Evaluating the Feasibility of a Low-Field Nuclear Magnetic Resonance (NMR) Sensor for Manure Nutrient Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manure Sample Collection
2.2. Laboratory and NMR Analysis
2.3. Data Analysis
3. Results
3.1. Manure Characteristics
3.2. Comparison between NMR Prediction and Lab Measurement
3.2.1. Total Solids
3.2.2. Total Nitrogen
3.2.3. Ammoniacal Nitrogen
3.2.4. Total Phosphorus
4. Discussion
4.1. The Effect of Run Time (RT) on NMR Prediction for Manure Nutrients
4.2. Repeatability and Reproducibility of NMR Manure Prediction
4.3. Comparison with Existing Literature
4.4. Limitations and Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kleinman, P.J. The persistent environmental relevance of soil phosphorus sorption saturation. Curr. Pollut. Rep. 2017, 3, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Sanford, J.R.; Larson, R.A.; Digman, M.F. Assessing Certified Manure Analysis Laboratory Accuracy and Variability. Appl. Eng. Agric. 2020, 36, 905–912. [Google Scholar] [CrossRef]
- Chen, L.; Xing, L.; Han, L. Review of the Application of Near-Infrared Spectroscopy Technology to Determine the Chemical Composition of Animal Manure. J. Environ. Qual. 2013, 42, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Reeves, J.B., III. The present status of “quick tests” for on-farm analysis with emphasis on manures and soil: What is available and what is lacking? Livest. Sci. 2007, 112, 224–231. [Google Scholar] [CrossRef]
- Yagüe, M.R.; Quílez, D. On-farm Measurement of Electrical Conductivity for the Estimation of Ammonium Nitrogen Concentration in Pig Slurry. J. Environ. Qual. 2012, 41, 893–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suresh, A.; Choi, H.L.; Oh, D.I.; Moon, O.K. Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC–Electrical conductivity. Bioresour. Technol. 2009, 100, 4683–4689. [Google Scholar] [CrossRef] [PubMed]
- Provolo, G.; Martínez-Suller, L. In situ determination of slurry nutrient content by electrical conductivity. Bioresour. Technol. 2007, 98, 3235–3242. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Larson, R.A.; Digman, M.F. Evaluation of Near-Infrared Reflectance and Transflectance Sensing System for Predicting Manure Nutrients. Remote Sens. 2022, 14, 963. [Google Scholar] [CrossRef]
- Cabassi, G.; Cavalli, D.; Fuccella, R.; Gallina, P.M. Evaluation of four NIR spectrometers in the analysis of cattle slurry. Biosyst. Eng. 2015, 133, 1–13. [Google Scholar] [CrossRef]
- Reeves, J.B.; Van Kessel, J.S. Near-infrared spectroscopic determination of carbon, total nitrogen, and ammonium-N in dairy manures. J. Dairy Sci. 2000, 83, 1829–1836. [Google Scholar] [CrossRef]
- Sørensen, M.K.; Jensen, O.; Bakharev, O.N.; Nyord, T.; Nielsen, N.C. NPK NMR Sensor: Online monitoring of nitrogen, phosphorus, and potassium in animal slurry. Anal. Chem. 2015, 87, 6446–6450. [Google Scholar] [CrossRef] [PubMed]
- Loudiyi, M.; Temiz, H.T.; Sahar, A.; Haseeb Ahmad, M.; Boukria, O.; Hassoun, A.; Aït-Kaddour, A. Spectroscopic techniques for monitoring changes in the quality of milk and other dairy products during processing and storage. Crit. Rev. Food Sci. Nutr. 2020, 1–25. [Google Scholar] [CrossRef] [PubMed]
- NanoNord A/S. BenchtopTM Tveskaeg: System Manual; NanoNord A/S: Aalborg, Denmark, 2020. [Google Scholar]
- Hansen, C.L.; Rinnan, Å.; Engelsen, S.B.; Janhøj, T.; Micklander, E.; Andersen, U.; van den Berg, F. Effect of gel firmness at cutting time, pH, and temperature on rennet coagulation and syneresis: An in situ 1H NMR relaxation study. J. Agric. Food Chem. 2010, 58, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Nikolskaya, E.; Janhunen, P.; Haapalainen, M.; Hiltunen, Y. Solids content of black liquor measured by online Time-Domain NMR. Appl. Sci. 2019, 9, 2169. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, M.K.; Vinding, M.S.; Bakharev, O.N.; Nesgaard, T.; Jensen, O.; Nielsen, N.C. NMR sensor for onboard ship detection of catalytic fines in marine fuel oils. Anal. Chem. 2014, 86, 7205–7208. [Google Scholar] [CrossRef] [PubMed]
- Saeys, W.; Mouazen, A.M.; Ramon, H. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosyst. Eng. 2005, 91, 393–402. [Google Scholar] [CrossRef]
- Floren, J.; Miller, R.O.; Montgomery, B. Manure Analysis Manure Analysis Proficiency (MAP) Program Final Report. December 2006. Available online: https://www.mda.state.mn.us/sites/default/files/inline-files/mapreport01-07ADA.pdf (accessed on 19 March 2022).
