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Abstract: 5G technologies provide ubiquitous connectivity. However, 5G security is a particularly
important issue. Moreover, because public datasets are outdated, we need to create a self-generated
dataset on the virtual platform. Therefore, we propose a two-stage intelligent detection model to
enable 5G networks to withstand security issues and threats. Finally, we define malicious traffic
detection capability metrics. We apply the self-generated dataset and metrics to thoroughly evaluate
the proposed mechanism. We compare our proposed method with benchmark statistics and neural
network algorithms. The experimental results show that the two-stage intelligent detection model
can distinguish between benign and abnormal traffic and classify 21 kinds of DDoS. Our analysis also
shows that the proposed approach outperforms all the compared approaches in terms of detection
rate, malicious traffic detection capability, and response time.

Keywords: malicious behavior; statistic model; neural network model; DDoS

1. Introduction

5G technologies provide ubiquitous connectivity while also addressing the demands
of both individual consumers and businesses; however, a tremendous surge of data makes
cyber-security a pressing issue, and in order to deal with security threats, various standards
organizations including 3GPP, IEEE, and ETSI have been looking into security issues for
5G networks [1].

In 2019, the DDoS attack landscape report [2] indicated that DDoS, a common attack
method, is still one of the main threats facing networks, affecting the availability and
performance of network services. In 2020, the DDoS attack landscape report [3] pointed out
that, with the rapid development of network devices, different varieties of low rate attacks
and distributed reflection denial of service attacks are emerging. Thus, it is necessary
to upgrade protection measures. An Internet network security monitoring data analysis
report [4] summarized the data in terms of malicious programs, vulnerability risk, DDoS
attacks, and website security. According to the results, DDoS attacks are still one of the most
common malicious behaviors because of their low cost and obvious effect. By controlling
multiple computers, DDoS attackers send intensive attack packets to the victim, perform
specific malicious behaviors, and consume the victim’s computing resources. There are
various ways to form DDoS malicious behaviors. DDoS attackers control machines to
build botnets to send large numbers of packets to flood victim hosts. Another possible
method of attack is that an attacker will exploit the vulnerability of TCP three handshakes,
UDP, or application layer protocols, leading to complex malicious behavior. The malicious
behavior includes botnets, low-rate, network layers, DRDoS (distributed reflection denial
of service), application layer DDoS, etc. Before launching an attack, the attacker obtains full
information about the victim’s application service or the network protocol vulnerabilities.
According to their specific vulnerabilities, the malicious behavior is launched. This leads
to an end to normal service. Furthermore, the network routers do their best to forward
packets that transmit communication protocols, including legitimate and attack packets.
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The network is a collection of queues, and each queue has a cache area. When the malicious
packets are sent constantly, packets fill up the cache area, further increasing the victim
congestion and overload. This leads to reduced network performance [5]. As the attack
numbers and complexity continue to grow, AI addressing security issues is a new trend;
therefore, with the development of 5G networks, a necessary measure is the ability to
automatically detect DDoS [6].

At present, there are two approaches used to detect DDoS, including statistical analysis
and the deep neural network method [7]. By setting an appropriate threshold, statistical
methods can identify attacks. Wang et al. [8] proposed the BotMark method, which cal-
culates the flow stability based on the packet length. A single feature is not sufficient to
represent the entire flow behavior. The more features there are, the greater the computa-
tional load will be. Only a single feature calculates the flow stability, which can result in
small computation and a low detection latency. Nevertheless, a single feature can increase
false positives. Ghasabi et al. [9] proposed an EWMA (an exponentially weighted moving
average mechanism) combined with Jeffrey distance to detect a variety of attacks, while
not having the effect on the network.

We can utilize multiple features to gain flow stability. The flow stability can fully
represent the flow characteristics. The exponentially declining weighted moving average
method can estimate the flow similarity value. Although the network traffic will change dy-
namically, we can get the flow similarity value in advance. Therefore, combined with [8,9],
this paper proposes an improved similarity method, which uses the probability distribution
of packet size, packet length, flow rate, source port, and destination port (5- tuples) to
represent benign traffic and abnormal traffic. The method can distinguish benign traffic
from abnormal traffic at the ingress router.

