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Abstract: Automatic tracking and quantification of exercises not only helps in motivating people
but also contributes towards improving health conditions. Weight training, in addition to aerobic
exercises, is an important component of a balanced exercise program. Excellent trackers are available
for aerobic exercises but, in contrast, tracking free weight exercises is still performed manually.
This study presents the details of our data acquisition effort using a single chest-mounted tri-axial
accelerometer, followed by a novel method for the recognition of a wide range of gym-based free
weight exercises. Exercises are recognized using LSTM neural networks and the reported results
confirm the feasibility of the proposed approach. We train and test several LSTM-based gym exercise
recognition models. More specifically, in one set of experiments, we experiment with separate models,
one for each muscle group. In another experiment, we develop a universal model for all exercises.
We believe that the promising results will potentially contribute to the vision of an automated system
for comprehensive monitoring and analysis of gym-based exercises and create a new experience for
exercising by freeing the exerciser from manual record-keeping.

Keywords: Internet of Things (IoT); smart sensor; inertial sensor; gym exercise recognition; human
activity recognition; LSTM

1. Introduction

Human activity recognition has generated a lot of interest in recent years [1–3]. Gym
exercise recognition comes within the scope of this topic and has two major applications:
automatic logging of exercises, relieving the trainer from manual entry, and real-time
availability of an honest record to the trainer’s coaches and doctors. Even though these
two applications warrant exclusive and dedicated research, surprisingly very little work
has been carried out on this topic.

To begin with, let us note that a human being is capable of activities at several different
levels; e.g., mental, emotional, and physical. In the present research, we limit ourselves
to physical activities, and more specifically to physical exercises. A physical exercise can
be any activity that enhances or maintains a practitioner’s health and fitness. One way to
categorize the exercises is by defining them as flexibility exercises, aerobic exercises, and
anaerobic exercises. We are focusing on anaerobic exercises performed by weight trainers
in a typical gym setting. A gym, or gymnasium in long form, is an indoor sports facility. A
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gym may have a wide range of facilities, but we are limiting ourselves to equipment and
machines used by weight trainers. We use the term weight trainers in a broad sense and
mean to include body builders, strength trainers, weight lifters, and practitioners of any
other sport who use free weights and weight machines in their training routine.

The basic modalities used for human activity recognition are vision and non-vision
(i.e., sensor) and their hybrid combination [4]. Traditionally, the vision-based approach
relies on video cameras and depth cameras. The recent advances in the wearable camera
technology have the potential to take this approach to new levels. The sensor-based
approach can be categorized on the basis of sensor location into wearable, ambient, and
their hybrid combinations. All the approaches have their pros and cons. We limit ourselves
to wearable sensors.

The current research presents an architecture for gym-exercise-specific data acquisition
and recognition of exercises. A single smart sensor is used to collect data. The raw
time series data are fed to the long short-term memory (LSTM) neural network based on
sliding window approach to recognize exercises. The exercise-specific data collection and
analysis is helpful in analyzing the impact of each exercise on athletes body. This can later
serve as a system for athletes’ health state analysis, comfort analysis, or it can serve as a
recommendation system for upcoming athletes.

The rest of the paper is organized as follows. We present the literature survey of the
gym exercise recognition research in Section 2. The details of our collected dataset are given
in Section 3. Section 4 presents our experimental design choices selected from the different
possibilities that exist and notes some of the results that we have obtained. Section 5 lists
some possible uses of our dataset. A discussion of the study is presented in Section 6. We
conclude and suggest future work in Section 7.

2. Related Work

As stated above, our purpose is to attempt gym exercise recognition based on data
collected from wearable sensors. To place our work into context, the following research
related to gym activity recognition is worth mentioning.

In [5], mechanisms for tracking free weight exercises are studied. They aim to auto-
matically recognize what type of exercise is being performed and how many repetitions
have been performed. The collected dataset comprises a total of nine common free weight
dumbbell exercises, representative for each muscle group, performed in a gym environment.
The posture while performing these exercises can be standing, sitting, or lying down. A
three-axis accelerometer was incorporated into a workout glove to track hand movements
and another accelerometer was attached to the user’s waist to track body posture.

The research reported in [6] exploited built-in accelerometers of smartphones to cap-
ture exercise data, and they aimed to detect the start and end times of exercise repetitions
from a continuous stream of acceleration data and consequently were able to track the
number and duration of repetitions. They conducted experiments in two distinct scenarios,
constrained and unconstrained environment. The equipment used for the exercises were
resistance bands, free weights, and body weight. The constrained environment was a
gym, and exercises were performed using free weight machines. Unconstrained exercises
were performed without any weight machines and in different places, such as homes and
parks. Two series, each having ten repetitions of several exercises, were performed in
both types of environments. The smartphone was placed on the top of weights in the
constrained environment scenarios. The placement of the smartphone in the unconstrained
environments was either on the subject’s wrist or ankle, depending upon the exercise.