- Peters, J.; Combs, S.; Hoskins, B.; Jarman, J.; Kovar, J.; Watson, M.; Wolf, A.; Wolf, N. Recommended Methods of Manure Analysis; University of Wisconsin Cooperative Extension Publishing: Madison, WI, USA, 2003. [Google Scholar]
- Furlong, N.; Lovelace, E.; Lovelace, K. Research Methods and Statistics: An Integrated Approach; Harcourt: London, UK, 2000. [Google Scholar]
- Laboski, C.A.; Peters, J.B.; Bundy, L.G. Nutrient Application Guidelines for Field, Vegetable, and Fruit Crops in Wisconsin; Division of Cooperative Extension of the University of Wisconsin-Extension: Madison, WI, USA, 2006. [Google Scholar]
- Higgins, S.F.; Shearer, S.A.; Coyne, M.S.; Fulton, J.P. Relationship of total nitrogen and total phosphorus concentration to solids content in animal waste slurries. Appl. Eng. Agric. 2004, 20, 355. [Google Scholar] [CrossRef]
- Zhu, J.; Ndegwa, P.M.; Zhang, Z. Settling characteristics of nursery pig manure and nutrient estimation by the hydrometer method. J. Environ. Sci. Health B 2003, 38, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Bomans, E.; Fransen, K.; Gobin, A.; Mertens, J.; Michiels, P.; Vandendriessche, H.; Vogels, N. Addressing Phosphorus Related Problems in Farm Practice; Final Report to the European Commission; DG Environment: Heverlee, Belgium, 2005; pp. 9–21. [Google Scholar]
- Jensen, O.N.; Beyer, M.; Sørensen, M.K.; Kreimeyer, M.; Nielsen, N.C. Fast and Accurate Quantification of Nitrogen and Phosphorus Constituents in Animal Slurries Using NMR Sensor Technology. ACS Omega 2021, 6, 17335–17341. [Google Scholar] [CrossRef] [PubMed]
Sample ID | NH4-N | TN | TP | TS |
---|---|---|---|---|
1 | 1072 | 2534 | 409 | 9.8% |
2 | 1128 | 2497 | 419 | 8.1% |
3 | 1128 | 2417 | 451 | 5.4% |
4 | 1116 | 2385 | 436 | 5.1% |
5 | 1134 | 2381 | 430 | 3.8% |
6 | 1168 | 2431 | 439 | 4.7% |
7 | 1181 | 2407 | 472 | 4.4% |
8 | 955 | 1940 | 358 | 3.0% |
9 | 892 | 1838 | 337 | 2.8% |
10 | 967 | 1906 | 333 | 2.7% |
11 | 1497 | 4332 | 807 | 19.8% |
12 | 4253 | 5824 | 528 | 6.1% |
13 | 1576 | 4416 | 918 | 12.0% |
14 | 1015 | 2103 | 472 | 4.7% |
15 | 751 | 1114 | 160 | 1.4% |
16 | 895 | 1268 | 155 | 1.5% |
17 | 1337 | 2757 | 610 | 8.4% |
18 | 1065 | 2507 | 463 | 6.3% |
19 | 1969 | 4726 | 827 | 13.2% |
20 | 926 | 4497 | 1097 | 13.3% |
Parameter | RT (min) | Overall | TS < 8% | TS > 8% | |||
---|---|---|---|---|---|---|---|
Linear | R2 | Linear | R2 | Linear | R2 | ||
TS (%) | 10 s | y = 1.593x + 0.025 | 0.80 | y = 1.34x + 0.04 | 0.86 | y = 2.20x − 0.04 | 0.50 |
TN (mg L−1) | 15 | y = 0.677x + 1422 | 0.56 | y = 1.12x + 649 | 0.94 | y = 0.235x + 2412 | 0.21 |
30 | y = 0.667x + 1451 | 0.63 | y = 1.02x + 819 | 0.96 | y = 0.280x + 2385 | 0.18 | |
