Screen-Printed Voltammetric Sensors—Tools for Environmental Water Monitoring of Painkillers
Abstract
:1. Introduction
Drug | Excretion and Metabolites | WWTP Removal Rate (%) | Wastewater Influent (ng/L) | Wastewater Effluent (ng/L) | Surface Water (ng/L) |
---|---|---|---|---|---|
diclofenac | 5–10% unchanged, metabolites: glucuronide, sulfate conjugates [49] | 9–60 [50] 57.9 [47] | up to 302 [50] 191,000 [47] | 1300–3300 [51] Up to 5450 [50] 10,000 [52] 80,000 [47] | up to 490 [50] 1200 [48] 1410 [53] |
ibuprofen | 1% unchanged Metabolites: (+)-2-40-(2-Hydroxy-2-methylpropyl)-phenylpropionic acid (25%) and (+)-2-40-(2- carboxypropyl)-phenylpropionic acid (37%), conjugated ibuprofen (14%) [49] | 78–100 [50] 94.8 [47] | 5533 [50] 344,000 [47] | 711 [50] 18,000 [47] | 400 [50] 126 [53] |
naproxen | <1 unchanged, metabolites: 6-o-Desmethyl naproxen (o1%), conjugates (66–92%) [49] | 50–98 [50] | 611,000 [50] | 33,900 [50] 10,000 [52] | 297 [53] 390 [48] 400 [50] |
ketoprofen | Metabolites: Glucuronide conjugates [49] | 15–100 [50] | 5700 [50] 1000–10,000 [54] | 1620 [50] | 120 [48] 329 [50] |
paracetamol | 80% as conjugates, metabolites: Sulphate conjugate (30%), paracetamol cysteinate, mercapturate (5%) [49] | 91–99 [50] | 292,000 [50] 1000–10,000 [54] | 1480 [50] 100,000 [52] | 10,000 [48] 66 [50] |
acetylsalicylic acid | Metabolites: Salicylic acid (10%), salicyluric acid (75%), salicylic phenolic (10%) and acyl (5%) glucuronides, gentisic acid (o1%) [49] | 0 [50] | 1000–10,000 [54] | 1510 [50] | <50 [50] |
2. Application of Screen-Printed Voltammetric Sensors for the Painkillers Determination in the Environmental Water Samples
2.1. SPEs Modified with Carbon Nanomaterials
Electrode | Analyte | Method | Linear Range [µM] | LOD [µM] | Application | Ref. |
---|---|---|---|---|---|---|
SPCE/CNFs | PA | DPAdSV | 0.002–0.05 0.1–2.0 | 0.00054 | river water, sea water | [98] |
SPCE/MWCNTs-COOH | DF | DPAdSV | 0.0001–0.01 | 0.000028 | river water | [102] |
SPCE/MWCNTs-COOH | PA DF | DPAdSV (PPA) | 0.005–5.0 0.0001–0.02 | 0.0014 0.000030 | wastewater, river water | [83] |
SPCE | PA | DPV | 13.20–377.0 | 7.17 | tap water, hospital wastewater | [99] |
SPCNTE | 2.64–33.70 | 0.66 | ||||
SPCNFE | 1.98–33.70 | 0.66 | ||||
SPGPHE | 3.31–23.20 | 0.66 | ||||
SPCE | IB | 18.40–489.60 | 5.33 | |||
SPCNTE | 9.21–155.10 | 2.91 | ||||
SPCNFE | 19.40–114.40 | 5.82 | ||||
SPGPHE | 30.50–86.30 | 9.21 | ||||
SPCE | CF | 24.70–480.0 | 7.21 | |||
SPCNTE | 20.60–480.0 | 6.18 | ||||
SPCNFE | 61.80–330.0 | 2.06 | ||||
SPGPHE | 15.50–44.80 | 4.63 | ||||
CB/SPCE | PA LVF | SWV | 0.80–30.0 0.90–70.0 | 2.60 0.42 | river water | [101] |
2.2. SPEs Electrochemically Pretreated
2.3. SPEs Modified with Polymers
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Jesus Gaffney, V.; Mota-Filipe, H.; Pinto, R.A.; Thiemermann, C.; Loureiro, M.; Cardoso, V.V.; Benoliel, M.J.; Almeida, C.M. Chemical and biochemical characterization and in vivo safety evaluation of pharmaceuticals in drinking water. Environ. Toxicol. Chem. 2016, 35, 2674–2682. [Google Scholar] [CrossRef] [PubMed]
- Farré, M.I.; Pérez, S.; Kantiani, L.; Barceló, D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trend. Anal. Chem. 2008, 27, 991–1007. [Google Scholar] [CrossRef]
- Szymonik, A.; Lach, J.; Malińska, K. Fate and removal of pharmaceuticals and illegal drugs present in drinking water and wastewater. Ecol. Chem. Eng. S 2017, 24, 65–85. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.H.; Khan, N.A.; Ahmed, S.; Dhingra, A.; Singh, C.P.; Khan, S.U.; Mohammadi, A.A.; Changani, F.; Yousefi, M.; Alam, S.; et al. Application of Advanced Oxidation Processes Followed by Different Treatment Technologies for Hospital Wastewater Treatment. J. Clean Prod. 2020, 269, 122411. [Google Scholar] [CrossRef]
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Occurrence and Removal of PPCPs in Municipal and Hospital Wastewaters in Greece. J. Hazard. Mater. 2010, 179, 804–817. [Google Scholar] [CrossRef]
- Angeles, L.F.; Mullen, R.A.; Huang, I.J.; Wilson, C.; Khunjar, W.; Sirotkin, H.I.; McElroy, A.E.; Aga, D.S. Assessing Pharmaceutical Removal and Reduction in Toxicity Provided by Advanced Wastewater Treatment Systems. Environ. Sci. Water Res. Technol. 2020, 6, 62–77. [Google Scholar] [CrossRef]
- Brillas, E. A Critical Review on Ibuprofen Removal from Synthetic Waters, Natural Waters, and Real Wastewaters by Advanced Oxidation Processes. Chemosphere 2022, 286, 131849. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; de Pedro, C.; Paxeus, N. Effluent from Drug Manufactures Contains Extremely High Levels of Pharmaceuticals. J. Hazard. Mater. 2007, 148, 751–755. [Google Scholar] [CrossRef]
- Boroń, M.; Pawlas, K. Pharmaceuticals in aquatic environment–literature review. Probl. Hig. Epidemiol. 2015, 96, 357. [Google Scholar]
- de Morais, J.L.; Zamora, P.P. Use of Advanced Oxidation Processes to Improve the Biodegradability of Mature Landfill Leachates. J. Hazard. Mater. 2005, 123, 181–186. [Google Scholar] [CrossRef]
