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Abstract: Damage detection of railway tracks is vital to ensure normal operation and safety of the
rail transit system. Piezoelectric sensors, which are widely utilized to receive ultrasonic wave, may
be disturbed in the railway system due to strong electromagnetic interference (EMI). In this work,
a hybrid ultrasonic sensing system is proposed and validated by utilizing a lead-zirconate-titanate
(PZT) actuator and a fiber Bragg grating (FBG) sensor to evaluate damage conditions of the railway
tracks. The conventional ultrasonic guided wave-based method utilizing direct wave to detect
damages is limited by the complex data analysis procedure and low sensitivity to incipient damage.
Diffuse ultrasonic wave (DUW), referring to later arrival wave packets, is chosen in this study to
evaluate structural conditions of railway tracks due to its high sensitivity, wider sensing range, and
easy implementation. Damages with different sizes and locations are introduced on the railway
track to validate the sensitivity and sensing range of the proposed method. Two damage indices
are defined from the perspective of energy attenuation and waveform distortion. The experimental
results demonstrate that the DUW signals received by the hybrid sensing system could be used for
damage detection of the railway tracks and the waveform-distortion-based index is more efficient
than the energy-based index.

Keywords: diffuse ultrasonic waves; fiber Bragg grating; damage detection; high-speed railway

1. Introduction

Rail transit has developed dramatically worldwide due to its convenience for people’s
daily lives. However, railway tracks are fragile in regard to defects because of high-speed
operation, heavy loads, environmental exposure, and unpredictable impacts. Typical
defects of railway tracks are shown in Figure 1. Catastrophic accidents may occur if defects
cannot be detected [1,2].

Many nondestructive testing (NDT) techniques [3–6] have been explored and applied
in the daily inspection of railway tracks combined with manual inspection. Among them,
the ultrasonic bulk wave method with devices installed on the track inspection vehicle is
well commercialized in routine inspection and maintenance for railway tracks [7]. Never-
theless, implementation of regular NDT techniques needs to interrupt the normal operation
of the railway system, which is inconvenient, time consuming, and insecure for the inspec-
tors. Furthermore, NDT techniques cannot monitor the conditions of the railway tracks in
real time and provide timely alarms.
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Figure 1. (a) Schematic and (b) in situ illustration of rail track damages. 

To improve the drawbacks of NDT techniques, acoustic emission (AE) and ultra-
sonic guided wave-based methods have attracted more attention in past years. AE has 
shown its effectiveness in railway crack monitoring [8,9]. However, AE signals suffer a 
low signal-noise ratio (SNR) and are insensitive to cracks that expand at a low rate. Alt-
hough artificial intelligence techniques have been applied to AE wave classification and 
mass data processing [10,11], AE techniques still face the problem of ambient noise. 

Ultrasonic guided wave method adopts an active manner to monitor structural 
conditions, which makes this method immune to most noise in condition monitoring of 
the railway system [12–16]. The ultrasonic guided wave is excited at a well-selected fre-
quency and interacts with the defects. The wave reflection, transmission, mode conver-
sion, and energy loss can be used for damage detection. However, multimode and dis-
persive features of ultrasonic guided wave in railway tracks make it difficult to extract 
damage information from recorded signals [17]. In addition, this method utilizes direct 
wave (first arriving wave packets) for damage detection, which leads to low sensitivity to 
incipient damage and limited sensing range. All the above factors impede wider appli-
cation of this method to condition monitoring of railway tracks. 

Different from the ultrasonic guided wave method, the diffuse ultrasonic wave 
(DUW)-based method utilizes later arrived wave packets (diffuse/coda wave) to monitor 
structural conditions. DUW has been neglected in past research due to its noise-like ap-
pearance. However, it was recently found that DUW is highly repeatable and carries 
more information about the medium [18,19]. DUW is very sensitive to small changes in 
the medium since it propagates for longer propagation distance and interacts with scat-
tering sources (defects) multiple times. Compared to the direct wave, the DUW received 
by the sensor is the superposition of waves from all directions, which leads to the wider 
sensing range [20,21]; on the other hand, multiple scattering events make the DUW sen-
sitive to small perturbations of the materials [22,23]. 