Recently, there have been some studies applying CNN (Convolutional Neural Net-
work) to attack classification. CNN is better than other deep learning neural networks
because it is good at extracting local features and down sampling features. The model
is more suitable for processing data with more feature dimensions, such as images and
text [10]. In this paper, we combine CNN and attention to extract features from the packet
header and payload. The data packet header and payload features are extracted through a
convolution operation, and the generated feature map is input into the attention mechanism
to capture the dependence of any position of the feature map and effectively classify DDoS.

In addition, [11,12] introduced the network topology and traffic generation mode
creating self-generated datasets and studied how to use attack tools to generate DDoS
attacks datasets on the experimental attack and defense platform, respectively. However,
the massive benign traffic is not simulated in a 5G scenario. Researchers have used many
datasets [13–15] to evaluate the performance of their proposed intrusion detection and
intrusion prevention methods. These datasets are outdated, so cannot reflect current attack
types and attack methods. Therefore, collecting real datasets is a very important intrusion
detection task [16].

This paper proposes a two-stage intelligent detection method for the 5G network.
First, the self-generated dataset is obtained by simulating different types of attacks and 5G
benign behaviors. Second, we analyze the attack behavior to select the 5-tuple features, and
the similarity-based prior knowledge model is established the 5-tuple features probability
distribution. This can help distinguish between benign traffic and abnormal traffic. Third,
the CNN-based attention model trains abnormal traffic and optimizes the detection model.
Finally, the two-stage intelligent detection model is deployed at the ingress router to
achieve online detection for classifying 21 kinds of DDoS. The contribution of this article is
as follows:

1. We generate a self-generated dataset that conforms to the actual traffic. The experi-
ment simulates a large amount of benign traffic and different types of DDoS attack
traffic in 5G scenarios.

2. We propose a two-stage intelligent detection model. The model includes the similarity-
based prior knowledge model and the CNN-based attention model.
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3. A similarity-based prior knowledge detection method for DDoS attacks is proposed.
Through attack behavior analysis, we select five representative features. The probabil-
ity distribution of the features is used to build a model based on the similarity with
prior knowledge. The model can distinguish DDoS from benign traffic.

4. A CNN-based attention DDoS attack detection method is proposed. The CNN-
based attention detection model deeply learns 29 packet payload and packet header
statistical features, selects the model’s best parameters, and indicates the specific types
of DDoS attacks.

5. We define a malicious detection capability metric. We apply the defined metric
and common metrics to evaluate the proposed mechanism. By comparing with
benchmark statistics and neural network algorithms, we show that the proposed
approach performs well in terms of the detection rate, malicious detection capability,
and response time.

The remainder of this paper is organized as follows. Section 2 introduces recent
related work on the network intrusion detection method and dataset. Section 3 describes
the proposed detection model. Section 4 presents dataset construction and evaluation
metrics. Section 5 analyzes the experimental results. Section 6 concludes the paper.

2. Related Work
2.1. Dataset

A network intrusion detection system (IDS) has become an important part of the net-
work security architecture. The IDS can analyze network traffic to identify malicious attacks.
From an evaluation perspective, while datasets are important to measure the effective-
ness of IDS [17], it is extremely difficult to acquire high-quality datasets. Mishra et al. [18]
summarized the detection methods for the KDD99 dataset. Although the detection rate is
very high, the KDD99 dataset is outdated. It may not reflect novel types of attack or the
attacker methods. Divekar et al. [19] noted a high false alarm rate in the DARPA98 dataset.
The NSL-KDD dataset contained transport layer attacks, but did not include low-rate and
reflective amplification attacks. Kreutz et al. [20] pointed out that NSL-KDD was not a
flow-based dataset and so was not suitable for flow-based intrusion detection systems. In
addition, the dataset was outdated. The CAIDA DoS 2007 dataset [21] did not provide
the attack events’ names and other features. The DEFCON dataset [22] only contained
malicious activity. The ISCX dataset [23,24] created a profile based on the protocol, but this
dataset did not provide any attack information and so it did not reflect the truth of the label.
Therefore, by combining existing attack tools and attack generation methods, we deployed
an experimental environment established to generate benign traffic and attack. We sim-
ulated different 5G scenarios and scripts or tools to achieve an effective and multi-types
DDoS dataset.

2.2. Statistical Analysis Detection Method

The current research trends show that many researchers tend to use information
entropy [25] and information distance [26] for statistical anomaly detection. Researchers
statistically analyze traffic features to distinguish attacks from legitimate traffic [27].