- Burns, E.E.; Carter, L.J.; Snape, J.; Thomas-Oates, J.; Boxall, A.B.A. Application of Prioritization Approaches to Optimize Environmental Monitoring and Testing of Pharmaceuticals. J. Toxicol. Environ. Health B 2018, 21, 115–141. [Google Scholar] [CrossRef]
- Carballa, M.; Omil, F.; Ternes, T.; Lema, J.M. Fate of Pharmaceutical and Personal Care Products (PPCPs) during Anaerobic Digestion of Sewage Sludge. Water Res. 2007, 41, 2139–2150. [Google Scholar] [CrossRef] [PubMed]
- Evgenidou, E.N.; Konstantinou, I.K.; Lambropoulou, D.A. Occurrence and Removal of Transformation Products of PPCPs and Illicit Drugs in Wastewaters: A Review. Sci. Total Environ. 2015, 505, 905–926. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xie, H.; Zhuang, L.; Zhang, J.; Hu, Z.; Liang, S.; Feng, K. A Review on the Role of Plant in Pharmaceuticals and Personal Care Products (PPCPs) Removal in Constructed Wetlands. Sci. Total Environ. 2021, 780, 146637. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Gao, J.; Li, W.; Huang, J.; Yu, G. Determination of 27 Pharmaceuticals and Personal Care Products (PPCPs) in Water: The Benefit of Isotope Dilution. Front. Environ. Sci. Eng. 2020, 14, 8. [Google Scholar] [CrossRef]
- OECD. Pharmaceutical Residues in Freshwater: Hazards and Policy Responses. In OECD Studies on Water; OECD: Paris, France, 2019; ISBN 978-92-64-77633-3. [Google Scholar]
- Pompei, C.M.E.; Campos, L.C.; da Silva, B.F.; Fogo, J.C.; Vieira, E.M. Occurrence of PPCPs in a Brazilian Water Reservoir and Their Removal Efficiency by Ecological Filtration. Chemosphere 2019, 226, 210–219. [Google Scholar] [CrossRef]
- Adeola, A.O.; de Lange, J.; Forbes, P.B.C. Adsorption of Antiretroviral Drugs, Efavirenz and Nevirapine from Aqueous Solution by Graphene Wool: Kinetic, Equilibrium, Thermodynamic and Computational Studies. Appl. Surf. Sci. Adv. 2021, 6, 100157. [Google Scholar] [CrossRef]
- Babas, H.; Kaichouh, G.; Khachani, M.; Karbane, M.E.; Chakir, A.; Guenbour, A.; Bellaouchou, A.; Warad, I.; Zarrouk, A. Equilibrium and Kinetic Studies for Removal of Antiviral Sofosbuvir from Aqueous Solution by Adsorption on Expanded Perlite: Experimental, Modelling and Optimization. Surf. Interfaces 2021, 23, 100962. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Jhung, S.H. Adsorptive Removal of Wide Range of Pharmaceuticals and Personal Care Products from Water Using Bio-MOF-1 Derived Porous Carbon. Micropor. Mesopor. Mater. 2018, 270, 102–108. [Google Scholar] [CrossRef]
- Karunanayake, A.G.; Todd, O.A.; Crowley, M.L.; Ricchetti, L.B.; Pittman, C.U.; Anderson, R.; Mlsna, T.E. Rapid Removal of Salicylic Acid, 4-Nitroaniline, Benzoic Acid and Phthalic Acid from Wastewater Using Magnetized Fast Pyrolysis Biochar from Waste Douglas Fir. Chem. Eng. Sci. 2017, 319, 75–88. [Google Scholar] [CrossRef]
- Jafarinejad, S. Cost-Effective Catalytic Materials for AOP Treatment Units. In Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment; Gil, A., Galeano, L.A., Vicente, M.Á., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 67, pp. 309–343. ISBN 978-3-319-76881-6. [Google Scholar]
- Michael, I.; Frontistis, Z.; Fatta-Kassinos, D. Removal of Pharmaceuticals from Environmentally Relevant Matrices by Advanced Oxidation Processes (AOPs). In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2013; Volume 62, pp. 345–407. ISBN 978-0-444-62657-8. [Google Scholar]
- Nie, C.; Shao, N.; Wang, B.; Yuan, D.; Sui, X.; Wu, H. Fully Solar-Driven Thermo- and Electrochemistry for Advanced Oxidation Processes (STEP-AOPs) of 2-Nitrophenol Wastewater. Chemosphere 2016, 154, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.Y.; Manikandan, S.; Subbaiya, R.; Biruntha, M.; Govarthanan, M.; Karmegam, N. Removal of Emerging Micropollutants Originating from Pharmaceuticals and Personal Care Products (PPCPs) in Water and Wastewater by Advanced Oxidation Processes: A Review. Environ. Technol. Innov. 2021, 23, 101757. [Google Scholar] [CrossRef]
- Chevremont, A.-C.; Boudenne, J.-L.; Coulomb, B.; Farnet, A.-M. Fate of Carbamazepine and Anthracene in Soils Watered with UV-LED Treated Wastewaters. Water Res. 2013, 47, 6574–6584. [Google Scholar] [CrossRef] [PubMed]
- Pai, C.-W.; Wang, G.-S. Treatment of PPCPs and Disinfection By-Product Formation in Drinking Water through Advanced Oxidation Processes: Comparison of UV, UV/Chlorine, and UV/H2O2. Chemosphere 2022, 287, 132171. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Yuzir, M.A.; Yong, E.L.; Abdullah, N.; Salim, M.R. Removal of Bisphenol A (BPA) in Surface Water by Ozone Oxidation Process. Appl. Mech. Mater. 2015, 735, 210–214. [Google Scholar] [CrossRef]
- Beltrán, F.J.; Pocostales, P.; Alvarez, P.; Oropesa, A. Diclofenac Removal from Water with Ozone and Activated Carbon. J. Hazard. Mater. 2009, 163, 768–776. [Google Scholar] [CrossRef]
- Hamdi El Najjar, N.; Touffet, A.; Deborde, M.; Journel, R.; Karpel Vel Leitner, N. Kinetics of Paracetamol Oxidation by Ozone and Hydroxyl Radicals, Formation of Transformation Products and Toxicity. Sep. Purif. Technol. 2014, 136, 137–143. [Google Scholar] [CrossRef]
- Lee, C.O.; Howe, K.J.; Thomson, B.M. Ozone and Biofiltration as an Alternative to Reverse Osmosis for Removing PPCPs and Micropollutants from Treated Wastewater. Water Res. 2012, 46, 1005–1014. [Google Scholar] [CrossRef]