DUW was first explored in geological engineering to identify slight changes of the 
earth’s crust by seismologists [24]. Recently, efforts have been made to apply DUW to 
damage detection and condition monitoring of concrete materials [25–27], composite 
structures [23,28,29], and metallic structures [30,31]. Liu et al. [25] utilized DUW for 
self-healing process monitoring of concrete where biomineralization was used to repair 
internal cracks. The results indicated that the relative velocity change of the DUW could 
reveal the strength development of the self-healing concrete. Lim et al. [23] applied DUW 
to early-stage fatigue damage detection and crack growth monitoring of car-
bon-fiber-reinforced polymer (CFRP) composite plate. The results showed that time 
domain distortion of DUW signals could be used to assess fatigue damage of the CFRP 
plate. Ahn et al. [26] utilized DUW to evaluate distributed cracks in concrete. The results 
demonstrated that both diffusivity and dissipation coefficients of UGW signals could be 
used for micro cracks detection. The feasibility of DUW for damage detection has also 
been demonstrated on woven fabric composite structures [28] and aeronautical honey-
comb composite sandwich structures [29]. In terms of metal structures, Xie et al. [30,31] 
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To improve the drawbacks of NDT techniques, acoustic emission (AE) and ultrasonic
guided wave-based methods have attracted more attention in past years. AE has shown
its effectiveness in railway crack monitoring [8,9]. However, AE signals suffer a low
signal-noise ratio (SNR) and are insensitive to cracks that expand at a low rate. Although
artificial intelligence techniques have been applied to AE wave classification and mass data
processing [10,11], AE techniques still face the problem of ambient noise.

Ultrasonic guided wave method adopts an active manner to monitor structural con-
ditions, which makes this method immune to most noise in condition monitoring of the
railway system [12–16]. The ultrasonic guided wave is excited at a well-selected frequency
and interacts with the defects. The wave reflection, transmission, mode conversion, and
energy loss can be used for damage detection. However, multimode and dispersive features
of ultrasonic guided wave in railway tracks make it difficult to extract damage information
from recorded signals [17]. In addition, this method utilizes direct wave (first arriving
wave packets) for damage detection, which leads to low sensitivity to incipient damage
and limited sensing range. All the above factors impede wider application of this method
to condition monitoring of railway tracks.

Different from the ultrasonic guided wave method, the diffuse ultrasonic wave (DUW)-
based method utilizes later arrived wave packets (diffuse/coda wave) to monitor structural
conditions. DUW has been neglected in past research due to its noise-like appearance.
However, it was recently found that DUW is highly repeatable and carries more information
about the medium [18,19]. DUW is very sensitive to small changes in the medium since it
propagates for longer propagation distance and interacts with scattering sources (defects)
multiple times. Compared to the direct wave, the DUW received by the sensor is the super-
position of waves from all directions, which leads to the wider sensing range [20,21]; on
the other hand, multiple scattering events make the DUW sensitive to small perturbations
of the materials [22,23].