Yu et al. [28] summarized the work on modeling malicious activities from various
perspectives, discuss the pros and cons of current models. Yu et al. [29] proposed a second-
order statistics-based discrimination algorithm to detect botnet attacks. However, [28,29]
mainly focus on analyzing the botnet model. Yu et al. [30] used the flow correlation
coefficient to measure the similarity among suspicious flows to differentiate DDoS attacks
from flash crowds. However, they lack that have a fine-grained classification of DDoS.

Callegari et al. [31] used Kullback–Leibler Divergence (KL) to evaluate the different
histograms similarity to obtain the best performance. Kailath et al. [32] proposed a new
measure that they have called the Bhattacharyya distance. They verified that the distance
measure is easier to evaluate than the divergence. Wang et al. [8] calculated the flow
score through the distribution of packet length. This method’s results demonstrate its
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effectiveness in detecting the botnet. However, a single feature will not stand in for all
kinds of attacks. Makuvaza et al. [33] used four features to detect DDoS with high accuracy:
backward packet length standard deviation, flow duration, average packet size, and flow
inter-arrival time standard deviation. Beigi et al. [34] selected flow rate, duration, average
packet length, and bytes per second to provide the highest detection rate.

Harrou et al. [35] exploited the EWMA to evaluate the statistical distance, but did
not verify the effectiveness of the proposed detection method. We combined the methods
in [8,35] to measure flow similarity based on previous knowledge (MFPK). According
to the attack behavior, we selected five features standing for the attack, and used the
probability distribution of five features to represent normal traffic and attack behavior.
We deployed a similarity statistics model based on previous knowledge at the ingress
router, and calculated the benign traffic baseline. Then, the incoming traffic was judged as
benign or abnormal. Finally, the abnormal traffic was fed into the neural network detection
model. We evaluated the effectiveness of the MFPK method at detecting DDoS attacks and
compared the proposed method with the existing methods [31,32]. In order to prove the
effectiveness of the features selected, we compared the performance with that of existing
feature selection methods [33,34].

2.3. Neural Network Detection Method

Neural networks are inspired by biological neurons and can also capture more complex
patterns. With this method, researchers detect attacks and anomalies [36]. Convolutional
networks have been widely used in natural language processing. In recent years, convo-
lutional networks have also been used for malicious traffic detection with high accuracy.
Guo et al. [37] proposed an application traffic classification algorithm based on a convolu-
tional neural network model. The model test is carried out through the CICAndmal2017
network open dataset. Comparison with the traditional machine learning traffic classifica-
tion model indicates that the convolutional neural network model is increased by 2.93% and
11.87% in accuracy and recall, respectively. However, without fine-grained classification
of malicious traffic, this author only identified malicious traffic from benign traffic. The
1DCNN (1D Convolutional Neural Network) results are better performance than those of
2DCNN (2D Convolutional Neural Network) to train long sequences of traffic data [38].
The 1DCNN is suitable for processing sequence data. Wang et al. [39] proposed an end-
to-end ISCX VPN-nonVPN encrypted traffic classification method with one-dimensional
convolution neural networks. The experiment results on the public encrypted traffic dataset
yielded significant improvements to the state-of-the-art method. However, this method is
not validated in non-encrypted traffic. We chose a packet header and payload sequence
features with 1DCNN in our approach. With the development of neural networks, atten-
tion mechanisms are being proposed. Jiang et al. [40] proposed four ATS models with a
Sequence-to-Sequence model. An attention-based bidirectional LSTM (Long Short-Term
Memory) can enhance the correlation between the generated text summary and the source
text, which can prevent the spread of cumulative errors in generated text summaries. The
experiments confirm that the proposed ATS model has better performance than the base-
line model. This article only applied LSAT (LSTM and Attention) in natural language
processing. Malik et al. [41] proposed a mechanism that combined LSCN (Long Short-Term
Memory and Convolutional Neural Network) for efficient detection of multi-vector threats
and attacks. The analysis showed that the proposed method outperforms other methods in
terms of detection accuracy. Fu et al. [42] proposed an attention mechanism composed of a
channel attention module and a spatial attention module. The channel attention module
processes the different channels’ feature maps and makes the model pay more attention to
those feature maps. The spatial attention module mainly processes the different feature
positions on the feature map, which makes the model pay more attention to the specific
feature positions. Because of the resource limitations of the hardware platform, we used
the spatial attention module to capture the dependence of any two spatial features.
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In our approach, we combined 1DCNN and an attention structure to classify ma-
licious traffic for online attack detection. We used 1DCNN to learn the packet header
and payload features, utilized the attention mechanism to strengthen the neural network
learning capability, and further fine-tuned the identification and classification. To verify
our proposed model for DDoS attacks, we compared it with the LSAT model [40] and the
LSCN model [41].