Feedback and guidance after assessment of the quality of free weight exercises is the
main target of [7]. In this research, after defining what is meant by quality of exercise
execution, they investigated three aspects pertaining to qualitative activity recognition,
specification of correct execution, detection of execution mistakes, and provision of feedback
to the exerciser. The dataset comprised data from only one weight lifting exercise: the
unilateral dumbbell bicep curl. The data were collected with the help of six subjects
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performing five different variations of this exercise with 10 repetitions in each variation.
One of them was the correct execution of the exercise, while the other four variations were
prevalent mistaken ways. Four inertial measurement units (IMU) were used and they were
placed in the subject’s glove, armband, lumbar belt, and dumbbell. These sensors provided
not only tri-axial acceleration data, but also gyroscope and magnetometer data. The dataset
is publicly available in the UCI Machine Learning repository [8].

Inertial measurement units (IMUs) are low-power devices with sensors consisting of
accelerometers and gyroscopes. The work reported in [9] aimed at exploring the problem
of automated tracking and analyzing of weight training exercises using IMUs. An accurate
and fast tracking of selected weight training exercises was shown to be possible by targeting
seven dumbbell exercises. These exercises cover the most important upper body muscle
sections. Users performed these exercises using a dumbbell equipped with the hardware
prototype. Automatic tracking and quantification of the exercises had been attempted
in [10]. They analyzed data coming from wearable IMUs and attempted classification
and counting of exercises. A circuit of nine exercises were targeted with a group of seven
volunteers. The IMU sensor used was worn on the wrist by the subjects.

A free weight exercise monitoring system (FEMO) [11] provided an integrated free
weight exercise monitoring, quality analysis, and feedback system. They focused on ten
common and representative free weight activities that can train different parts of the muscle
groups. The data collection was carried out with the help of fifteen volunteers. The sensors
used in the system are passive RFID tags attached on the dumbbells. An implementation of
a micro-watt-level power consumption is presented in [12], seven popular gym workouts
were recognized and counting was achieved based on a body-capacitance-based sensor
with three different body positions. An RFID and computer-vision-technique-based deeper
gym exercise monitoring system (DEEM) was introduced in [13]. The DEEM system can
determine the user and the objects that users hold. An accelerometer-based gym exercise
recognition system named Fine-Fit was proposed in [14], which is useful in monitoring
gym exercises and avoiding muscle injury by assessing non-standard actions. The Fine-Fit
system can sense the body movement and muscle vibration simultaneously.

The above described research is mostly related to weight exercises performed in a gym
environment. The experiments and reported results led us to believe that there is much
room for a system that can cater for a broad range of free weight exercises. Such a system
needs to have reasonable accuracy and should be tested on a large dataset consisting of a
wide range of gym-based exercises. In the present research, we report our efforts towards
the development of such a system.

On a broader scale, a body of literature is available on detection and analysis of sports-
related activities and fitness exercises. Interested readers may refer to any of the numerous
surveys that are available. An example of such surveys is [15,16]. Furthermore, there
are numerous excellent works in the parent field of activity recognition. A few of them
are [1–3,17–25].

3. Dataset Acquisition

In this paper we focus on gym exercise recognition, and our overall objective is to
facilitate weight trainers as much as possible by automation implemented with the recent
advances in Internet of Things (IoT) and related technologies. A vast majority of human
activity research deals with only a handful of daily exercises [4,8,26]. These exercises are
very different from the exercises performed in a gym environment with gym equipment.
Thus, we collected our own dataset by targeting six muscle group and forty-two exercises.
In this paper, we extend our earlier work reported in [27]. The presented approach will
contribute towards the development of apps that automatically track free weight exercises.
The usage of such apps can be very convenient in the fields of sports and health.

The data collection process for human activity recognition is a challenging task, partic-
ularly when it involves gym-based free weight exercises. It is difficult to find appropriate
participants that are practitioners of the sport, prepare them for data collection, and keep
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them motivated for the entirety of the process. Furthermore, the high cost of sensors,
adherence to hygiene when using the same sensor on multiple users, and privacy issues
complicates the task. In this section, we describe all aspects of our data acquisition and
transformation process.

