
used to describe the relationship between real positive predicted values and all positive
predicted values. The recall or sensitivity gives the ratio between the predicted TP value
and the sum of predicted TP and FN values. The F1-score is the fourth evaluation metric,
which includes the double ratio of recall and precision metrics. In addition, the classification
performance of our developed GAN model was compared with those of existing transfer
learning models, including DenseNet-121 [49], ResNet-50 [50], and VGG-16 [51]. Moreover,
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a comparison with other deep learning models from previous studies was also carried out,
in order to verify the findings of this study, as presented in the following section.

Figure 5. A confusion matrix and evaluation metrics for the microscopic blood image classification
results presented in this study.

4. Experiments

The developed GAN classifier and other deep network models were programmed
using the Scientific Python Development Environment (Spyder 5.1.5) and the Tensorflow
deep learning package (Keras 2.7) [52]. We conducted all tests and blood classification
evaluations on a laptop with Core (TM) i7-2.2 GHz processor, 4 GB NVIDIA GPU, and 16 GB
RAM. The blood image data set was represented in RGB color format. Each microscopic
image was scaled to 28 × 28 pixels, to make them suitable for our computing resources and
the developed GAN classifier, while maintaining good quality for all tested images.

Two main experiments were conducted to evaluate the classification performance of
our GAN model. First, the binary classification of ALL against normal blood cases was
carried out, using only the ALL-IDB data set. Second, multi-class classification of three
blood conditions—namely, ALL, AML, and normal blood cells—was carried out, based
on the combination of ALL-IDB and ASH image data sets. To start the training phase of
the deep network models, all microscopic images of ALL, AML, and normal blood cells
(see Table 1) were randomly split in a 80:20 percent ratio, where the validation and testing
phases utilized 20% of the blood images (i.e., 74 of 368 images for binary classification and
89 of 445 images for multi-class classification tests). The hyperparameters were manually
tuned for our developed GAN classifier, where the learning rate, the batch size, and the
number of epochs were 10−3, 64, and 50, respectively. Furthermore, the Adam stochastic
optimization method [53] was exploited to accomplish the training phase of all classifiers.
The Softmax activation function was used in the classifier output layer, in order to predict
leukemia and normal classes for all tested microscopic blood smear samples.

4.1. Acute Leukemia Classification Results

The confusion matrices for both binary classification and multi-class classification of
ALL, AML, and normal blood conditions are depicted in Figures 6 and 7, respectively. These
results were achieved by our developed GAN classifier and three transfer learning models:
VGG-16, ResNet-50, and DenseNet-121. For the binary classification (ALL or normal)
results shown in Figure 6, the developed GAN model showed the highest accuracy score,
with one misclassified normal case sample. Similarly, DenseNet-121 achieved accurate
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results, but had two misclassified images for the normal class. ResNet-50 and VGG-16
showed moderate and worse performances, respectively, when identifying ALL and normal
blood conditions. As shown in Figure 7, the developed GAN presented the best accuracy
for the three-class (ALL, AML and normal blood) classification, with four misclassified
samples (i.e., two AML images and two normal case images). The VGG-16 model failed to
achieve the multi-class classification task precisely.

Figure 6. Confusion matrices for binary classification of ALL disease versus normal cases for all
tested deep network models.
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Figure 7. Confusion matrices for multi-class classification of ALL, AML, and normal blood cells for
all tested deep network models.

As detailed in Figure 5, the four evaluation metrics of precision, recall, F1-score,
and accuracy are illustrated in Tables 2 and 3, for all tested classifiers in the binary and
multi-class experiments, respectively. For binary classification, as shown in Table 2, the de-
veloped GAN classifier and DenseNet-121 achieved the best accuracy scores, above 97%.
Although the VGG-16 model completely succeeded in identifying ALL cases, it could
not classify normal blood images accurately, thus presenting the lowest accuracy score
of 90.54%. The developed GAN classifier was capable of achieving the best values for
all evaluation metrics, with an accuracy score of 95.50%, for the multi-class classification
task, as shown in Table 3. DenseNet-121 presented the second-best classification results for
leukemia diseases, achieving an accuracy of 92.13%. ResNet-50 achieved an accuracy score
of 91.01%, indicating moderate classification performance for all tested blood smear images.
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Table 2. Evaluation metrics for all tested binary classifiers on microscopic blood images.