In summary, firstly, we generated a self-generated dataset on the virtual platform.
This dataset can stand in for traffic on the ground. Secondly, the proposed mechanism
utilized similarity-based prior knowledge to distinguish benign flow from abnormal flow.
Thirdly, the attention and convolutional neural network model fully learned features to
detect various attacks at the ingress router.

3. Detection Model

In this section, we focus on introducing the two-stage detection model including a
statistical detection model and a neural network detection model.

3.1. Two-Stage Detection Model

The two-stage detection model for detecting DDoS attacks is illustrated in Figure 1.
The figure shows the steps involved in collecting network traffic data to detect attacks.
The detection method consists of a construction dataset module, a statistical model, and a
neural network detection model.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 31 
 

 

In addition, in order to quickly achieve the effect of the attack, the attack tool specifies 
the victim port, and the port number also contains the attack information. Therefore, the 
5-tuples include packet size, packet length, flow rate, source port, and destination port, 
which are used to represent malicious behaviors.  

The statistical detection module is used to establish the feature distribution of mali-
cious behaviors and calculate the flow similarity in the time window. Then, by comparing 
it to the threshold, the statistical detection module outputs the abnormal traffic. 

The abnormal traffic is fed into the neural network detection module in Figure 1. The 
detection module learns the packet headers and payload features, further classifying 
DDoS attacks at the ingress router. Finally, the detection module can improve the mali-
cious traffic detection capability and classify 21 DDoS types.  

Extract Flow Feature
Attack Traffic

Benign Traffic

Constuction Dataset Module

Raw Traffic

Statistic Detection Model

Extract Five 
Tuple

Feature 
Propability 

Distribution

Benign 
Traffic 

Baseline
Benign Traffic

No

Neural Network Detection Model

   

Performance

Adjust
Parameter

Extract Packet 
Statistic Features

Online Neural 
Network Detection 

Model

Online 
Deployment

Feature Dataset

Abnormal 
Traffic

Yes

Extract Packet 
Statistic Features

Offline Neural 
Network Detection 

Model

Detection Result

 
Figure 1. Two-stage DDoS detection model. 

3.2. Statistical Detection Model 
Combining the methods from [8,35], we propose a statistical detection algorithm to 

measure flow similarity based on previous knowledge, named MFPK. The MFPK algo-
rithm steps are as follows:  
(1) Collect flow X  and Y  

The traffic sampled aggregates to flows in the time interval ΔT in Figure 1. n
(0 )n K≤ ≤  are feature numbers. After the malicious behavior analysis, we adopt the 
five features including package size, package length, flow rate, source port, and destina-
tion port. We adopt K  = 5. Thus, the X  and Y  flow consist of five features, respec-
tively. 

Figure 1. Two-stage DDoS detection model.



Sensors 2022, 22, 2532 6 of 30

In the construction dataset module, we build the prototype system and deploy attack
tools. The traffic collection tool captures TCP/IP data packets, then extracts them into a
flow feature dataset. The specific details about the dataset can be seen in Section 4.1.

In the statistical analysis module, we built a statistical model of benign traffic based
on flow features. Based on the currently observed traffic and statistical model, we utilized
statistical techniques to calculate the similarity value. If the similarity exceeds a certain
threshold, the currently observed traffic is abnormal. In this paper, the abnormal events are
malicious attacks.

Therefore, we regard this as a binary classification problem. In order to classify attacks
and benign traffic, we select representative features by analyzing malicious behavior.

In the botnet network, botnet hosts regularly update a library file with a server. During
the update process, the packet size and length change regularly. For DRDoS, the attacker
sends requests to the reflector, and the reflector sends various response packets to the victim.
These response packets have the same size and length. For the application layer attack, the
attackers send HTTP requests to the server over a long time to make the webserver flood;
thus, the packet size and length change regularly.