- Andreozzi, R.; Caprio, V.; Marotta, R.; Vogna, D. Paracetamol Oxidation from Aqueous Solutions by Means of Ozonation and H2O2/UV System. Water Res. 2003, 37, 993–1004. [Google Scholar] [CrossRef]
- Sharma, J.; Mishra, I.M.; Kumar, V. Mechanistic Study of Photo-Oxidation of Bisphenol-A (BPA) with Hydrogen Peroxide (H2O2) and Sodium Persulfate (SPS). J. Environ. Manag. 2016, 166, 12–22. [Google Scholar] [CrossRef]
- Abramović, B.; Kler, S.; Šojić, D.; Laušević, M.; Radović, T.; Vione, D. Photocatalytic Degradation of Metoprolol Tartrate in Suspensions of Two TiO2-Based Photocatalysts with Different Surface Area. Identification of Intermediates and Proposal of Degradation Pathways. J. Hazard. Mater. 2011, 198, 123–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahnemann, D. Photocatalytic Water Treatment: Solar Energy Applications. J. Sol. Energy 2004, 77, 445–459. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, S.; Li, G.; Li, J.; Chen, F.; Chen, R. Chlorine-Enhanced Photocatalytic Degradation of PPCPs over Bi2MoO6/(BiO)2CO3 Heterostructures. J. Environ. Chem. Eng. 2021, 9, 106597. [Google Scholar] [CrossRef]
- Kumar, R.; Akbarinejad, A.; Jasemizad, T.; Fucina, R.; Travas-Sejdic, J.; Padhye, L.P. The Removal of Metformin and Other Selected PPCPs from Water by Poly(3,4-Ethylenedioxythiophene) Photocatalyst. Sci. Total Environ. 2021, 751, 142302. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, W.; Wu, X.; Siddique, M.S.; Su, Z.; Liu, M.; Yu, W. Reducing ROS Generation and Accelerating the Photocatalytic Degradation Rate of PPCPs at Neutral PH by Doping Fe-N-C to g-C3N4. Appl. Catal B Environ. 2022, 301, 120790. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, P.; Tan, C.; Chen, T.; Zhuo, M.; Xie, Z.; Wang, F.; Liu, H.; Cai, Z.; Liu, G.; et al. A Photocatalytic Degradation Strategy of PPCPs by a Heptazine-Based CN Organic Polymer (OCN) under Visible Light. Environ. Sci. Nano 2018, 5, 2325–2336. [Google Scholar] [CrossRef]
- Asif, A.H.; Wang, S.; Sun, H. Hematite-Based Nanomaterials for Photocatalytic Degradation of Pharmaceuticals and Personal Care Products (PPCPs): A Short Review. Curr. Opin. Green Sustain. Chem. 2021, 28, 100447. [Google Scholar] [CrossRef]
- Qian, H.; Yu, G.; Hou, Q.; Nie, Y.; Bai, C.; Bai, X.; Wang, H.; Ju, M. Ingenious Control of Adsorbed Oxygen Species to Construct Dual Reaction Centers ZnO@FePc Photo-Fenton Catalyst with High-Speed Electron Transmission Channel for PPCPs Degradation. Appl. Catal B Environ. 2021, 291, 120064. [Google Scholar] [CrossRef]
- Wu, J.; Wang, B.; Cagnetta, G.; Huang, J.; Wang, Y.; Deng, S.; Yu, G. Nanoscale Zero Valent Iron-Activated Persulfate Coupled with Fenton Oxidation Process for Typical Pharmaceuticals and Personal Care Products Degradation. Sep. Purif. Technol. 2020, 239, 116534. [Google Scholar] [CrossRef]
- Savun-Hekimoğlu, B.; Ince, N.H. Decomposition of PPCPs by Ultrasound-Assisted Advanced Fenton Reaction: A Case Study with Salicylic Acid. Ultrason. Sonochem. 2017, 39, 243–249. [Google Scholar] [CrossRef]
- Guo, M.; Feng, Y.; Li, X.; Yan, G.; Wang, X.; Li, X.; Zhang, S.; Yu, Y. Enhanced Degradation of Pharmaceuticals and Personal Care Products (PPCPs) by Three-Dimensional Electrocatalysis Coupled Biological Aerated Filter. J. Environ. Chem. Eng. 2021, 9, 106035. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Y.; Luo, H.; Liu, G.; Zhang, R.; Jin, S. A Microbial Electro-Fenton Cell for Removing Carbamazepine in Wastewater with Electricity Output. Water Res. 2018, 139, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, M.; Yang, W.; Ren, G.; Ma, L. Rolling-Made Gas Diffusion Electrode with Carbon Nanotube for Electro-Fenton Degradation of Acetylsalicylic Acid. Chemosphere 2018, 206, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.S.; Liu, Y.-Q. Comparison of Life Cycle Toxicity Assessment Methods for Municipal Wastewater Treatment with the Inclusion of Direct Emissions of Metals, PPCPs and EDCs. Sci. Total Environ. 2021, 756, 143849. [Google Scholar] [CrossRef]
- Boxall, A.B.A. The Environmental Side Effects of Medication: How Are Human and Veterinary Medicines in Soils and Water Bodies Affecting Human and Environmental Health? EMBO Rep. 2004, 5, 1110–1116. [Google Scholar] [CrossRef] [Green Version]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The Occurrence of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs in Surface Water in South Wales, UK. Water Res. 2008, 42, 3498–3518. [Google Scholar] [CrossRef]
- Ziylan, A.; Ince, N.H. The Occurrence and Fate of Anti-Inflammatory and Analgesic Pharmaceuticals in Sewage and Fresh Water: Treatability by Conventional and Non-Conventional Processes. J. Hazard. Mater. 2011, 187, 24–36. [Google Scholar] [CrossRef]
- Stülten, D.; Zühlke, S.; Lamshöft, M.; Spiteller, M. Occurrence of Diclofenac and Selected Metabolites in Sewage Effluents. Sci. Total Environ. 2008, 405, 310–316. [Google Scholar] [CrossRef]