DUW was first explored in geological engineering to identify slight changes of the
earth’s crust by seismologists [24]. Recently, efforts have been made to apply DUW to
damage detection and condition monitoring of concrete materials [25–27], composite struc-
tures [23,28,29], and metallic structures [30,31]. Liu et al. [25] utilized DUW for self-healing
process monitoring of concrete where biomineralization was used to repair internal cracks.
The results indicated that the relative velocity change of the DUW could reveal the strength
development of the self-healing concrete. Lim et al. [23] applied DUW to early-stage fatigue
damage detection and crack growth monitoring of carbon-fiber-reinforced polymer (CFRP)
composite plate. The results showed that time domain distortion of DUW signals could be
used to assess fatigue damage of the CFRP plate. Ahn et al. [26] utilized DUW to evaluate
distributed cracks in concrete. The results demonstrated that both diffusivity and dissipa-
tion coefficients of UGW signals could be used for micro cracks detection. The feasibility
of DUW for damage detection has also been demonstrated on woven fabric composite
structures [28] and aeronautical honeycomb composite sandwich structures [29]. In terms of
metal structures, Xie et al. [30,31] proposed a DUW-based method to monitor temperature
variations and thermal-shock-induced microstructural alterations in steel specimens.
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It can be seen from the above research that DUW has been widely studied on condition
monitoring, such as distributed cracks and microstructural changes of the medium. The
corresponding results proved that DUW has good performance in quantifying these param-
eter changes. However, miniature local damage is more commonly seen and is essential for
infrastructure. Recently, local damage detection using DUW has attracted more attention.
Pacheco and Snieder [32] developed the DUW technique for local damage evaluation, but
this method may not be adequate for small localized damages [33]. Fröjd and Ulriksen [21]
utilized decorrelation of DUW signals in a specific time window to evaluate local holes in a
concrete floor slab. However, the decorrelation coefficient calculation using a specific time
window may not be as robust as using longer segments of recorded signal [34]. Michaels
et al. [35] proposed local temporal coherence (LTC) to detect local damage in aluminum
plate. It was found that LTC had good performance in small defect detection. Fröjd and
Ulriksen [36] combined amplitude and phase information by establishing the Mahalanobis
model to evaluate damages induced by impact hits on concrete slabs.

The studies above have shown the sensitivity of DUW to miniature and local changes
in concrete and composite structures. However, few studies have explored the application
of DUW to damage detection in railway tracks. Wang et al. [37,38] innovatively applied
DUW to condition monitoring of railway turnouts. Remnant cross-correlation coefficients
of the DUW signals were extracted to detect defects. This pioneering work provides a
benchmark-free method for condition monitoring of railway turnouts. Nevertheless, the
sensitivity to local damage and wide-range sensing capacity of DUW on railway tracks are
not fully studied in this research.

Lead-zirconate-titanate (PZT) sensor is adequate for ultrasonic wave detection under
normal conditions [39]. However, the railway system usually has strong electromagnetic
interference (EMI), which might reduce the SNR of ultrasonic signals received by the PZT
sensor. On the other hand, the connection wires of the PZT sensor for voltage delivery
limit its sensing range and multipoint installation for distributed sensing. Furthermore, the
dielectric constant and silver cladding of the PZT sensors will be easily degraded under
long-term environmental exposure [40]. These factors impede the wider application of
PZT sensor on ultrasonic sensing of railway tracks. Recently, fiber Bragg grating (FBG)
sensors have been explored to receive ultrasonic waves due to their advantages of being
lightweight, having the potential to multiplex and be immune to EMI, moisture, and high
temperatures. Moreover, the FBG sensor is applicable for locations with complex shapes
where PZT transducers are hard to access. Tian et al. [41] established FBG array to receive
Lamb wave and visualize damages on aluminum plate. Wang and Wu [42,43] applied
phase-shift FBG sensor to obtain ultrasonic signals, and the nonlinearity of ultrasound was
utilized to evaluate fatigue cracks. Yu et al. [44] took advantage of the high-temperature
resistance of FBG sensors to detect damage at very high temperature. The research above
proved the FBG sensor’s immunity to harsh environments and high sensitivity to ultrasonic
wave. Cano et al. [45] successfully verified the feasibility of FBG sensors for receiving
ultrasonic waves on subway rail specimens. Wang et al. [46] explored the optimal excitation
frequency of ultrasonic guided waves for damage detection on rails by using FBG sensors.
However, the application of FBG sensors for DUW-based damage detection on railway
tracks has not yet been investigated.