For the network layer DDoS, the attack tool can initiate flood attacks by setting the
packet size and packet length. The normal user can send requests to the server and stay
on the server for some time so that the user can browse the information. Usually, for
benign traffic, the URLs require different packet sizes. The data packet size and length
are considered traffic features that can be used to distinguish between benign traffic and
attack traffic.

For low-rate attacks, it is necessary to establish a connection between the source
and the destination host, and the destination host sets a minimum window to read the
bytes. The transmission rate of bytes is slowly maintained by the source host and the
destination host. Many useless packets increase for a short period of time in high-rate
attacks (such as network layer flood, application layer flood, and reflection amplification
attacks). The benign traffic rate is different from low-rate and high-rate attacks. The growth
of flow numbers is very obvious. Therefore, we consider the flow rate one of the most
important features.

In addition, in order to quickly achieve the effect of the attack, the attack tool specifies
the victim port, and the port number also contains the attack information. Therefore, the
5-tuples include packet size, packet length, flow rate, source port, and destination port,
which are used to represent malicious behaviors.

The statistical detection module is used to establish the feature distribution of mali-
cious behaviors and calculate the flow similarity in the time window. Then, by comparing
it to the threshold, the statistical detection module outputs the abnormal traffic.

The abnormal traffic is fed into the neural network detection module in Figure 1. The
detection module learns the packet headers and payload features, further classifying DDoS
attacks at the ingress router. Finally, the detection module can improve the malicious traffic
detection capability and classify 21 DDoS types.

3.2. Statistical Detection Model

Combining the methods from [8,35], we propose a statistical detection algorithm to
measure flow similarity based on previous knowledge, named MFPK. The MFPK algorithm
steps are as follows:

(1) Collect flow X and Y

The traffic sampled aggregates to flows in the time interval ∆T in Figure 1. n(0 ≤ n ≤ K)
are feature numbers. After the malicious behavior analysis, we adopt the five features
including package size, package length, flow rate, source port, and destination port. We
adopt K = 5. Thus, the X and Y flow consist of five features, respectively.

(2) Compute flow X and Y similarity
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The network traffic will change dynamically, which causes the flow similarity to
fluctuate. We used the exponentially declining weighted moving average method to
estimate the flow similarity value. This method takes into account previous data, which
makes the method sensitive to traffic changes. This method can make it easier to detect
attack traffic in advance.

P and U are the discrete probability distribution in the time interval ∆T. P and U are
defined as follows:

P = (p1, p2, . . . , pn)(0 ≤ n ≤ K) (1)

U = (u1, u2, . . . , un)(0 ≤ n ≤ K) (2)

The P and U probability distribution are as follows:

P = (p1, p2, . . . , pn) =
X[an

m]

M
=

{
x[a1

m]

M
,

x[a2
m]

M
,

x[an
m]

M
. . . ,

x[aK
m]

M

}
(3)

U = (u1, u2, . . . , un) =
Y[bn

l ]

L
=

{
y[b1

l ]

L
,

y[b2
l ]

L
,

y[bn
l ]

L
. . . ,

y[bK
l ]

L

}
(4)

In Equations (3) and (4), the notation of flow X is X[an
m] and the notation of flow Y

is Y[bn
l ]. M and L are the total number of flows in the time interval ∆T. an

m is the n-th
feature value in the m-th flow. bn

l is the n-th feature value in the l-th flow. x[an
m] and y[bn

l ],
respectively, are the same n-th features value number. Given the positive value of the
probability, we have the following relationship:

pn � 0, un � 0 (5)

K

∑
n

pn = 1,
K

∑
n

un = 1 (6)

The similarity between P and U is given by:

S(pn, un) =
K

∑
n=1

(
|pn − un|

1 + max{pn, un}
) (7)

Et = (1− α)St−1 + αSt (8)

In Equation (8), t denotes the current time window, St denotes average similarity in
the current time window, St−1 denotes average similarity in the last time window, and
Et denotes the estimated similarity value in the current time window. α is an adjustable
parameter [43]. In general, α is 0.8. In Section 5.1, we use distance to measure the traffic
similarity. The distance and similarity are inversely proportional. The smaller the distance,
the higher the similarity, and the larger the distance, the lower the similarity. If the
probability distributions P and U are equal, the flow distance value is small. When the two
probability distributions are completely different, the flow distance value will be higher.
The greater the difference between the two distributions, the smaller the distance value.
When the flow distance value decreases, it indicates that there may be abnormal flow in the
network. In general, the normal host can always keep communicating. Thus, the normal
flow has a high distance value. When an abnormal event occurs, a large number of packets
exist in the network, which can decrease the distance values. The larger the distance, the
less similarity between benign and attack traffic. This property can distinguish benign
traffic from attack traffic according to the flow similarity.