3.1. The Gym Exercises

This study includes forty-two physical exercises commonly performed by practitioners
of body building and muscle training programs using free weights [28]. The approval of the
data collection process was obtained from the Government College University, Faisalabad,
Pakistan’s Ethical Review Committee, and all the subjects submitted their written consent
and willingness to participate in the experiment. The descriptions of these exercises are
widely known [29,30]. The explanations of some of the terms used by weight trainers are
as follows. The fundamental unit of an exercise is called a rep (short for repetition). It is
one complete motion of an exercise, analogous to taking a step while walking or running.
Beginning from a starting position, the practitioner follows a sequence of motions and
returns to the starting position. A group of consecutive repetitions of an exercise is called a
set. There is a short period of rest between two sets. Typically, weight trainers take 30 s
to 3 min of rest between two consecutive sets. This interval of rest is essential because it
allows the targeted muscle to recover from fatigue of the previous set and prepare for the
next set. Weight trainers typically complete all the sets of an exercise in a sequential manner
and then start the next exercise. A workout is the complete group of exercises performed
during a session, and most of the practitioners have one session in a day.

The 42 exercises covered in this study are listed in Table 1, and their instance count is
depicted in Figure 1. The x-axis in Figure 1 lists the names of exercises based on muscle
group, and exercise-wise instance count is presented on the y-axis. All of these exercises
are well known and a selection of them are included in a typical workout. Some of these
exercises are basic and are performed by all weight trainers, from beginner to advanced
level. Others are usually included in the workouts of intermediate- and advanced-level
practitioners of the sport.

Figure 1. Exercise-wise instance count.

The weight trainers typically target one or two muscle groups on any given day. We
placed the exercises for each muscle group into a separate workout. These groups are chest,
arms, shoulder, back, and legs. One last group is added that have exercises that have a good
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effect on several muscle groups. For our data collection, one workout was performed in one
session. There are six workouts for six consecutive days of the week, with the seventh day
as the rest day. Most of these exercises need weights mounted on barbells or dumbbells,
while some of them need extra equipment. Furthermore, some exercises are performed
standing, while others are performed sitting, and a few while lying down on a bench.

Table 1. Weekly workout routine targeting each muscle group.

Sr. Chest Workout Arms Workout Shoulder Workout Back Workout Legs Workout Core Body Workout

1 Butterfly Bicep Curl Barbell 4 × 4 Dumbbell Pull Ups Squats Leg Raises
2 Cable Crossover Triceps Dips Front Raise Front Pull Down Leg Press Crunches
3 Chest Press Bicep Curl Dumbbell Back Shoulder Press Lower Pulley Leg Extension Cross Bicycles
4 Decline Press Dumbbell Extension Up Right Row Vertical Traction Leg Curl Plank
5 Dumbbell Fly Preacher Curl Front Shoulder Press Back Pull Down Abductor Mountain Climber
6 Incline Press Cable Extension Lateral Raise 1 Arm Dumbbell Row Dductor Leg Scissor
7 Push Ups High Pulley Curl Shrugs Barbell Row. T. Bar Row Lunges Boat

Previously, there have been several successful attempts for assorted human activity
recognition tasks by using a single, chest-mounted acceleration sensor [31,32]. It led us to
speculate that gym-based free weight exercise recognition can also be attempted by such
an approach. To lend credence to our speculation, we visually inspected the acceleration
data for each exercise and were able to differentiate several exercises from one another. As
an example, data for two different exercises from the same group are shown in Figure 2,
where the x-axis represents the time of reception of signal and the y-axis represents the
value. Each vertical, lateral, and sagittal axis of the signal has discriminating characteristics
for the two exercises. A commercially available device, Zephyr BioHarness 3 (BH3), was
used for the data collection process. The BH3 device has many basic and advanced features
based on several sensors [33].

Figure 2. Visual inspection of acceleration data for incline press and decline press activity from
chest workout.

3.2. The Data Collection Process

As discussed in the previous section, this study involves forty-two exercises arranged
into six muscle groups, and each muscle group contains seven exercises. A day is associated
with all the exercises belonging to a muscle group; thus we have six muscle groups, and
all the seven exercises of a muscle group are performed in a day. The complete set of forty
exercises are performed in a week with one day as rest. We collected two types of data:
body movement data and exercise-related data. The body movement data was collected
using the Zephyr BioHarness (BH3) device. The BH3 device was strapped on the chest of
the subjects during each exercise. The position of the BioHarness was approximately at
the pectoral muscle, for all data collection. Our experiments show that the device is not
sensitive to sensor positioning (up to a reasonable extent). Small differences in the position
of the device do not disrupt recognition results [34,35].