In this paper, a hybrid sensing system with PZT actuator and FBG sensor is proposed
to obtain DUW on railway tracks for damage detection. Laboratory tests are conducted
on a segment of a 60 kg/m railway track to investigate the sensitivity and sensing range
of DUW. Damage indices based on energy attenuation and waveform distortion of DUW
signals are proposed and validated to quantify different damage levels. This work will
contribute a new sensing system for damage detection of railway tracks and provide a deep
understanding of the interaction between damage and DUW.
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2. Methodology

DUW is chosen to monitor the conditions of railway tracks based on the PZT/FBG
hybrid sensing system. Different damage levels are introduced by attaching Blu Tack
blocks on the track web to explore the sensitivity and sensing range of this method. Defects
will cause not only energy attenuation but also waveform distortion of the DUW signal.
Therefore, energy-based and waveform distortion-based damage indices are respectively
defined to indicate conditions of the railway track. A flowchart of the proposed method is
presented in Figure 2.
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2.1. Working Principle of FBG Sensor

Fiber Bragg grating (FBG) is a fiber optic sensor that has periodic changes in the re-
fractive index of the fiber core. The periodical grating structures could act as a narrowband
filter, and the wavelength of reflected light is called the Bragg wavelength, which can be
expressed by:

λb = 2nΛ (1)

where λb is the Bragg wavelength of FBG, n is the effective refractive index of the optical
fiber, and Λ is the grating period. When broadband light is propagated into the FBG
sensor, light with central wavelength λb will be reflected, while other components will be
transmitted through the grating, as shown in Figure 3.
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Micro vibration induced by the ultrasonic wave will cause a Bragg wavelength shift
and the relationship between the Bragg wavelength shift and strain along the fiber direction
without temperature variation can be represented by [47]:

∆λb/λb = Cεεz (2)

where ∆λb is the Bragg wavelength shift, Cε is the material constant obtained from calibra-
tion experiments, and εz is the strain along the fiber axis. The conventional optical spectrum
analyzer is unqualified to capture high-frequency vibration induced by ultrasonic wave due
to the limitation of the demodulation speed. The two most prevailing FBG demodulation
techniques for ultrasonic detection are intensity demodulation technique and edge filter
demodulation technique [48]. The light source for intensity demodulation is broadband
light source, while for edge filter demodulation, it is narrowband light source. Even though
intensity demodulation has potential application for multiplexing, its SNR is relatively low.
On the other hand, the edge filter technique has been widely used in ultrasonic detection
due to the high signal quality [49–51]. The demodulation principle of edge filter technique
is adopted in this study and can be explained in Figure 4. The light source wavelength
is locked at the 3 dB point of the FBG spectrum. The intensity of the reflected light will
change with the Bragg wavelength shift induced by micro vibration and be proportional to
the amplitude of the ultrasonic wave.
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It has been proven that the dominant noise of the FBG ultrasonic sensing system is laser
intensity noise [44]. To reduce this noise and improve the SNR, a balanced photodetector
(BPD) is utilized to receive both reflection and transmission signals of the FBG. The voltage
obtained by two parts of BPD would simultaneously experience changes with the same
amplitudes but opposite phases [52]. Therefore, BPD could double the amplitude of the
signal while removing noise when both transmitting and reflecting light pass into the
connectors. The voltage obtained by BPD could be given by:

V = 2∆λbGRDPg (3)

where V is the output voltage of the BPD, G is the grating slope, RD and g are the re-
sponse and gain factor of the BPD, respectively, and P is the laser power of the tunable
laser resource.

2.2. Principle of DUW on Condition Monitoring of Railway Track
2.2.1. DUW Propagation in Railway Track

Many studies have utilized direct wave to obtain clear responses by generating and
extracting pure mode of ultrasonic guided waves [53,54]. However, methods for exciting
the ideal mode and minimizing dispersion in railway tracks need to be further studied [55].