45 | y = 0.700x + 1340 | 0.66 | y = 1.07x + 668 | 0.96 | y = 0.250x + 2524 | 0.21 | |
60 | y = 0.717x + 1296 | 0.61 | y = 1.16x + 518 | 0.96 | y = 0.253x + 2382 | 0.23 | |
NH4-N (mg L−1) | 15 | y = 1.09x + 215 | 0.94 | y = 1.11x + 181 | 0.98 | y = 0.859x + 554 | 0.51 |
30 | y = 1.05x + 269 | 0.96 | y = 1.01x + 259 | 0.99 | y = 1.45x − 170 | 0.90 | |
45 | y = 1.08x + 211 | 0.97 | y = 1.06x + 155 | 1.00 | y = 1.16x + 233 | 0.84 | |
60 | y = 1.14x + 125 | 0.97 | y = 1.14x + 85 | 1.00 | y = 1.11x + 255 | 0.70 | |
TP (mg L−1) | 30 | y = 0.803x + 67 | 0.89 | y = 0.677x + 114 | 0.68 | y = 0.862x + 32 | 0.91 |
45 | y = 0.776x + 84 | 0.92 | y = 0.711x + 109 | 0.84 | y = 0.799x + 69 | 0.87 | |
60 | y = 0.710x + 113 | 0.91 | y = 0.62x + 153 | 0.72 | y = 0.798x + 41 | 0.90 | |
90 | y = 0.788x + 87 | 0.88 | y = 0.652x + 139 | 0.76 | y = 0.873x + 32 | 0.84 |
Parameter | RT | N | Mean ± SD (AbsDiff) | SD (NMR Measurements) | Rd (%) | Rp (%) |
---|---|---|---|---|---|---|
TS (%) | 10 s | 19 | 6.1 ± 3.66 | 0.88 | 60.0 | 18.6 |
NH4-N (mg L−1) | 15 min | 20 | 359.9 ± 204.47 | 128.00 | 56.8 | 48.6 |
30 min | 20 | 337 ± 169.02 | 46.10 | 50.2 | 42.3 | |
45 min | 20 | 312.4 ± 163.62 | 28.21 | 52.4 | 33.4 | |
60 min | 19 | 306.6 ± 195.16 | 42.30 | 63.7 | 31.0 | |
TN (mg L−1) | 15 min | 19 | 896.4 ± 407.08 | 116.75 | 45.4 | 24.9 |
30 min | 19 | 839 ± 373.15 | 54.48 | 44.5 | 20.6 | |
45 min | 19 | 814.6 ± 327.67 | 40.66 | 40.2 | 15.1 | |
60 min | 19 | 856 ± 382.12 | 76.85 | 44.6 | 16.3 | |
TP (mg L−1) | 30 min | 19 | 78.3 ± 35.01 | 23.57 | 44.7 | 73.9 |
45 min | 20 | 81.6 ± 43.04 | 27.87 | 52.8 | 70.2 | |
60 min | 20 | 85.2 ± 54.57 | 24.31 | 64.0 | 56.6 | |
90 min | 19 | 68.4 ± 37.75 | 23.01 | 55.2 | 73.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Larson, R.A.; Digman, M.F. Evaluating the Feasibility of a Low-Field Nuclear Magnetic Resonance (NMR) Sensor for Manure Nutrient Prediction. Sensors 2022, 22, 2438. https://doi.org/10.3390/s22072438
Feng X, Larson RA, Digman MF. Evaluating the Feasibility of a Low-Field Nuclear Magnetic Resonance (NMR) Sensor for Manure Nutrient Prediction. Sensors. 2022; 22(7):2438. https://doi.org/10.3390/s22072438
Chicago/Turabian StyleFeng, Xiaoyu, Rebecca A. Larson, and Matthew F. Digman. 2022. "Evaluating the Feasibility of a Low-Field Nuclear Magnetic Resonance (NMR) Sensor for Manure Nutrient Prediction" Sensors 22, no. 7: 2438. https://doi.org/10.3390/s22072438
APA StyleFeng, X., Larson, R. A., & Digman, M. F. (2022). Evaluating the Feasibility of a Low-Field Nuclear Magnetic Resonance (NMR) Sensor for Manure Nutrient Prediction. Sensors, 22(7), 2438. https://doi.org/10.3390/s22072438