Choice of a good sampling rate is very important. Too high a rate is wasteful and too
low a rate will not be able to capture the necessary information. It has been previously
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shown that a 20 Hz sampling rate is ample for general purpose activity recognition by
accelerometers [36]. We use a higher rate of 100 Hz because gym exercises are usually more
rapid. The rate may be higher than necessary, but data at a higher rate can be downsampled
later on to find an optimal sampling rate.

The acquired data are from four male subjects, aged between 18 and 25. The subjects
performed the seven exercises in the workout planned for that day. Each exercise was
performed three times (i.e., three consecutive sets for each exercise) in a day. There was
a small resting period between two sets of an exercise. Since the strength and endurance
for each subject was different from one another, the weights used by them varied even for
the same exercise. For example, a subject might have used 50 kg weight for an exercise
and another one 30 kg for the same exercise, but both of them retained the same weight
for all the three sets and performed 10 reps per set. Since the exercises are different and
the capacity of the subjects is also different, the samples are not temporally homogeneous.
The same exercise by different subjects, and even by the same subject, takes different times
to complete. Similarly, two different exercises may also take different times due to their
nature of execution being different.

A manual record was made to note the subject’s name, exercise name, start and
end times, repetitions, weights, number of sets, and any exercise equipment that was
used. A mobile app was used for this data entry. This data is useful for segmenting the
raw data into proper samples and for annotating it properly. Relevant basic and health-
related information regarding the participants was noted at the beginning of the entire data
acquisition process. This included participants’ gender, age, height, weight, any known
health issues, etc.

The workout plan is for six weeks. Every week, six days are for exercises and one day
is for rest. On each of the exercise days, a workout on the seven exercises for a muscle group
was scheduled, with three repetitions of each exercise. Since we have four subjects and
each one performed three sets of seven exercises each day, we have a total data of 3024 sets
for the 6 weeks. The average time spent by each subject in the gym for data acquisition
was around 70 min on a daily basis. We have a gap of six days between the same exercise
because this is how practitioners of this sport perform their workouts, though it is not
necessary for exercise recognition.

At the beginning of the program we had 21 subjects. Ten subjects left within the
first few days and we had 11 subjects at the end of first week. Out of these 11, only four
completed the entire 6-week program. The main factor for the dropout was the commitment
required on a daily basis for six weeks.

BH3 has internal storage for data and it proved to be sufficient for a single day of data
from all the subjects. At the end of the day, the collected data were transferred via a USB
connection to a laptop for more permanent storage.

The data collection was conducted primarily in an average gym equipped with only
the basic equipment, under the supervision of a researcher. For some exercises, the subjects
had to venture outside the gym, accompanied by the researcher.

3.3. The Unprocessed Data

The data are generated in their raw form when exercises are performed by our subjects.
Three real numbers are provided by the tri-axial accelerometer for each of the vertical,
lateral, and sagittal axes. As mentioned before, each subject performs seven different
exercises (one workout) on a given day. Each exercise is composed of three consecutive
sets, with a small rest interval between the sets. A raw data file is created for each workout
of each subject. We have a total of 144 raw, unprocessed, data files (4 subjects × 6 workouts
× 6 weeks) and each file contains 21 complete data samples (7 exercises × 3 sets). The
format of the data file is <timestamp, vertical, lateral, sagittal>, as depicted in Table 2, and
the sampling rate for data collection is 100 Hz.

The weights used vary with each subject and exercise and are recorded manually using
mobile application. The start and finish time of each set is also recorded. Furthermore,
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for completeness of data, we record the number of sets and the reps even though they are
constant for the entire data acquisition. These mobile-application-based recorded data are
concatenated with the automatically acquired data by using the subject-ID and the time
stamp information. Table 3 depicts how the labeled accelerometer and mobile application
dataset looks, where exercise is the the class label for the activity recognition task.

Table 2. Raw accelerometer data collected using Zephyr device.

Timestamp Vertical Lateral Sagittal

30 December 2019 18:48:02.386 1969 2039 2038
30 December 2019 18:48:02.396 1972 2036 2041
30 December 2019 18:48:02.406 1974 2039 2042
30 December 2019 18:48:02.416 1976 2037 2044
30 December 2019 18:48:02.426 1976 2039 2044

Table 3. Labeled body movement and mobile application data.

Timestamp Vertical Lateral Sagittal User Wid Wno Setno Exercise

30 December 2019 18:48:02.386 1969 2039 2038 2 2 7 3 Chest Press
30 December 2019 18:48:02.396 1972 2036 2041 2 2 7 3 Chest Press
30 December 2019 18:48:02.406 1974 2039 2042 2 2 7 3 Chest Press
30 December 2019 18:48:02.416 1976 2037 2044 2 2 7 3 Chest Press
30 December 2019 18:48:02.426 1976 2039 2044 2 2 7 3 Chest Press

4. Experimentation

Our experiments and results are a small subset of the different possibilities that are
available. We will discuss a range of available options in the following paragraphs. All of
the following topics are intertwined.