Classification Model Class Precision Recall (Sensitivity) F1-Score Accuracy

VGG-16 ALL 0.84 1.00 0.91 0.9054Normal 1.00 0.82 0.90

ResNet-50 ALL 0.90 0.97 0.93 0.9324Normal 0.97 0.89 0.93

DenseNet-121 ALL 0.95 1.00 0.97 0.9730Normal 1.00 0.95 0.97

Developed GAN Classifier ALL 0.97 1.00 0.99 0.9865Normal 1.00 0.97 0.99

Table 3. Evaluation metrics for all tested multi-class classifiers on microscopic blood images.

Classification Model Class Precision Recall (Sensitivity) F1-Score Accuracy

VGG-16
ALL 0.86 0.83 0.85

0.8430AML 0.85 0.73 0.79
Normal 0.83 0.89 0.86

ResNet-50
ALL 0.89 0.92 0.90

0.9101AML 1.00 0.80 0.89
Normal 0.90 0.95 0.92

DenseNet-121
ALL 0.87 0.94 0.91

0.9213AML 1.00 0.87 0.93
Normal 0.95 0.92 0.93

Developed GAN Classifier
ALL 0.90 1.00 0.95

0.9550AML 1.00 0.87 0.93
Normal 1.00 0.95 0.97

4.2. Comparison with Previous Studies

Table 4 illustrates the relative characteristics of our developed GAN classifier, when
compared to other machine learning and deep learning models used in previous studies
focused on automated leukemia diagnosis. Most related works have conducted binary
classification of microscopic blood smears using the ALL-IDB data set [35]; for instance,
a CNN [34] and VGG-16 [54] have been applied to identify ALL or normal cases, with cor-
responding accuracy scores of 88.25% and 96.84%, respectively. Furthermore, a machine
learning technique, named SVM [55], has been utilized and achieved an accuracy score of
98.0% for AML versus healthy blood smears, based on the ASH image bank [36]. A com-
bination of the ALL-IDB data set and ASH image bank has been carried out to perform
multi-class classification of leukemia diseases, as presented in [8,33]. In addition, a private
blood data set has been collected from different hospitals for testing the classification of
acute and chronic leukemias (ALL, AML, and CML) using a fine-tuned DenseNet-121,
which achieved an accuracy score of 95.30% [5]. Combined machine learning and deep
learning models (e.g., SVM with DensNet-121 or ResNet-50) have been exploited to obtain
maximal accuracy values of 98.0% for binary classification and 96.67% for multi-class classi-
fication, as illustrated in Table 4. Nevertheless, our developed GAN classifier showed the
best accuracy scores: higher than 95.5% for all tested cases when using public microscopic
blood image data sets.
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Table 4. Comparison between our developed GAN and other models in previous studies for the
classification of leukemias.

Classification Model Tested Data Set Classification Task Accuracy (%)

CNN [34]
ALL-IDB and ASH image bank Binary (ALL vs. normal) 88.25

Multi-class (acute and chronic 81.74
leukemia sub-types)

SVM [55] ASH image bank Binary (AML vs. normal) 98.00

VGG-16 [54] ALL-IDB Binary (ALL vs. normal) 96.84

DenseNet-121 [4]

Private Dataset from Guangdong
Second Provincial General Multi-Class (ALL, AML, 95.30

Hospital, and Zhujiang Hospital of CML, and Normal)
Southern Medical University

DenseNet-121 with SVM
ResNet-50 with SVM [8]

Mixed data set including ALL-IDB Binary (ALL vs. Normal) 98.00
images Multi-class (ALL, AML, 96.67

and Normal)

Developed GAN Classifier
ALL-IDB and ASH image bank Binary (ALL vs. Normal) 98.65

Multi-class (ALL, AML, and 95.58
Normal)

5. Discussion

The development of Intelligent IoT-based systems has become a recent trend for ad-
vanced medical procedures, and for the image-guided diagnosis of acute blood cancers in
particular. Microscopic blood smear testing is the gold standard of leukemia tests, which
may be analyzed through wireless digital microscopy. Therefore, the automated diagnosis
of acute blood cancer diseases in this study was successfully achieved using our developed
GAN classifier integrated within an IoMT framework, as shown in Figures 3 and 4. As de-
tailed in Table 1, the public image data sets of ALL-IDB [35] and ASH image bank [36] were
used as benchmark data for validating the classification performance of our GAN model,
in terms of accomplishing diagnostic procedures for acute leukemia patients. Compared
to deep network models, such as VGG-16, ResNet-50, and DenseNet-121, the evaluation
results for acute leukemia classification demonstrated the competitive performance of
developed GAN classifier, in terms of achieving the highest accuracy scores for binary
classification on ALL or healthy blood images and multi-class classification on ALL, AML,
and normal blood images, as illustrated in Tables 2 and 3, respectively.

