A Study of the Detection of SARS-CoV-2 ORF1ab Gene by the Use of Electrochemiluminescent Biosensor Based on Dual-Probe Hybridization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.1.1. Main Reagents
2.1.2. Main Instruments
2.2. Experimental Methods
2.2.1. Design and Synthesis of the Sequences of Biotin-Modified Probes (Biotin Probes) and Amino-Modified Probes (Amino Probes)
2.2.2. Preparation of Magnetic Capture Probes
2.2.3. Preparation of Ru(bpy)32+ Labeled Signal Probes
2.2.4. Development of a Method for the Detection of SARS-CoV-2 through the Use of an ECL Biosensor Based on Dual-Probe Hybridization
2.3. Reproducibility and Specificity Examination
2.4. Detection of Simulation Samples
3. Results and Discussion
3.1. Preparation of Magnetic Capture Probes and Determination of the Optimal Immobilization Amount of Biotin Probes
3.2. Preparation and Characterization of Ru(bpy)32+ Labeled Signal Probes
3.3. Linearity Range and LOD
3.4. Reproducibility and Specificity Examination
3.5. Simulated Sample Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arunachalam, P.S.; Wimmers, F.; Mok, C.K.P.; Perera, R.A.; Scott, M.; Hagan, T.; Sigal, N.; Feng, Y.; Bristow, L.; Tsang, O.T.-Y. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020, 369, 1210–1220. [Google Scholar] [CrossRef]
- Wang, R.; Luo, X.; Liu, F.; Luo, S. Confronting the threat of SARS-CoV-2: Realities, challenges and therapeutic strategies. Exp. Ther. Med. 2021, 21, 155. [Google Scholar] [CrossRef]
- Ezhilan, M.; Suresh, I.; Nesakumar, N. SARS-CoV, MERS-CoV and SARS-CoV-2: A Diagnostic Challenge. Measurement 2021, 168, 108335. [Google Scholar] [CrossRef] [PubMed]
- Taha, B.A.; Al Mashhadany, Y.; Hafiz Mokhtar, M.H.; Dzulkefly Bin Zan, M.S.; Arsad, N. An Analysis Review of Detection Coronavirus Disease 2019 (COVID-19) Based on Biosensor Application. Sensors 2020, 20, 6764. [Google Scholar] [CrossRef] [PubMed]
- Benzigar, M.R.; Bhattacharjee, R.; Baharfar, M.; Liu, G. Current methods for diagnosis of human coronaviruses: Pros and cons. Anal. Bioanal. Chem. 2021, 413, 2311–2330. [Google Scholar] [CrossRef]
- Huergo, M.A.C.; Thanh, N.T.K. Current advances in the detection of COVID-19 and evaluation of the humoral response. Analyst 2021, 146, 382–402. [Google Scholar] [CrossRef]
- Taylor, W.; Abbasi, Q.H.; Dashtipour, K.; Ansari, S.; Shah, S.A.; Khalid, A.; Imran, M.A. A Review of the State of the Art in Non-Contact Sensing for COVID-19. Sensors 2020, 20, 5665. [Google Scholar] [CrossRef]
- Chen, B.B.; Liu, M.L.; Huang, C.Z. Current diagnostic and therapeutic strategies for COVID-19. J. Pharm. Anal. 2021, 11, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Shaffaf, T.; Ghafar-Zadeh, E. COVID-19 Diagnostic Strategies. Part I: Nucleic Acid-Based Technologies. Bioengineering 2021, 8, 49. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Sah, R.; Rodriguez-Morales, A.J.; Jha, R.; Chu, D.K.W.; Gu, H.; Peiris, M.; Bastola, A.; Lal, B.K.; Ojha, H.C.; Rabaan, A.A.; et al. Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Isolated in Nepal. Microbiol. Resour. Announc. 2020, 9, e00169-20. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Prevention, Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. [Google Scholar]
- Li, Q.; Xia, Y.; Liao, D.; Nie, H.; Zhang, M.; Wang, T.; Liao, J.; Xia, Q. Dual-target one-step nested PCR for sensitive detection of SARS-CoV-2 nucleic acids. Prep. Biochem. Biotechnol. 2021, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Alekseenko, A.; Barrett, D.; Pareja-Sanchez, Y.; Howard, R.J.; Strandback, E.; Ampah-Korsah, H.; Rovsnik, U.; Zuniga-Veliz, S.; Klenov, A.; Malloo, J.; et al. Direct detection of SARS-CoV-2 using non-commercial RT-LAMP reagents on heat-inactivated samples. Sci. Rep. 2021, 11, 1820. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, L.; An, X.; Tong, Y. All-in-one in situ colorimetric RT-LAMP assay for point-of-care testing of SARS-CoV-2. Analyst 2021, 146, 6026–6034. [Google Scholar] [CrossRef]