- Wu, D.; Sui, Q.; Yu, X.; Zhao, W.; Li, Q.; Fatta-Kassinos, D.; Lyu, S. Identification of Indicator PPCPs in Landfill Leachates and Livestock Wastewaters Using Multi-Residue Analysis of 70 PPCPs: Analytical Method Development and Application in Yangtze River Delta, China. Sci. Total Environ. 2021, 753, 141653. [Google Scholar] [CrossRef]
- Al-Baldawi, I.A.; Mohammed, A.A.; Mutar, Z.H.; Abdullah, S.R.S.; Jasim, S.S.; Almansoory, A.F.; Ismail, N. ’Izzati Application of Phytotechnology in Alleviating Pharmaceuticals and Personal Care Products (PPCPs) in Wastewater: Source, Impacts, Treatment, Mechanisms, Fate, and SWOT Analysis. J. Clean. Prod. 2021, 319, 128584. [Google Scholar] [CrossRef]
- Bayati, M.; Ho, T.L.; Vu, D.C.; Wang, F.; Rogers, E.; Cuvellier, C.; Huebotter, S.; Inniss, E.C.; Udawatta, R.; Jose, S.; et al. Assessing the Efficiency of Constructed Wetlands in Removing PPCPs from Treated Wastewater and Mitigating the Ecotoxicological Impacts. Int. J. Hyg. Environ. Health 2021, 231, 113664. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhao, J.; Wang, S.; Du, P.; Xing, B. Effects of Solution Chemistry on Adsorption of Selected Pharmaceuticals and Personal Care Products (PPCPs) by Graphenes and Carbon Nanotubes. Environ. Sci. Technol. 2014, 48, 13197–13206. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, S.; Praskova, E.; Chromcova, L.; Plhalova, L.; Prokes, M.; Blahova, J.; Svobodova, Z. The Effects of Diclofenac on Early Life Stages of Common Carp (Cyprinus Carpio). Environ. Toxicol. Pharmacol. 2013, 35, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Webb, S.; Ternes, T.; Gibert, M.; Olejniczak, K. Indirect human exposure to pharmaceuticals via drinking water. Toxicol. Lett. 2003, 142, 157–167. [Google Scholar] [CrossRef]
- Maggioni, S.; Balaguer, P.; Chiozzotto, C.; Benfenati, E. Screening of endocrine-disrupting phenols, herbicides, steroid estrogens, and estrogenicity in drinking water from the waterworks of 35 Italian cities and from PET-bottled mineral water. Environ. Sci. Pollut. Res. 2013, 20, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Brody, J.G.; Aschengrau, A.; McKelvey, W.; Swartz, C.H.; Kennedy, T.; Ruthann, A.R. Breast cancer risk and drinking water contaminated by wastewater: A case control study. Environ. Health 2006, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschengrau, A.; Weinberg, J.M.; Janulewicz, P.A.; Romano, M.E.; Gallagher, L.G.; Winter, M.R.; Martin, B.R.; Vieira, V.M.; Webster, T.F.; White, R.F.; et al. Affinity for risky behaviors following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: A retrospective cohort study. Environ. Health 2011, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Zwiener, C. Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment. Anal. Bioanal. Chem. 2007, 387, 1159–1162. [Google Scholar] [CrossRef]
- Hena, S.; Gutierrez, L.; Croué, J.-P. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Wastewater Using Microalgae: A Review. J. Hazard. Mater. 2021, 403, 124041. [Google Scholar] [CrossRef]
- Sengar, A.; Vijayanandan, A. Human health and ecological risk assessment of 98 pharmaceuticals and personal care products (ppcps) detected in indian surface and wastewaters. Sci. Total Environ. 2022, 807, 150677. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dąbrowska, A.; Vieno, N.; Kronberg, L.; Nawrocki, J. Occurrence of acidic pharmaceuticals in the Warta River in Poland. Chem. Anal. 2007, 52, 289–303. [Google Scholar]
- Caban, M.; Lis, E.; Kumirska, J.; Stepnowski, P. Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci. Total Environ. 2015, 538, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Mirasole, C.; Di Carro, M.; Tanwar, S.; Magi, E. Liquid chromatography–tandem mass spectrometry and passive sampling: Powerful tools for the determination of emerging pollutants in water for human consumption. J. Mass Spectrom. 2016, 51, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Wang, B.; Lu, S.; Zhang, Y.; Yin, L.; Huang, J.; Deng, S.; Wang, Y.; Yu, G. Characterization of pharmaceutically active compounds in Dongting Lake, China: Occurrence, chiral profiling and environmental risk. Sci. Total Environ. 2016, 268, 557–558. [Google Scholar] [CrossRef]
- Paíga, P.; Santos, L.H.M.L.M.; Delerue-Matos, C. Development of a multi-residue method for the determination of human and veterinary pharmaceuticals and some of their metabolites in aqueous environmental matrices by SPE-UHPLC-MS/MS. J. Pharm. Biomed. 2017, 135, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Stripping Analysis, Principles, Instrumentation and Applications; VCH Publishers: Hoboken, NJ, USA, 1985. [Google Scholar]
- Couto, R.A.S.; Lima, J.L.F.C.; Quinaz, M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 2016, 146, 801–814. [Google Scholar] [CrossRef]
- Barton, J.; García, M.B.; Santos, D.H.; Fanjul-Bolado, P.; Ribotti, A.; McCaul, M.; Diamond, D.; Magni, P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Microchim. Acta 2016, 183, 503–517. [Google Scholar] [CrossRef]
- Niu, X.; Lan, M.; Zhao, H.; Chen, C.; Li, Y.; Zhu, X. Review: Electrochemical Stripping Analysis of Trace Heavy Metals Using Screen-Printed Electrodes. Anal. Lett. 2013, 46, 2479–2502. [Google Scholar] [CrossRef]