4.1. Data Segmentation

Due to its considerable length, the complete record of an exercise is unsuitable to show
in its entirety to the classifier input. Instead, we divide the data into discrete segments
called windows. The body movement data collected using the device’s accelerometer
are segmented and the exercise-related data collected using mobile application are used
as class label. In each segment, the mode of the class is used for labeling. The research
reported in [5,7,10,37–41] experimented with several sliding window lengths with overlap.
In this research, we used a window size of 4 s of activity recognition which corresponds
to 400 samples. The results are presented without and with overlapping data window.
We considered size of window and overlapping on the basis of our experiments. Another
reason behind overlapping is that our workout activity is continuous; this overlap ensures
that each subsequent window carries some information from the previous window.

Since our task is supervised learning based classification, we need correctly labeled
data. Thus, the correct exercise name is tagged with each instance. Furthermore, we also
include the exerciser’s subject ID. This information, which is collected separately, has to be
correctly appended to each instance.

4.2. Classification Algorithm

Our collected dataset can be used with a wide variety of classifier algorithms to train
models for the exercise recognition task. Hidden Markov models, support vector machines,
naïve Bayes classifiers, and nearest neighbor algorithms are common choices [5,9,39]. The
classifier selection depends on many factors, including the input. The input data can be
raw signal or extracted higher level features. The sampling rates for data collection and
time window of input data are important parameters. The desired comprehensibility of the
trained model dictates whether it will be rule-based or not. The processing speed of the
trained model from input to output can be a factor. Sometimes, the training time can also
be a factor.

Since we have input that is time series data, and raw data are shown in small chunks
to the classifier, we use a type of recurrent neural network for our experiments. More
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specifically, long short-term memory (LSTM) neural networks are used as our model. The
main advantage of the LSTM model is its feedback connections. Due to the feedback, an
entire sequence of data can be taken under consideration in its calculations. The LSTM
consists of three steps: forget part of the previous state, update the memory cell, and output
the state. The neurons are arranged in layers and each neuron’s input is multiplied by a
weight. The input is scaled layer by layer by means of a transform function. LSTM is an
efficient recurrent neural network that integrates the long-term and short-term states of the
current processing. Due to its impressive performance, LSTM is extensively used in speech
recognition, natural language processing, and image captioning.

The input to the LSTM model are data sequences of fixed length, each containing
400 samples corresponding to 4 s of exercise activity. The LSTM model chooses the class
label by using the mode (the value that appears most often) of all exercises which are
predicted as present in the sequence.

We use a bidirectional LSTM model that has 128 units; the neurons have relu activation
function, and a dropout rate of 0.5. The setup was performed in the TensorFlow with Keras,
a commonly used open-source library for machine learning and data mining tasks. Google
Colab platform was used for performing the experiments.

4.3. Classifier Training

The basis of classifier training is simple enough: identify an exercise that is a member
of a given set of exercises. However, there are several options for specifying the exercise
samples that would constitute the training set.

The objective of a trained system is to be able to correctly generalize data for a person
previously unseen during training. The alternate is to obtain training data from the intended
user and then develop a personal model that gives highly accurate results on new data
from the same person. In the first case, there is no overhead of individual training before
using the system. In the second case, we may potentially have better results. For many
applications, only one user is the focus of the system, and in such cases it is better to have
personal models if they are resulting in higher accuracy. The training option that we use is
to have a mixture of data from several subjects, including the intended user.

The experiment that we are reporting here is a single classifier model, athlete-independent,
for all the seven exercises in a workout. Data from all exercises present in a workout group
performed by all of the four athletes are used to train and test a single model that is re-
sponsible for differentiating between all the exercises in its workout group. Since we have
seven exercises/athlete, three sets/week, 6 weeks, and four athletes, this means a total data
of 504 sets of exercises for each workout group. There are six workout groups, and thus we
have six separate models.

In order to evaluate the performance of classification, the data are split into training
and test, based on setting no attribute. As discussed earlier, three sets of each exercise
are performed in each workout. The split is based on these three sets of a workout that is
performed in a day. The first two sets are reserved for training and the third set for testing.
There are a total of 18 sets of an exercise performed by a subject, 12 are made part of the
training set and 6 are reserved for the testing set. In other words, we have selected one set
of each exercise as test data from each workout performed in a day by an athlete.