(3) Define whether abnormal traffic exists

When we consider the network traffic dynamic, the similarity may be subject to
fluctuations [44]. The threshold factor is used to adjust the detection rate; ∆E denotes the
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fluctuation of abnormal flow similarity and benign flow similarity. That is the possibility of
being attacked. The ∆E between P and U is given by:

∆E = Eincoming − Ebenign (9)

∆E > δe2
Benign (10)

In Equation (10), e2
Benign is the similarity variance of the benign traffic. δe2

Benign denotes
benign traffic fluctuations. When the difference between benign traffic and incoming traffic
is higher than the threshold, the incoming traffic is abnormal. We discuss the similarity
threshold δ in Section 5.1. The MFPK precoder algorithm is given in Algorithm 1.

Algorithm 1 MFPK Precoder Algorithm.

Input: Flow X, Flow Y, M, L, K;
Output: True: abnormal, False: benign;
1: for m = 0; m < M; m + + do
2: for n = 0; n ≤ k; n + + do
3: x[an

m]← Count(an
m) ;

4: Pn ← x[an
m]/M ;

5: end for
6: end for
7: for l = 0; l < L; l + + do
8: for n = 0; n ≤ k; n + + do
9: y[bn

l ]← Count(bn
l ) ;

10: Un ← y
[
bn

l
]
/L ;

11: end for
12: end for
13: Sincoming, Eincoming ← CalculateSimilarity(pn, un)

14: if Eincoming − Ebenign > δe2
Benign then

15: return True;
16: end if
17: return False;

3.3. Neural Network Detection Model

We proposed a neural detection algorithm, named CNAT, combining CNN and atten-
tion structure to classify malicious traffic for online attack detection. However, we took
the online detection time requirements into account. Thus, this article only uses the spatial
attention mechanism to learn features and classify multiple attacks.

Figure 2 shows the CNN-based attention model. The function of every layer is
as follows:

Input Layer: We extracted the features of the packet header and payload in the
abnormal traffic obtained by the MFPK detection method. In this first layer, it takes as
input a traffic flow represented by a feature matrix F of size p ∗ f . F contains individual p
flow vectors in the interval window ∆T, and each flow vector f is 29.

CNN layer: We used 1DCNN to train the flow features. We input these features into
the feature detection suitable for processing packets’ statistical features. Each input feature
matrix F was operated on by a single convolutional layer with e filters of size h ∗ f , where h
is the height of each filter, and f is 29. Each filter covered F with a step of s to extract and
learn the packet statistical features, which contains useful information for classifying DDoS.
Then, each of the e filters generated a feature map of size p− h + 1. We utilize the activation
function to minimize the error between the true label and the predicted label. The ReLU
and sigmoid are common activation functions. We introduced the ReLU activation function
since ReLU is proven to be faster to train than standard sigmoid units [45], so we use the
rectified linear function ReLU(x) = max{0, x}.
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Figure 2. CNN-attention model.

Attention layer: The attention mechanism can encode the sequence packet header and
payload feature, and assign a weight to each feature determined by the feature similarity
between the corresponding two locations.

In Figure 2, after convolutional layers, the attention layer includes query Q, key K,
and value V. Q, K, and V are defined as follows:

Q = WqF; K = WkF; V = WvF (11)

In Equation (11), the Wq is the query matrix, Wk is the key matrix, and Wv is the value
matrix. These three matrices are learned through a neural network. Based on Equation (11),
Q, K, and V are generated after convolutional layers.

The similarity Sji between features is calculated by Q and K. The similarity Sji is the
attention weight. The value V is operated by each attention weight with a weighted sum
method. The similarity Sji is as follows:

Sji =
exp

(
Qi·Kj

)
f

∑
i=1

exp(Qi·Kj)

(12)

In Equation (12), Qi and Kj are the encode with the i-th feature and the j-th feature,
respectively. Sji is the matching degree between the j-th feature and the i-th feature.