Different from the direct wave, the DUW-based method utilizes later wave packets that
are reflected and scattered multiple times. A schematic illustration of the diffuse ultrasonic
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wave field on a railway track is shown in Figure 5. The low acoustic attenuation coefficient
of steel allows ultrasonic wave to propagate for a longer time. The DUW method utilizes the
change of diffused ultrasonic wave field that consists of many modes for damage detection.
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2.2.2. Energy-Based Damage Index of Diffuse Wave

The energy-based damage index has been widely used in ultrasound-based damage
detection [40,56]. As discussed above, local damage in the medium will lead to energy
attenuation of DUW. In this research, a damage index derived from wavelet-packet-based
energy (WPE) analysis [57,58] is proposed to evaluate the damage severity of railway
tracks. In general, the DUW signal X will be decomposed into 2n frequency bands by
n-level wavelet packet decomposition. The j-th frequency band Xj could be given by:

Xj = [Xj,1, Xj,2, . . . , Xj,m] (4)

where j represents frequency bands varying from 1 to 2n, and m is the total amount of data.
Then, the wavelet packet energy of the j-th frequency band Ej can be calculated by:

Ej = X2
j,1 + X2

j,2 + . . . + X2
j,m (5)

The energy vector E of the DUW is given by:

E = [E1, E2, . . . , E2n ] (6)

Then, the energy-based damage index (EDI) based on WPE can be further defined by:

EDI =
√

∑2n

j=1 (Ej − Eintact,j)
2/∑2n

j=1 Eintact,j
2 (7)

where Eintact,j is the energy of the j-th frequency band. If no change occurs in the medium,
Eintact,j is close to Ej, and the EDI will approach 0. If a strong scattering source exists in the
medium, Ej will be strongly different from Eintact,j, and the EDI will approach 1.

2.2.3. Waveform-Distortion-Based Damage Index of Diffuse Wave

DUW has been widely used in global damage detection by using time delay or relative
velocity change to quantify the global compressing or stretching of DUW waveforms.
However, those studies are established on the assumption that changes in the medium are
global, which is inadequate for local damage detection.

Local temporal coherence (LTC), which has shown its effectiveness in quantitatively
describing signal changes induced by local damage [35], is defined as:

LTC(T0)(τ) =

∫ T0+T
T0−T X1(t) · X2(t + τ)dt√∫ T0+T

T0−T X1(t)
2
dt ·

∫ t2
t1 X2(t + τ)2dt

(8)
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where X1(t) is the baseline signal and X2(t) is the signal obtained from the damaged
condition. LTC values quantify the correlation between two signals in a time window. The
damaged signal is first translated by τ in time domain, and similarity of the two signals is
calculated in time window [T0 − T, T0 + T]. τ values ranging from −2.5 µs to 2.5 µs in step
of 0.005 µs are used to calculate LTC in this study. The length of the time window is set to
0.4 ms, which is 10 times the excitation signal length. The time window is moved along
the time axis in step of 0.05 ms to obtain the LTC values of the entire signal. An example
envelope of LTC between the baseline signal and measured signal is shown in Figure 6. It
is noted that waveforms in the first 1 ms are discarded since the ultrasonic wave at the very
beginning has low sensitivity to damage.
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Peak coherence (PC) represents the maximum LTC value with respect to τ at each time
window, and it can be given by

PC(t) = max
τ

(LTC(τ, t)) (9)

PC values calculated from signals in Figure 6 are shown in Figure 7.
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Figure 7. Peak coherence of example signal.

Aiming at quantitatively describing the distortion degree of the signals, peak coherence
change (PCC) is defined as the difference between the maximum PC value and the average
PC value, and it can be given by:

PCC = max[PC(t)]− mean[PC(t)] (10)

It is noted that temperature effect could be discriminated in the process of calculating
the PCC value [59]. Therefore, temperature variation could be removed, and only defect
information would remain in the PCC values.