- Trojanowicz, M. Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications. Trends Anal. Chem. 2016, 84, 22–47. [Google Scholar] [CrossRef]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G.; Westmacott, K.; Honeychurch, K.C.; Crew, A.; Pemberton, R.M.; Hart, J.P. Recent advances in the fabrication and application of screen-printed electrochemical (bio) sensors based on carbon materials for biomedical, agri-food and environmental analyses. Biosensors 2016, 6, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinti, S.; Arduini, F. Graphene-based screen-printed electrochemical (bio)sensors and their applications: Efforts and criticisms. Biosens. Bioelectron. 2017, 89, 107122. [Google Scholar] [CrossRef] [PubMed]
- Tyszczuk-Rotko, K.; Szwagierek, A. Green Electrochemical Sensor for Caffeine Determination in Environmental Water Samples: The Bismuth Film Screen-Printed Carbon Electrode. J. ElectroChem. Soc. 2017, 164, B342. [Google Scholar] [CrossRef]
- Hayat, A.; Marty, J.L. Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring. Sensors 2014, 14, 10432–10453. [Google Scholar] [CrossRef] [Green Version]
- Namieśnik, J. Modern Trends in Monitoring and Analysis of Environmental Pollutants. Pol. J. Environ. Stud. 2001, 10, 127–140. [Google Scholar]
- Feier, B.; Florea, A.; Cristea, C.; Sandulescu, R. Electrochemical detection and removal of pharmaceuticals in waste waters. Curr. Opin. Electrochem. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Torrinha, Á.; Martins, M.; Tavares, M.; Delerue-Matos, C.; Morais, S. Carbon paper as a promising sensing material: Characterization and electroanalysis of ketoprofen in wastewater and fish. Talanta 2021, 226, 122111. [Google Scholar] [CrossRef]
- Kozak, J.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I. Electrochemically Activated Screen-Printed Carbon Sensor Modified with Anionic Surfactant (aSPCE/SDS) for Simultaneous Determination of Paracetamol, Diclofenac and Tramadol. Materials 2021, 14, 3581. [Google Scholar] [CrossRef]
- Sasal, A.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I.; Kuryło, M. Simultaneous analysis of paracetamol and diclofenac using MWCNTs-COOH modified screen-printed carbon electrode and pulsed potential accumulation. Materials 2020, 13, 3091. [Google Scholar] [CrossRef]
- Jahani, P.M.; Mohammadi, S.Z.; Khodabakhshzadeh, A.; Cha, J.W.; Asl, M.S.; Jang, H.W.; Shokouhimehr, M.; Zhang, K.; Van Le, Q.; Peng, W. Simultaneous voltammetric detection of morphine and diclofenac using graphene nanoribbon modified screen-printed electrode. Int. J. Electrochem. Sci. 2020, 15, 9037–9048. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, Z.; Zhang, G.; Yan, Y.; Yang, X.; Chang, J.; Song, Y.; Jia, Y.; Pan, P.; Mi, W.; et al. An electrochemical sensor based on plasma-treated zinc oxide nanoflowers for the simultaneous detection of dopamine and diclofenac sodium. Microchem. J. 2020, 158, 105237. [Google Scholar] [CrossRef]
- Kimuama, K.; Rodthongkumb, N.; Ngamrojanavanichc, N.; Chailapakuld, O.; Ruecha, N. Single step preparation of platinum nanoflowers/reduced graphene oxide electrode as a novel platform for diclofenac sensor. Microchem. J. 2020, 155, 104744. [Google Scholar] [CrossRef]
- Tyszczuk-Rotko, K.; Kozak, J.; Węzińska, A. Electrochemically activated screen-printed carbon electrode for determination of ibuprofen. Appl. Sci. 2021, 11, 9908. [Google Scholar] [CrossRef]
- Bushra, R.; Aslam, N. An overview of clinical pharmacology of ibuprofen. Oman Med. J. 2010, 25, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Diouf, A.; Moufid, M.; Bouyahya, D.; Österlund, L.; El Bari, N.; Bouchikhi, B. An electrochemical sensor based on chitosan capped with gold nanoparticles combined with a voltammetric electronic tongue for quantitative aspirin detection in human physiological fluids and tablets. Mater. Sci. Eng. 2020, 110, 110665. [Google Scholar] [CrossRef] [PubMed]
- Kruanetr, S.; Prabhu, R.; Pollard, P.; Fernandez, C. Pharmaceutical electrochemistry: The electrochemical detection of aspirin utilising screen printed Graphene electrodes as sensors platforms. Surf. Eng. Appl. Electrochem. 2015, 51, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Stefano, J.S.; Montes, R.H.O.; Richter, E.M.; Munoz, R.A.A. Flow-injection analysis with multiple-pulse amperometry for simultaneous determination of paracetamol and naproxen using a homemade flow cell for screen-printed electrodes. J. Braz. Chem. Soc. 2014, 25, 484–491. [Google Scholar] [CrossRef]
- Kondori, T.; Tajik, S.; Akbarzadeh, T.N.; Beitollahi, H.; Graiff, C.; Jang, H.W.; Shokouhimehr, M. Synthesis and characterization of bipyridine cobalt(II) complex modified graphite screen printed electrode: An electrochemical sensor for simultaneous detection of acetaminophen and naproxen. RSC Adv. 2021, 11, 3049–3057. [Google Scholar] [CrossRef]
- Kuczyńska, J.; Nieradko-Iwanicka, B. The effect of ketoprofen lysine salt on mucosa of rat stomach after ethyl alcohol intoxication. Biomed. Pharmacother. 2021, 141, 111938. [Google Scholar] [CrossRef]