Accuracy =

(
True Positives + True Negatives

Total Evaluations

)
(1)

Precision =

(
True Positive

True Positive + False Positive

)
(2)

Recall =

(
True Positive

True Positive + False Negative

)
(3)
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F1score = 2

(
Precision × Recall
Precision + Recall

)
(4)

5. Results

In this section, we present and analyze the results of our experiments. Figure 3 presents
the architecture of the proposed activity recognition system following (a) data acquisition
from the smart wearable and mobile application; acquired data is labeled with the activity
being performed as depicted in Table 3. Step (b) is to create a sliding windows of the raw
input signal obtained from the accelerometer. Two datasets are created based on sliding
window; the first dataset is non-overlapping and the second is based on overlapping
window, as depicted in Figure 3. The next step (c) is input data segmentation, making data
ready for the LSTM classifier; in (d) this segment is fed into the LSTM classifier (e) and
in the final step, the LSTM outputs the activity being performed for each time window.
The LSTM classifier receives this input data segment and outputs the gym activity being
performed.

Figure 3. Architecture of the gym physical exercise recognition system, (a) data acquisition; (b) sliding
window; (c) input segmentation; (d) feeding data to classifier; (e) gym activity recognition.

5.1. Classifier Testing and Results

The experiments comprise exercise recognition within each of the six muscle groups.
A separate model is trained for each muscle group and the training data include data from
all the subjects, making the model subject-independent. Our classifiers are trained LSTM
models. The commonly used metrics of accuracy (1), precision (2), recall (sensitivity) (3),
and F1-score (4) are used to assess the classifiers.

Since the task for each model is to recognize one exercise out of seven, accuracy alone
may not be able to give a reliable assessment. Precision allows us to observe how precise
our model is, i.e., out of the exercise samples predicted positives, how many are actually
positives? Recall, or sensitivity, calculates how many of the actual positives our model has
captured among the samples that it has declared as positives. F1 score is another useful
measure in the presence of uneven class distribution.

5.2. Muscle-Group-Dependent Models

The results for separate models for each muscle group (one model for each muscle
group) are presented in Table 4 in term of accuracy and loss. The GAR results are obtained
on two datasets; the first is based on non-overlapping window and the second is based on
overlapping window. The muscle-group-dependent results for overlapping window are
better than the non-overlapping window. The gym workout activity is continuous; this
overlap ensures that each subsequent window carries some information from the previous
window. This is useful in development of real-time activity recognition applications.

The exercise-wise average of precision, recall, and F-score of separate models for the
overlapping dataset are presented in Table 5. Taking into account the fact that only one
chest-mounted sensor is used and no effort has been made for optimization of different
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factors influencing the results, it can be concluded that the experiment is a success with
good accuracy, precision, recall, and F-score values. Due to the position of the sensor and
the nature of the exercises, the best results are for chest, core body, back, and legs exercises.

Table 4. Accuracy and loss for separate model of each muscle group.

Muscle Group
Non-Overlapping Dataset Overlapping Dataset

Accuracy Loss Accuracy Loss

Chest 0.81 0.41 0.91 0.26
Arms 0.62 0.97 0.78 1.26

Shoulders 0.57 1.35 0.74 1.40
Back 0.63 0.91 0.88 0.59
Legs 0.75 0.64 0.82 0.81

Core body 0.78 0.56 0.90 0.43

Table 5. Exercises average precision, recall, and F-score based on muscle group.

Muscle Group
Exercises Average

Precision Recall Fscore

Chest 0.924 0.924 0.924
Arms 0.767 0.767 0.765

Shoulders 0.734 0.730 0.730
Back 0.872 0.873 0.872
Legs 0.806 0.807 0.806

Core body 0.895 0.883 0.888

The confusion matrices between different exercises of the chest and back muscle group
are shown in Figure 4. Both the modules performed very well, with only one exception for
the chest workout group. The chest press exercise is confused with dumbbell fly exercise
and vice versa. This is due to the fact that both exercises require similar body postures with
only a slight change in arm movements. The Zephyr, being a chest-mounted sensor, has
difficulty in detecting this subtle difference.

The training and testing evolution for the chest and back workout groups are shown
in Figure 5, depicting epoch-wise accuracy and loss of training and validation data for both
workout groups. The training and validation accuracy tends to increase and loss tends to
decrease with each epoch.

Figure 4. Confusion matrices for activity recognition of chest (on the left) and back (on the right)
workout groups.
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Figure 5. The training and testing evolution for the chest workout (left) and back workout (right) for
each training epoch.