3. Experiment Procedure

To verify the feasibility of applying DUW to damage detection of railway tracks using
the PZT/FBG hybrid sensing system and demonstrate its sensing range and sensitivity,
a series of laboratory tests is conducted on a section of a 60 kg/m railway track with a
400 mm length.
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3.1. PZT/FBG Hybrid Ultrasonic Sensing System

The proposed sensing system in this study consists of the signal generation module and
the signal acquisition module, as shown in Figure 8. The ultrasonic wave is generated by
the typical PZT-based ultrasonic generating system, and the ultrasonic wave will propagate
along the railway track. The micro vibration induced by the ultrasonic wave will be
perceived by the FBG sensor, and the structural condition can be evaluated by analyzing
the response signal.
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Figure 8. Experimental setup of the PZT/FBG hybrid sensing system: (a) schematic illustration of
the experimental setup; (b) laboratory setup.

The detailed working procedure of the whole PZT/FBG hybrid ultrasonic sensing
system is as follows: A 250 kHz, ten-cycle sinusoidal tone burst modulated by a Hanning
window is first generated by an arbitrary waveform generator (PXI-5412, National Instru-
ments, Austin, TX, USA), as shown in Figure 9. The excitation signal is amplified 200 times
using a linear power amplifier (HVA-400-A, Ciprian, La Tronche, France). The amplified
signal is sent to the PZT disc (diameter: 8 mm, thickness: 1 mm) to generate ultrasonic
waves. An optical spectrum analyzer (AQ6370D, Yokogawa, Tokyo, Japan) is used to obtain
the reflecting spectrum of FBG, and a tunable laser (TLB-6700, Newport, RI, USA) is utilized
to emit a narrowband light source according to the FBG reflecting spectrum. In this study,
the laser wavelength is set at 1556.07 nm, which is the 3 dB position on the left-hand side
of the FBG spectrum. The micro strain induced by ultrasonic waves will shift the Bragg
wavelength and cause changes in the optical intensity. Both the transmitted and reflected
light of the FBG sensor are guided into two parts of the BPD (2117-FC, Newport, RI, USA),
which converts the optical signal into a voltage signal. The voltage signals are obtained
by the oscilloscope (PXI-5412, National Instruments, Austin, TX, USA) and the sampling
frequency of the oscilloscope is set at 20 MHz.
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Figure 9. Excitation ultrasonic signal in: (a) time domain; (b) frequency domain.

Considering that the frequency of the excitation signal is 250 kHz, the wavelength of
the ultrasonic wave with different modes ranges from approximately 10 mm to 20 mm, and
an FBG sensor with a 10 mm grating length is adopted in this study. The whole procedure
is controlled by LABVIEW software, and data analysis is conducted in MATLAB software.

3.2. Experiment Setup

Both PZT actuator and FBG sensor are attached on the rail web using epoxy adhesive,
and the distance between the PZT and FBG is 200 mm. Blu Tack blocks are utilized to
introduce damages in the rail web, which has demonstrated effectiveness in simulating
defects in many studies [60,61]. The diameters of defects are set as 2.5 mm, 5 mm, 7.5 mm,
10 mm, 20 mm, and 30 mm. Defects smaller than 10 mm are considered sub-wavelength
defects, while defects larger than 10 mm are regarded as over-wavelength defects. Damages
are set at four different locations on the rail web. As shown in Figure 10, site 1 and site 2
are located at the direct sensing path between the PZT actuator and FBG sensor. Sites 3 and
4 are placed outside the direct sensing path.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 17 
 

 

waves will shift the Bragg wavelength and cause changes in the optical intensity. Both 
the transmitted and reflected light of the FBG sensor are guided into two parts of the BPD 
(2117-FC, Newport, RI, USA), which converts the optical signal into a voltage signal. The 
voltage signals are obtained by the oscilloscope (PXI-5412, National Instruments, Austin, 
TX, USA) and the sampling frequency of the oscilloscope is set at 20 MHz. 

  
(a) (b) 

Figure 9. Excitation ultrasonic signal in: (a) time domain; (b) frequency domain. 

Considering that the frequency of the excitation signal is 250 kHz, the wavelength of 
the ultrasonic wave with different modes ranges from approximately 10 mm to 20 mm, 
and an FBG sensor with a 10 mm grating length is adopted in this study. The whole 
procedure is controlled by LABVIEW software, and data analysis is conducted in 
MATLAB software. 