- Molina-Garcia, L.; Santos, J.L.M.; Ruiz-Medina, A.; Llorent-Martinez, E.J. Determination of ketoprofen based on its quenching effect in the fluorescence of quantum dots. J. Food Drug Anal. 2013, 21, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Dong, Q.; Li, C.; Chen, J.; Ma, X.; Huang, Y.; Song, D.; Ji, C.; Lei, Y. Electrochemical sensor for detecting pain reliever/fever reducer drug acetaminophen based on electrospun CeBiOx nanofibers modified screen-printed electrode. Sens. Actuators B 2018, 256, 143–150. [Google Scholar] [CrossRef]
- Jahani, P.M.; Mohammadi, S.Z.; Khodabakhshzadeh, A.; Asl, M.S.; Jang, H.W.; Shokouhimehr, M.; Zhang, K.; Van Le, Q.; Peng, W. Simultaneous voltammetric detection of acetaminophen and tramadol using molybdenum tungsten disulfide-modified graphite screen-printed electrode. Int. J. Electrochem. Sci. 2020, 15, 9024–9036. [Google Scholar] [CrossRef]
- Sima, V.; Cristea, C.; Bodoki, E.; Duţu, G.; Săndulescu, R. Screen-printed electrodes modified with HRP-zirconium alkoxide film for the development of a biosensor for acetaminophen detection. Cent. Eur. J. Chem. 2010, 8, 1034–1040. [Google Scholar]
- Sasal, A.; Tyszczuk-Rotko, K.; Chojecki, M.; Korona, T.; Nosal-Wiercińska, A. Direct determination of paracetamol in environmental samples using screen-printed carbon/carbon nanofibers sensor—Experimental and theoretical studies. Electroanalysis 2020, 32, 1618–1628. [Google Scholar] [CrossRef]
- Serrano, N.; Castilla, O.; Ariño, C.; Diaz-Cruz, M.S.; Diaz-Cruz, J.M. Commercial screen-printed electrodes based on carbon nanomaterials for a fast and cost-effective voltammetric determination of paracetamol, ibuprofen and caffeine in water samples. Sensors 2019, 19, 4039. [Google Scholar] [CrossRef] [Green Version]
- Raymundo-Pereira, P.A.; Gomes, N.O.; Machado, S.A.S.; Oliveira, O.N., Jr. Simultaneous, ultrasensitive detection of hydroquinone, paracetamol and estradiol for quality control of tap water with a simple electrochemical method. J. Electroanal. Chem. 2019, 848, 113319. [Google Scholar] [CrossRef]
- Deroco, P.B.; Fatibello-Filho, O.; Arduini, F.; Moscone, D. Effect of different carbon blacks on the simultaneous electroanalysis of drugs as water contaminants based on screen-printed sensors. Electroanalysis 2019, 31, 2145–2154. [Google Scholar] [CrossRef]
- Sasal, A.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I. First electrochemical sensor (screen-printed carbon electrode modified with carboxyl functionalized multiwalled carbon nanotubes) for ultratrace determination of diclofenac. Materials 2020, 13, 781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seguro, I.; Pacheco, J.G.; Delerue-Matos, C. Low cost, easy to prepare and disposable electrochemical molecularly imprinted sensor for diclofenac detection. Sensors 2021, 21, 1975. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.; Soomro, M.T.; Memon, N.; Solangi, A.R.; Uddin, S.; Qureshi, T.; Behzad, A.R. Disposable screen printed graphite electrode for the direct determination of ibuprofen in surface water. Environ. Nanotechnol. Monit. Manag. 2014, 1–2, 8–13. [Google Scholar]
- Saciloto, T.R.; Cervini, P.; Cavalheiro, É.T.G. Simultaneous voltammetric determination of acetaminophen and caffeine at a graphite and polyurethane screen-printed composite electrode. J. Braz. Chem. Soc. 2013, 24, 1461–1468. [Google Scholar] [CrossRef]
- Gilmartin, M.A.T.; Hart, J.P. Rapid detection of paracetamol using a disposable, surface-modified screen-printed carbon electrode. Analyst 1994, 119, 2431–2437. [Google Scholar] [CrossRef]
- Ma, L.-L.; He, Y.; Qin, D.; Chang, A.; Huang, A.; Xie, X.-J.; Zhang, Y. Fabrication, characterization and performance evaluation of screen-printed carbon electrodes: Determination of acetaminophen in Tylenol. Chinese. J. Anal. Chem. 2021, 49, 21187–21196. [Google Scholar] [CrossRef]
- Khairy, M.; Banks, C.E. A screen-printed electrochemical sensing platform surface modified with nanostructured ytterbium oxide nanoplates facilitating the electroanalytical sensing of the analgesic drugs acetaminophen and tramadol. Microchim. Acta 2020, 187, 126. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Zhang, J.; Zhang, H.; Li, Y. Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens. Bioelectron. 2019, 130, 315–321. [Google Scholar] [CrossRef]
- Wei, Z.; Guo, S.; Cheng, L.; Li, T.; Zhang, Y.; Yang, H. Simultaneous determination of acetaminophen and tyrosine using screen-printed electrochemical sensor based on MWCNTs-doped poly(glycine)/poly(acrylic acid) conducting polymers. Int. J. Electrochem. Sci. 2019, 14, 6748–6758. [Google Scholar] [CrossRef]
- De Carvalhoa, R.C.; Bettsa, A.J.; Cassidya, J.F. Diclofenac determination using CeO2 nanoparticle modified screen-printed electrodes—A study of background correction. Microchem. J. 2020, 158, 105258. [Google Scholar] [CrossRef]
- Baezzat, M.R.; Tavakkoli, N.; Zamani, H. Construction of a new electrochemical sensor based on MoS2 nanosheets modifiedgraphite screen printed electrode for simultaneous determination of diclofenac and morphine. Anal. Bioanal. Chem. Res. 2022, 9, 153–162. [Google Scholar]