A semi-supervised AC-GAN model has been developed to accomplish the automatic
multi-task classification of acute leukemias from microscopic blood images, as depicted in
Figure 3. In the identification of ALL disease against normal blood cases, the developed
GAN classifier showed the best binary classification results among other deep transfer
learning models (i.e., VGG-16, ResNet-50, and DenseNet-121), as presented in Figure 6 and
Table 2. Similarly, the superior performance of our developed GAN was also achieved when
carrying out multi-class classification of acute leukemias, showing the highest accuracy
score of 95.50%, as presented in Figure 7 and Table 3. DenseNet-121 also showed good
results for all classification tests of leukemia smears, and was relatively equal to our
developed GAN classifier. However, the main advantage of GAN approaches over deep
transfer learning models is as follows. A small number of microscopic blood images was
publicly available for training and testing the proposed classifiers, as illustrated in Table 1.
In this case, the training data are insufficient to achieve the expected performance of models
such as DenseNet-121, and data augmentation techniques must be applied to solve this
problem [56]. To the contrary, the developed GAN model can self-generate additional
good-quality fake images to improve the blood image classification training procedure.
Furthermore, unsupervised and semi-supervised learning techniques, such as GANs, are
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more powerful than supervised models in medical applications, as the creation of a fully
annotated data set is usually a tedious and time-consuming task for medical staff.

Table 4 illustrates the comparative characteristics between our GAN model and other
machine learning and deep learning models in relevant research works, which verifies the
effective performance of the developed classifier when using the same microscopic blood
data. For both binary and multi-class leukemia sub-type classification, transfer learning
classifiers (e.g., VGG-16 and DenseNet-121) showed good results. In addition, the SVM
algorithm integrated with DenseNet-121 and ResNet-50 [8] provided high accuracy scores
of 98.0% and 96.67% for binary and multi-class classification tasks, respectively. Our
developed GAN classifier outperformed this model when identifying ALL against healthy
cases, but gave a slightly lower accuracy (of 95.58%) than the ResNet-50 + SVM classifier
(with an accuracy of 96.67%), as reported in Table 4. Nevertheless, the ResNet-50 + SVM
model was evaluated not only on the ALL-IDB data set, but also on a heterogenous data
set to achieve this superior classification result [8].

The high computational resources required, such as GPUs and large memory size, is a
main drawback of deep network models such as DenseNet-121 and ResNet-50. The devel-
oped GAN classifier generates synthetic data during the training phase, which also leads
to a high storage capacity requirement. Nevertheless, this hardware resource requirement
can be fulfilled by utilizing cloud computing services in our proposed IoMT framework,
as depicted in Figure 4. In addition, all hyperparameter values of our GAN classifier and
implemented deep network models were manually tuned in this study. This manual tuning
procedure is an iterative and time-consuming task, in order to eventually obtain good
classification results. Therefore, neural architecture search methods [57] will be used in our
future studies, in order to automate the design of our developed GAN classifier. Security
and privacy aspects of patient data and leukemia diagnosis results will be also considered
in our proposed medical IoT-based system, to be adopted for open communications and
networked computing systems. However, the proposed IoMT-system including our devel-
oped GAN classifier is still valid to successfully achieve the automated diagnosis of acute
leukemia diseases.

6. Conclusions and Future Research Directions

In this article, we presented a new medical IoT framework for the automated diagnosis
of acute leukemia sub-classes, namely, the ALL and AML diseases. The proposed IoMT
framework utilizes cloud computing services to provide accurate online leukemia tests,
saving hematological efforts and lowering the required computing resources. An advanced
deep learning architecture, the AC-GAN model, was developed to identify leukemia and
its two sub-classes. Two publicly available data sets of microscopic blood images were used
to evaluate the effectiveness of the developed GAN classifier. Compared with previous
works, our semi-supervised AC-GAN model showed promising classification results for
acute leukemias, as illustrated in Table 4. In the future, we plan to add more samples and
sub-classes of acute and chronic blood cancers. Automating the design of the developed
GAN model comprises our next research milestone in order to streamline the method
while enhancing the classification performance. Furthermore, an implementation of our
proposed medical IoT framework in the clinical routine of leukemia tests should be realized
in order to support both hematologists and cancer patients, especially in the context of the
COVID-19 pandemic.
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