3.2. Experiment Setup 
Both PZT actuator and FBG sensor are attached on the rail web using epoxy adhe-

sive, and the distance between the PZT and FBG is 200 mm. Blu Tack blocks are utilized 
to introduce damages in the rail web, which has demonstrated effectiveness in simulating 
defects in many studies [60,61]. The diameters of defects are set as 2.5 mm, 5 mm, 7.5 mm, 
10 mm, 20 mm, and 30 mm. Defects smaller than 10 mm are considered sub-wavelength 
defects, while defects larger than 10 mm are regarded as over-wavelength defects. 
Damages are set at four different locations on the rail web. As shown in Figure 10, site 1 
and site 2 are located at the direct sensing path between the PZT actuator and FBG sen-
sor. Sites 3 and 4 are placed outside the direct sensing path. 

 
Figure 10. Schematic illustration of the testing specimen and damage location. 

The intact railway track is first tested to obtain the baseline signals. Measurements 
are then conducted on each damaged condition. A thermocouple is placed on the rail 
surface to measure the temperature, and an air conditioner is used to ensure that the 
room temperature is constant for all tests. It needs to be noted that the thermal variations 
in practice will shift the FBG peak, which may affect the reflective intensity of signals. To 
eliminate the temperature effect, a preliminary test can be conducted to obtain the central 
wavelength of FBG before each ultrasonic measurement. The 3 dB point of the FBG 
spectrum can then be determined accurately for adjusting the laser wavelength. 

Figure 10. Schematic illustration of the testing specimen and damage location.

The intact railway track is first tested to obtain the baseline signals. Measurements
are then conducted on each damaged condition. A thermocouple is placed on the rail
surface to measure the temperature, and an air conditioner is used to ensure that the
room temperature is constant for all tests. It needs to be noted that the thermal variations
in practice will shift the FBG peak, which may affect the reflective intensity of signals.
To eliminate the temperature effect, a preliminary test can be conducted to obtain the
central wavelength of FBG before each ultrasonic measurement. The 3 dB point of the FBG
spectrum can then be determined accurately for adjusting the laser wavelength.

4. Experimental Results and Discussion

Signals with a length of 30 ms are recorded in each measurement. Each condition
is measured ten times, and the signals are filtered and smoothed using a Butterworth
band-pass filter through a toolbox in MATLAB. The filtered signals in each condition are
further averaged to reduce stochastic noise.
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Experiments are first conducted on site 1 and site 2 to demonstrate the feasibility of
the proposed sensing system when damage is located along the direct sensing path. DUW
obtained from site 1 and site 2 is shown in Figures 11 and 12. In general, the differences
between the disturbed signals and baseline signals become larger with increasing damage
size at both site 1 and site 2. A detailed presentation of the signals in Figure 12e is shown in
Figure 13. It is obvious that direct wave (Figure 13b) is almost identical while DUW signals
(Figure 13c) vary in both amplitude and phase. The comparison between direct wave and
DUW shows the high sensitivity of DUW for damage detection.
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Figure 12. Signals obtained from six configurations on the left point of the direct sensing path
(site 2): (a) 2.5 mm defect; (b) 5 mm defect; (c) 7.5 mm defect; (d) 10 mm defect; (e) 20 mm defect;
(f) 30 mm defect.
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(b) direct wave; (c) diffuse ultrasonic wave.

For damage quantification, the energy-based damage index (EDI) is obtained for dif-
ferent configurations, as shown in Equation (7). Since the differences between the measured
and baseline signals increase with time, which demonstrates that damage information
accumulates in the wave propagation process, different segments of signals to be analyzed
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may lead to different results. Therefore, three configurations of time window, including
1–10 ms, 10–20 ms, and 20–30 ms, are utilized to calculate the EDI values.