- Apetrei, I.M.; Bejinaru, A.A.; Boev, M.; Apetrei, C.; Buzia, O.D. Determination of ibuprofen based on screen-printed electrodes modified with carbon nanofibers. Farmacia 2017, 65, 790–795. [Google Scholar]
- Zhao, C.; Lin, J. Electrochemically reduced graphene oxide modified screen-printed electrodes for sensitive determination of acetylsalicylic acid. Int. J. Electrochem. Sci. 2017, 12, 10177–10186. [Google Scholar] [CrossRef]
- Baj-Rossi, C.; Jost, T.R.; Cavallini, A.; Grassi, F.; De Micheli, G.; Carrara, S. Continuous monitoring of Naproxen by a cytochrome P450-based electrochemical sensor. Biosens. Bioelectron. 2014, 53, 283–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaghoubian, H.; Tajik, S.; Beitollahi, H.; Sarhadi, H.; Sheikhshoaie, I. Fe2MoO4 magnetic nanocomposite modified screenprinted graphite electrode as a voltammetric sensor for simultaneous determination of nalbuphine and diclofenac. J. Mater. Sci. Mater. Electron. 2021, 32, 17311–17323. [Google Scholar] [CrossRef]
- Cumba, L.R.; Camisasca, A.; Giordani, S.; Foster, R.J. Electrochemical properties of screen-printed carbon nano-onion electrodes. Molecules 2020, 25, 3884. [Google Scholar] [CrossRef] [PubMed]
- Kozak, J.; Tyszczuk-Rotko, K.; Sadok, I.; Sztanke, K.; Sztanke, M. Application of a screen-printed sensor modified with carbon nanofibers for the voltammetric analysis of an anticancer disubstited fused triazinone. Int. J. Mol. Sci. 2022, 23, 2429. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez-Redín, G.; Furuta, R.H.M.; Wilson, D.; Shimizu, F.M.; Shimizu, F.M.; Materon, E.M.; Arantes, L.M.R.B.; Melendez, M.E.; Carvalho, A.L.; Reis, R.M.; et al. Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. Mater. Sci. Eng. C 2019, 99, 1502–1508. [Google Scholar] [CrossRef]
- Kaewket, K.; Karuwan, C.; Sonsupap, S.; Maensiri, S.; Ngamchuea, K. Anti-fouling effects of carbon nanofiber in electrochemical sensing of phenolic compounds. J. Electrochem. Soc. 2021, 168, 067501. [Google Scholar] [CrossRef]
- Della Pelle, F.; Angelini, C.; Sergi, M.; Del Carlo, M.; Pepe, A.; Compagnone, D. Nano carbon black-based screen-printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: Application to grain samples. Talanta 2018, 186, 389–396. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Voltamperometric sensors and biosensors based on carbon nanomaterials used for detecting of caffeic acid-a review. Int. J. Mol. Sci. 2020, 21, 9275. [Google Scholar] [CrossRef]
- Sipa, K.; Brycht, M.; Leniart, A.; Skrzypek, S. The application of carbon nanomaterials as electrode surface modifiers for the voltammetric sensing of nitroxinil—A comparative studies. J. Electroanal. Chem. 2019, 848, 113294. [Google Scholar] [CrossRef]
- Goyal, R.N.; Chatterjee, S.; Agrawal, B. Electrochemical investigations of diclofenac at edge plane pyrolytic graphite electrode and its determination in human urine. Sens. Actuators B Chem. 2010, 145, 743–748. [Google Scholar] [CrossRef]
- Medsen, K.G.; Skonberg, C.; Jurva, U.; Cornett, C.; Hansen, S.H.; Johansen, T.N.; Olsen, J. Bioactivation of diclofenac in vitro and In Vivo: Correlation to electrochemical studies. Chem. Res. Toxicol. 2008, 21, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Korolczuk, M. Application of pulsed potential accumulation for minimization of interferences from surfactants in voltammetric determination of traces of Cr(VI). Electroanalysis 2000, 12, 837–840. [Google Scholar] [CrossRef]
- González-Sánchez, M.I.; Gómez-Monedero, B.; Agrisuelas, J.; Iniesta, J.; Valero, E. Highly activated screen-printed carbon electrodes by electrochemical treatment with hydrogen peroxide. Electrochem. Commun. 2018, 91, 36–40. [Google Scholar] [CrossRef]
- Yuan, X.; Ma, L.; Zhang, J.; Zheng, Y. Simple pre-treatment by low-oxygen plasma activates screen-printed carbon electrode: Potential for mass production. Appl. Surf. Sci. 2021, 544, 148760. [Google Scholar] [CrossRef]
- Wei, H.; Sun, J.-J.; Xie, Y.; Lin, C.-G.; Wang, Y.-M.; Yin, W.-H.; Chen, G.-N. Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure. Anal. Chim. Acta 2007, 588, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Arrigan, D.W.M.; Silvester, D.S. Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes. Sens. Bio-Sens. Res. 2016, 9, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Cumba, L.R.; Foster, C.W.; Brownson, D.A.C.; Smith, J.P.; Iniesta, J.; Thakur, B.; do Carmo, D.R.; Banks, C.E. Can the mechanical activation (polishing) of screen-printed electrodes enhance their electroanalytical response? Analyst 2016, 141, 2791–2799. [Google Scholar] [CrossRef] [Green Version]
- Montiel, N.F.; Parrilla, M.; Beltran, V.; Nuyts, G.; Van Durme, F.; De Wael, K. The opportunity of 6-monoacetymorphine to selectively detect heroin at prenodized screen printed electrodes. Talanta 2021, 226, 122005. [Google Scholar] [CrossRef]
- De Oliveira Silva, R.; da Silva, E.A.; Fiorucci, A.R.; Ferreira, V.S. Electrochemically activated multiwalled carbon nanotubes modified screen-printed electrode for voltammetric determination of sulfentrazone. J. Electroanal. Chem. 2019, 835, 220–226. [Google Scholar] [CrossRef]