5.3. Muscle-Group-Independent Model

In the muscle-group-independent model, one model is trained and tested on all the
forty-two exercises. The model performed well, with an accuracy of 0.82 and loss 0.61. The
results in the form of precision, recall, and F-score for all the exercises are shown in Table 6.
The exercises related to chest, back, legs, and core body group performed well. The training
and testing evolution is shown in Figure 6. As the model involves forty-two exercises for
the gym exercise recognition, we can see in the figure that in the first twenty epochs, the
accuracy is low and the loss is high for both training and test data, but with each increasing
epoch, the accuracy tends to increase and loss tends to decrease. The confusion matrix for
all the exercises is presented in Figure 7.

Table 6. Precision, recall, and F-score for the model covering all exercises.

Exercise Name Precision Recall Fscore Exercise Name Precision Recall Fscore

4 × 4 Dumbell 0.824 0.890 0.856 High Pulley Curl 0.690 0.559 0.618
Abductor 0.569 0.658 0.610 Incline Press 0.982 0.997 0.989

Back Pull Down 0.775 0.820 0.797 Lateral Raise 0.724 0.578 0.643
Back Shoulder Press 0.540 0.566 0.553 Leg Curl 0.851 0.678 0.755

Barbell Row. T. Bar Row 0.955 0.947 0.951 Leg Extention 0.853 0.775 0.812
Bicep Curl Barbell 0.679 0.646 0.662 Leg Press 0.957 0.947 0.952

Bicep Curl Dumbell 0.659 0.679 0.669 Leg Raises 0.810 0.912 0.858
Boat 0.958 0.846 0.898 Leg Scissor 0.718 0.895 0.797

Butterfly 0.920 0.828 0.872 Lower Pulley 0.872 0.709 0.782
Cable Crossover 0.923 0.971 0.947 Lunges 0.918 0.938 0.928
Cable Extension 0.570 0.623 0.595 Mountain Climber 0.965 0.934 0.949

Chest Press 0.665 0.771 0.714 One Arm Dumbbell Row 0.918 0.967 0.942
Cross Bycyles 0.972 0.920 0.946 Plank 0.980 0.980 0.980

Crunches 0.969 0.947 0.958 Preacher Curl 0.977 0.986 0.981
Dductor 0.681 0.640 0.660 Pull Ups 0.976 0.938 0.956

Decline Press 0.976 0.987 0.981 Push Ups 0.925 0.946 0.935
Dumbbell Fly 0.895 0.679 0.772 Shrugs 0.765 0.768 0.767

Dumbell Extension 0.574 0.646 0.608 Squats 0.958 0.934 0.946
Front Pull Down 0.667 0.678 0.673 Triceps Dips 0.977 0.945 0.961

Front Raise 0.769 0.823 0.795 Up Right Row 0.642 0.673 0.657
Front Shoulder Press 0.704 0.707 0.705 Vertical Traction 0.668 0.795 0.726

The muscle-group-dependent models performed well, compared to independent
models. One of the reasons is that the muscle-group-dependent models use smaller number
of classes, with only seven in each model. The muscle-group-independent model is trained
and tested on forty-two classes, which is why its accuracy is low. In practice, it is not
possible to perform all the forty exercises in a day, so it is preferred to use muscle-group-
dependent models.
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Figure 6. Accuracy and loss for one model for 42 exercises.

Figure 7. Confusion matrix for one model for 42 exercises.
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6. Discussion

Physical activity is widely recognized as one of the important elements of a personal
healthy life. To date, with the development of wearable sensing technologies, it is possible
to utilize wearable devices and machine learning algorithms to efficiently and accurately
monitor physical activity types, intensity, and the associated human pattern for many
health applications.

6.1. Continuous, Real-Time Processing

For maximum usefulness, an application should be able to handle continuous exercise
recognition and also in real time. What more is needed? Imagine that the data are being
fed in a continuous stream to the classifier. The most important is detection of intervals
between exercises [42]. There might be stillness during transition, and more likely there
will be combinations of other activities, such as walking and sitting. It is important for the
system to realize when this transition period ends and a regular exercise is detected.

Another aspect is the fast processing of data so that the output keeps up with the input.
This can be achieved either by having more powerful computational devices or lighter
algorithms for preprocessing and classification, or both. The trend in technology is towards
higher computational power packed into smaller, more compact devices. The algorithms
that are considered unsuitable today may become feasible tomorrow. Thus, any classifier
model that takes an acceptable processing time as defined by the current state of technology
can be accommodated, and the frontier keeps on pushing forward with passing time.

6.2. Applications of Gym Exercise Recognition

Personal fitness monitoring can make use of exercise recognition, as presented
in [5,6,11,16,43]. After developing and testing a system for gym exercise recognition and
obtaining good results, the next logical question is, what can be its practical applications?
Some major potential applications are discussed below.