- Huang, D.; Shi, Z.; Qian, J.; Bi, K.; Fang, M.; Xu, Z. A CRISPR-Cas12a-derived biosensor enabling portable personal glucose meter readout for quantitative detection of SARS-CoV-2. Biotechnol. Bioeng. 2021, 118, 1587–1596. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huang, J.; Ren, L.; Jiang, W.; Wang, M.; Zhuang, L.; Zheng, Q.; Yang, R.; Zeng, Y.; Luu, L.D.W.; et al. A one-step, one-pot CRISPR nucleic acid detection platform (CRISPR-top): Application for the diagnosis of COVID-19. Talanta 2021, 233, 122591. [Google Scholar] [CrossRef]
- Do, J.Y.; Jeong, J.Y.; Hong, C.A. Catalytic hairpin DNA assembly-based chemiluminescent assay for the detection of short SARS-CoV-2 target cDNA. Talanta 2021, 233, 122505. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zhang, Q.; Zhu, W.; Galluzzi, M.; Zhou, W.; Li, J.; Zayats, A.V.; Yu, X.F. Rapid detection of SARS-CoV-2 viral nucleic acids based on surface enhanced infrared absorption spectroscopy. Nanoscale 2021, 13, 10133–10142. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, G.; Liu, L.; Li, Z. Emerging biosensing technologies for improved diagnostics of COVID-19 and future pandemics. Talanta 2021, 225, 121986. [Google Scholar] [CrossRef]
- Abid, S.A.; Ahmed Muneer, A.; Al-Kadmy, I.M.S.; Sattar, A.A.; Beshbishy, A.M.; Batiha, G.E.; Hetta, H.F. Biosensors as a future diagnostic approach for COVID-19. Life Sci. 2021, 273, 119117. [Google Scholar] [CrossRef]
- Pradhan, A.; Lahare, P.; Sinha, P.; Singh, N.; Gupta, B.; Kuca, K.; Ghosh, K.K.; Krejcar, O. Biosensors as Nano-Analytical Tools for COVID-19 Detection. Sensors 2021, 21, 7823. [Google Scholar] [CrossRef]
- Qin, L.; Ding, X.; Li, Y.; Chen, Q.; Meng, J.; Jiang, T. Co-mutation modules capture the evolution and transmission patterns of SARS-CoV-2. Brief. Bioinform. 2021, 22, bbab222. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Zhang, J.; Fan, Z.; Ding, Y.; Zhou, B.; Yang, R.; Zhao, J.; Zhang, K. Rational Engineering of the DNA Walker Amplification Strategy by Using a Au@Ti3C2@PEI-Ru(dcbpy)32+ Nanocomposite Biosensor for Detection of the SARS-CoV-2 RdRp Gene. ACS Appl. Mater. Interfaces 2021, 13, 19816–19824. [Google Scholar] [CrossRef]
- Fan, Z.; Yao, B.; Ding, Y.; Zhao, J.; Xie, M.; Zhang, K. Entropy-driven amplified electrochemiluminescence biosensor for RdRp gene of SARS-CoV-2 detection with self-assembled DNA tetrahedron scaffolds. Biosens. Bioelectron. 2021, 178, 113015. [Google Scholar] [CrossRef] [PubMed]
- Zayani, R.; Rezig, D.; Fares, W.; Marrakchi, M.; Essafi, M.; Raouafi, N. Multiplexed Magnetofluorescent Bioplatform for the Sensitive Detection of SARS-CoV-2 Viral RNA without Nucleic Acid Amplification. Anal. Chem. 2021, 93, 11225–11232. [Google Scholar] [CrossRef]
- Masterson, A.N.; Muhoberac, B.B.; Gopinadhan, A.; Wilde, D.J.; Deiss, F.T.; John, C.C.; Sardar, R. Multiplexed and High-Throughput Label-Free Detection of RNA/Spike Protein/IgG/IgM Biomarkers of SARS-CoV-2 Infection Utilizing Nanoplasmonic Biosensors. Anal. Chem. 2021, 93, 8754–8763. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, D.; Yu, Y.; Li, T.; Li, K.; Xiao, M.M.; Li, Y.; Zhang, Z.Y.; Zhang, G.J. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosens. Bioelectron. 2021, 183, 113206. [Google Scholar] [CrossRef]