- Kozak, J.; Tyszczuk-Rotko, K.; Wójciak, M.; Sowa, I.; Rotko, M. First screen-printed sensor (electrochemically activated screen-printed boron-doped diamond electrode) for quantitative determination of rifampicin by adsorptive stripping voltammetry. Materials 2021, 14, 4231. [Google Scholar] [CrossRef]
- González-Sánchez, M.I.; Gómez-Monedero, B.; Agrisuelas, J.; Iniesta, J.; Valero, E. Electrochemical performance of activated screen-printed carbon electrodes for hydrogen peroxide and phenol derivatives sensing. J. Electroanal. Chem. 2019, 839, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Cinto, S. Polymeric materials for printed-based electroanalytical (bio)applications. Chemosensors 2017, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Raj, M.; Gupta, P.; Goyal, R.N.; Shim, Y.-B. Graphene/conducting polimer nano-composite loaded screen printed carbon sensor for simultaneous determination of dopaminę and 5-hydroxytryptamine. Sens. Actuators B Chem. 2017, 239, 993–1002. [Google Scholar] [CrossRef]
- Valasii, L.; Tsimpliaras, D.; Katseli, V.; Economou, A.; Svancara, I.; Stoces, M.; Mikysek, T.; Prodromidis, M. Disposable nafion-modified screen-printed graphite electrodes for the rapid voltammetric assay of caffeine. Insights Anal. Electrochem. 2015, 1, 2470–9867. [Google Scholar] [CrossRef]
- Kumar, D.; Prasad, B.B. Multiwalled carbon nanotubes embedded molecularly imprinted polimer-modified screen printed carbon electrode for the quantitative analysis of C-reactive protein. Sens. Actuators B Chem. 2012, 171–172, 1141–1150. [Google Scholar] [CrossRef]
- Stoica, B.E.; Gavrila, A.-M.; Sarbu, A.; Iovu, H.; Brisset, H.; Miron, A.; Iordache, T.-V. Uncovering the behaviour of screen-printed carbon electrodes modified with polymers molecularly imprinted with lipopolysaccharide. Electrochem. Commun. 2021, 124, 106965. [Google Scholar] [CrossRef]
- Ekomo, V.M.; Branger, C.; Bikanga, R.; Florea, A.-M.; Istamboilie, G.; Calas-Blanchard, C.; Noguer, T.; Sarbu, A.; Brisset, H. Detection of Bisphenol A in aqueous medium by screen printed carbon electrodes incorporating electrochemical molecularly imprinted polymers. Biosens. Bioelectron. 2018, 112, 156–161. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Opik, A.; Syritski, V. Sulfamethizole-imprinted polymer on screen-printed electrodes: Towards the design of a portable environmental sensor. Sens. Actuators B Chem. 2020, 320, 128600. [Google Scholar] [CrossRef]
- Rebelo, P.; Pacheco, J.G.; Cordeiro, M.N.D.S.; Melo, A.; Delerue-Matos, C. Azithromycin electrochemical detection using a molecularly imprinted polymer prepared on a disposable screen-printed electrode. Anal. Methods 2020, 12, 1486–1494. [Google Scholar] [CrossRef]
- Motaharian, A.; Hosseini, M.R.M.; Naseri, K. Determination of psychotropic drug chlorpromazine using screen printed carbon electrodes modified with novel MIP-MWCNTs nano-composite prepared by suspension polymerization method. Sens. Actuators B Chem. 2019, 288, 356–362. [Google Scholar] [CrossRef]
- Antiochia, R.; Gorton, L. A new osmium-polymer modified screen-printed graphene electrodefor fructose detection. Sens. Actuators B Chem. 2014, 195, 287–293. [Google Scholar] [CrossRef]
- Chakkarapani, L.D.; Brandl, M. Carbon screen-printed electrode coated with poly(toluidine blue) as an electrochemical sensor for the detection of tyramine. Eng. Proc. 2020, 2, 51–56. [Google Scholar]
- Faradilla, P.; Setiyanto, H.; Mannurung, R.V.; Saraswaty, V. Electrochemical sensor based on screen printed carbon electrode–zinc oxide nano particles/molecularly imprinted-polymer (SPCE–ZnONPs/MIP) for detection of sodium dodecyl sulfate (SDS). RSC Adv. 2022, 12, 743–752. [Google Scholar] [CrossRef]
Electrode | Analyte | Method | Linear Range [µM] | LOD [µM] | Application | Ref. |
---|---|---|---|---|---|---|
aSPCE/SDS | DF PA TR | DPAdSV | 0.001–0.2 0.05–20.0 0.01–0.2 0.2–2.0 | 0.00021 0.015 | river water | [82] |
electrochemically pretreated SPCE | PA HQ E2 | DPV | 0.5–10.0 0.5–10.0 0.5–10.0 | 0.22 0.19 0.89 | tap water | [100] |
electrochemically pretreated SPGE | IB | SWV | 0.80–30.0 | 6.30 | river water, wastewater | [104] |
MIP/SPCE | DF | DPV | 0.1–10 | 0.07 | river water, tap water | [103] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyszczuk-Rotko, K.; Kozak, J.; Czech, B. Screen-Printed Voltammetric Sensors—Tools for Environmental Water Monitoring of Painkillers. Sensors 2022, 22, 2437. https://doi.org/10.3390/s22072437
Tyszczuk-Rotko K, Kozak J, Czech B. Screen-Printed Voltammetric Sensors—Tools for Environmental Water Monitoring of Painkillers. Sensors. 2022; 22(7):2437. https://doi.org/10.3390/s22072437
Chicago/Turabian StyleTyszczuk-Rotko, Katarzyna, Jędrzej Kozak, and Bożena Czech. 2022. "Screen-Printed Voltammetric Sensors—Tools for Environmental Water Monitoring of Painkillers" Sensors 22, no. 7: 2437. https://doi.org/10.3390/s22072437
APA StyleTyszczuk-Rotko, K., Kozak, J., & Czech, B. (2022). Screen-Printed Voltammetric Sensors—Tools for Environmental Water Monitoring of Painkillers. Sensors, 22(7), 2437. https://doi.org/10.3390/s22072437