6.2.1. Fitness Tracking

An online reporting system can be developed that users can use to trace their fitness-
related records and aggregates to gain a greater comprehension of their efforts and the
results on a daily, weekly, and monthly spectrum. Such statistics and details can stimulate
more fitness-related activity by encouraging users to set targets, make plans, and visualize
their improvement. Most importantly, these apps can furnish exercise histories that are
not only accurate but are also detailed for end users to help them make statistically sound
decisions about their exercise programs. In this way, tedious manual entry of exercise data
is avoided. The alternative to manual entry is reliance on memory, which is unreliable
and prone to wishful thinking and a distorted perception of what really took place. They
can also motivate users by keeping and displaying scores for comparison with their own
historical data and other people’s data.

6.2.2. Compliance Monitoring

Gym exercise recognition can also provide a basis for compliance monitoring of
patients following exercise programs for rehabilitation by medical personnel, caregivers,
and clinicians. The same is true for sport coaches and trainers monitoring trainees. The
monitoring personnel will have the ability to monitor by having access to honest remotely
generated data, rather than being obliged to be present on the spot.

6.2.3. Trouble Detection and Generation of Alarm

Several alarming situations can happen when a person is training with weights. One of
the common events is muscle failure with the trainer stranded under the weights, unable to
push them back. If help is not available, it can cause serious injury. An exercise recognition
system can possibly detect such failure and generate an alarm at a monitor’s desk (send an
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alert for help). It would also be able to point out the exercise being performed, thus giving
an indication of the subject’s location based on the equipment used for that exercise.

6.2.4. Quality of the Exercises

The quality of an activity’s execution, or how well it was performed can be analyzed,
despite the fact that it has the ability to provide relevant information for a wide range
of applications. The quality of exercises analysis can help in prevention of injuries and
other harmful and wasteful effects of performing exercises in an incorrect way. Automatic
assessment of the quality of exercises is a challenging but useful research direction.

6.2.5. Miscellaneous Useful Features

In addition to the applications discussed above, several useful features can be added
based on basic gym exercise recognition. For example, we can develop algorithms that can
accomplish the following:

• Signal end of resting times between sets and between exercises.
• Automatic monitoring of the intensity of the exercises and estimate of calories

burned [39,44,45].
• Disable incoming calls and mute notifications when a trainer is in the midst of an

exercise. Such interruptions, even when not attended, can be very distracting. If
desired, the user can check his messages and alerts while transitioning between
exercises instead of being notified at random during an exercise.

• Play music and change it once an exercise is finished and another one has started.
• Biometrics based on exercises [46].

6.3. Limitations of the Study

The data acquisition process involves only four athletes and a single sensor. The chest-
mounted sensor results in misclassification of exercises that do not involve chest movement.
Additional sensors on other body parts can be used to collect more information. The
acquired raw data are fed to the LSTM classifier; by applying feature engineering techniques
we can implement other classification algorithms. Although the results presented in
this research are good, by overcoming these limitations we can improve gym activity
recognition accuracy.

7. Conclusions

In this paper, we have presented our experience of collecting and using a dataset for
gym activity recognition. Starting from a long process of data collection, spanning over
several weeks, we went on to develop models for exercise recognition. We have shared
our reflections on the topic and presented some initial results. We have developed several
LSTM-based models, and our results are very encouraging. These LSTM models can be
used in real-life free weights tracking apps. Furthermore, we can expand the work along,
at least, four major axes.

The first axis is the incorporation of more sensors. We have to experiment and under-
stand what different sensors are needed and why. More accelerometers at other places, such
as the thigh or wrist, can possibly give better results. Sensors other than accelerometers
may also be helpful. However, it is undesirable to have more sensors just for the sake of
having more sensors. The selected sensors should work as a team and complement each
other for the gym exercise recognition task. With more sensors comes the responsibility of
seamlessly synchronizing them together for the classification task.

The second axis is the search for a better classification model. There are scores of
models available, each with its advantages and disadvantages. We would like to experiment
and analyze several models in the quest for better accuracy.

The third axis is the input to the classifier. Extracted features from the raw data may
potentially improve accuracy. It would require extensive experiments and analyses to find
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the combination of features that are relevant and it would be interesting to discover why
they are better than others.

The fourth axis is the development of a continuous, real-time system that not only
recognizes the exercises but also automatically counts the repetitions and sets performed for
a particular exercise. This would require the system to accurately recognize the transitional
period when the subject is not performing exercise and is involved in some other mild
activity, such as moving about.
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