- Thanihaichelvan, M.; Surendran, S.N.; Kumanan, T.; Sutharsini, U.; Ravirajan, P.; Valluvan, R.; Tharsika, T. Selective and electronic detection of COVID-19 (Coronavirus) using carbon nanotube field effect transistor-based biosensor: A proof-of-concept study. Mater. Today Proc. 2021, 49, 2546–2549. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Pan, Y.; Sun, Z.; Li, J.; Yi, Y.; Yang, J.; Li, G. An electrochemical biosensor for sensitive analysis of the SARS-CoV-2 RNA. Biosens. Bioelectron. 2021, 186, 113309. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Ma, Y.; Chen, M.; Ambrosi, A.; Ding, C.; Luo, X. Electrochemical Biosensor with Enhanced Antifouling Capability for COVID-19 Nucleic Acid Detection in Complex Biological Media. Anal. Chem. 2021, 93, 5963–5971. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gálvez, L.; del Caño, R.; Menéndez-Luque, I.; García-Nieto, D.; Rodríguez-Peña, M.; Luna, M.; Pineda, T.; Pariente, F.; García-Mendiola, T.; Lorenzo, E. Electrochemiluminescent nanostructured DNA biosensor for SARS-CoV-2 detection. Talanta 2022, 240, 123203. [Google Scholar] [CrossRef] [PubMed]
Name | Sequences (5′-3′) |
---|---|
Target ORF1ab gene | CTCACCTTATGGGTTGGGATTATCCTAAATGTGATAGAGCCATGCCTAACATGCTTAGAATTATGGCCTCACTTGTTCTTGCTCGCAAACATACAACGTGTTGTAGCTTGTCACACCGTT |
Biotin probes | GCATGGCTCTATCACATTTAGGA-bio |
Amino probes | NH2- TGCGAGCAAGAACAAGTGAGG |
Added Amount (pmoL) | A260 nm Pre | A260 nm Post | Binding Rate (%) | Immobilized Amount (pmoL) |
---|---|---|---|---|
25 | 0.0797 ± 0.0020 | 0.0057 ± 0.0006 | 92.89 | 23.22 ± 0.15 |
50 | 0.1507 ± 0.0015 | 0.0107 ± 0.0012 | 92.92 | 46.46 ± 0.36 |
100 | 0.3387 ± 0.0006 | 0.1175 ± 0.0021 | 65.31 | 65.31 ± 1.55 |
150 | 0.5700 ± 0.0056 | 0.2990 ± 0.0046 | 47.54 | 71.32 ± 1.55 |
200 | 0.7530 ± 0.0017 | 0.4803 ± 0.0012 | 36.21 | 72.42 ± 0.60 |
250 | 0.8537 ± 0.0032 | 0.6027 ± 0.0045 | 29.97 | 73.50 ± 1.87 |
Sample Type | Added Amount (fM) | Detectable Amount (fM) | Recovery Ratio (%) | RSD(%) |
---|---|---|---|---|
Saliva | 10 | 9.48 ± 0.30 | 94.83% | 3.22% |
Urine | 10 | 9.36 ± 0.34 | 93.65% | 3.67% |
Biosensor Type | Detection Method | Target | LOD | References |
---|---|---|---|---|
Fluorescent Bioplatform | Magnetic nanomicrospheres | RNA | 16.61 fM | [26] |
Surface plasmon resonance biosensor | Gold Nano Island | N gene | 0.125 fM | [27] |
E gene | 0.451 fM | |||
Field-effect transistor nanosensor | Morpholino-modified graphene | RNA | 0.37 fM | [28] |
carbon nanotube | RdRp gene | 10 fM | [29] | |
Electrochemical biosensor | TdT-mediated DNA polymerization | RNA | 26 fM | [30] |
Polyaniline nanowires | N gene | 3.5 fM | [31] | |
ECL biosensor | DNA walker amplification | RdRp gene | 0.21 fM | [24] |
Entropy-driven amplification | RdRp gene | 2.67 fM | [25] | |
AuNMs and CDs | ORF1ab gene | 0.514 fM | [32] | |
Dual-probes hybridization | ORF1ab gene | 0.1 fM | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Mu, X.; Liu, S.; Liu, Z.; Du, B.; Wang, J.; Xu, J. A Study of the Detection of SARS-CoV-2 ORF1ab Gene by the Use of Electrochemiluminescent Biosensor Based on Dual-Probe Hybridization. Sensors 2022, 22, 2402. https://doi.org/10.3390/s22062402
Jiang C, Mu X, Liu S, Liu Z, Du B, Wang J, Xu J. A Study of the Detection of SARS-CoV-2 ORF1ab Gene by the Use of Electrochemiluminescent Biosensor Based on Dual-Probe Hybridization. Sensors. 2022; 22(6):2402. https://doi.org/10.3390/s22062402
Chicago/Turabian StyleJiang, Chunying, Xihui Mu, Shuai Liu, Zhiwei Liu, Bin Du, Jiang Wang, and Jianjie Xu. 2022. "A Study of the Detection of SARS-CoV-2 ORF1ab Gene by the Use of Electrochemiluminescent Biosensor Based on Dual-Probe Hybridization" Sensors 22, no. 6: 2402. https://doi.org/10.3390/s22062402
APA StyleJiang, C., Mu, X., Liu, S., Liu, Z., Du, B., Wang, J., & Xu, J. (2022). A Study of the Detection of SARS-CoV-2 ORF1ab Gene by the Use of Electrochemiluminescent Biosensor Based on Dual-Probe Hybridization. Sensors, 22(6), 2402. https://doi.org/10.3390/s22062402