As shown in Figure 14, the calculated EDI values do not monotonically increase with
damage size. Specifically, EDI values fluctuate when the defect sizes are smaller than 10 mm
and increase significantly in 20 mm and 30 mm conditions in all the three time-window
configurations. The reason is that over-wavelength defects cause more significant energy
attenuation than sub-wavelength ones, and EDI could reflect the global features rather
than the detailed information of the signals, which makes it adequate for severe damage
detection but inefficient in quantifying the incipient damage.
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Figure 14. Energy-based damage index of DUW signals: (a) 1–10 ms, (b) 10–20 ms, and (c) 20–30 ms.

Figure 15 shows the variations of DUW signals in a specific time window of site 1 and
site 2 with different damage sizes. It is obvious that waveforms in this time window are
locally distorted rather than globally stretched or compressed. On the other hand, defects
with different sizes will distort the waveform to different degrees. The signals in the time
domain show that railway track damage might be quantitatively described by evaluating
the waveform distortion degrees of DUW signals.

The LTC values, which are obtained from the coherence of the measured signal and
the baseline signal, are then extracted under every condition using the method proposed
in Section 2.2.3. PC and PCC values of signals are calculated based on LTC values to
quantitatively present variations of DUW signals under different damage sizes. As shown
in Figure 16, PC values drop as a function of time, which meets well with the results
obtained by Michaels [36] and Lu [60] and indicates that defect information accumulates in
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the process of DUW propagation. Moreover, PC values decrease with increasing defect size
at both site 1 and site 2.
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Figure 16. Peak coherence in each condition: (a) damage is located at the middle point of the direct
sensing path and (b) damage is located at the left point of the direct sensing path.
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The PCC values are then calculated from PC results to quantify the damages in site 1
and site 2, and the results are shown in Figure 17. In general, PCC values increase with the
damage size in all the damage conditions, which proves that PCC is more effective than
EDI in damage quantification. Specifically, PCC develops slowly when the defect diameter
is smaller than 10 mm. On the one hand, the increasing speed of damage from 2.5 mm to
10 mm is relatively low, which causes the slow development of PCC values; on the other
hand, multiple interactions between the waves and defects cause the subtle changes to
be perceived by DUW. The PCC increases dramatically when the damage sizes are larger
than 10 mm. The reason is that defects will strongly interact with DUW when the sizes are
close to the wavelength of ultrasonic waves. The results in Figure 17 demonstrate that the
damages located at the direct sensing path could be detected by using the proposed method.
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DUW propagates through not only the direct path between PZT and FBG but also the
paths outside the direct path, which results in DUW being able to detect damage beyond
the direct path. Therefore, the PCC values of signals obtained from site 3 and site 4 are
obtained to investigate the sensing range of DUW, as shown in Figure 18. PCC values
increase with the damage size in both site 3 and site 4, which verifies the wide sensing
capacity of DUW.
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5. Conclusions

This study explores DUW for damage detection of railway tracks using a PZT/FBG
hybrid sensing system. The sensitivity and sensing range of the proposed method are
investigated by a series of experiments. The conclusions of this research can be summarized
as follows:

(1) The PZT/FBG hybrid sensing system is adequate for damage detection in railway
tracks. The sensitivity of direct wave and DUW is compared in the time domain. Vari-
ations of DUW signals are much larger than direct wave signals, which demonstrates
the higher sensitivity of DUW than direct wave for damage detection.

(2) The energy-based damage index, EDI, is first defined and utilized to quantify the
damage severity at sites 1 and 2. EDI is sufficient to evaluate over-wavelength defects
but is not adequate for sub-wavelength defects.
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(3) The waveform-distortion-based damage index, PCC, is defined and utilized for dam-
age detection on railway tracks. The results show that the PCC values increase with
damage size at all four sites, and the damage index is efficient for damage detection.

In the future, environmental effects such as temperature and moisture on the proposed
system need to be studied. Advanced signal processing techniques should be considered
to make full use of the abundant information in diffuse ultrasonic signals. Longer railway
tracks also need to be studied to explore the sensing range along the direction length of
railway tracks of the proposed method.
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