Cj =
f

∑
j=1

SjiVj (13)

In Equation (13), Cj is the features matrix aggregated by the attention module; f is
the feature number; and Vj is the encoder for the j-th feature. The attention module can
improve any two feature positions similarly. Finally, the features matrix Cj aggregates by
the attention module.

Dense layer: Cj is an input to the dense layer. We used the optimization function
to minimize the loss between the real value and the predicted value. The optimization
function and learning rate affect the model performance. An appropriate learning rate
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can reduce the error during back propagation. During back propagation, weight and bias
are important parameters. Weight is the real value that is associated with each feature.
Bias is to better fit the data. The model can continuously update the convolutional weight
and bias. This also means that the model fully learns the relationship between packet
statistical features and the label, which reduces the network complexity. Cj is flattened to
produce the final one-dimensional feature vector v. The feature vector v will be input into
the classification layer.

Classification layer: v is input to a fully connected layer, and the output layer number
is the abnormal types. We use the softmax function to classify the different abnormal types.
In Figure 2, c is the abnormal fine-grained category label. In this article, for DRDoS, we
cite the six categories in the references [46]. For botnets, application layers, network layers,
and low-rate, we chose attacks that attack the effect well in each category. Thus, the botnet
has four categories. The application DDoS has four categories. The network DDoS has
three categories. The LDDoS has four categories. The specific traffic type can be seen in
Section 4.1.

In this paper, we input standardized data by small batch. This method normalizes the
input data, makes the data normalized through discarding, scaling, and translation, and
prevents slow convergence or invalid features. However, the batch size is an adjustable
parameter. A larger batch size does not mean better model detection performance. The
larger the batch size, the more likely gradient explosion is to occur. In this situation, the
neural network has no nonlinear ability, and the convolution layer does not learn local
features, resulting in model overfitting. With a smaller batch size number, the convolutional
layer is not enough to learn the relationship between features and labels, resulting in model
underfitting. Therefore, we set the convolutional layer number to three and the filter
number to one. The learning rate, batch size, and optimization function are adjustable
parameters. Furthermore, considering the complexity of the model, we set the model
iteration number R to 10.

1DCNN with an attention mechanism has three advantages. Firstly, the standard
neural network is fully connected, and the weights of each filter in the convolutional layer
are shared. Compared with the fully connected network, 1DCNN needs fewer weights
and the model is lighter, which can effectively reduce the computational complexity of the
model. Secondly, in the training process, 1DCNN can automatically learn features with
weight w and bias b without relying on expert knowledge and time-consuming feature
engineering. Finally, the attention mechanism can further capture the dependence between
the packet payload and the packet header statistical features learned by the convolutional
layer. For the specific features’ locations, the features are updated by aggregating the
features at all locations, which focus on various features; this makes the model pay more
attention to the corresponding areas of the feature map. It can enhance the detection ability
of the neural network. The CNAT precoder Algorithm 2 is as follows:
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Algorithm 2 CNAT precoder Algorithm.

Input: The feature matrix F; the filter e; the feature number f; the maximum number of iterations
R; the convolution filter weight w; the convolution filter bias b; the query matrix Wq; the key
matrix Wk; the key matrix Wv;
Output: The traffic type;
1: for epoches = 1 to E do
2: initial w to be 0; b to be 0;
3: for r = 1 to R do
4: z[r] = w[r]f + b[r];
5: F[r]= Relu(z[r]+b[r]);
6: end for
7: Q = WqF; K = WkF; V = WvF

8: Sji =
exp(Qi ·Kj)

f
∑

i=1
exp(Qi ·Kj)

;

9: Cj =
f

∑
j=1

sjiVj;

10: end for
11: Add dense layer, classification layer
12: return The traffic label;

4. Methodology

In this section, we introduce how the dataset is generated, propose a new detection
metric (namely, malicious traffic detection capability), and use common metrics to evaluate
the two-stage detection model proposed in Section 3.

4.1. Dataset

The experimental platform is built based on Vmware vSphere software (http://www.
vmware.com/cn.html (accessed on 9 January 2021)). The specific configuration of the
virtual machine is shown in Table 1.

Table 1. Virtual machine configuration.

Configure Type

System Ubuntu 18.04 live server
Hard Disk 32 G

RAM 16 GB

The software environment is the Ubuntu18.04 Server system, the number of virtual
cores is 8, and the memory is 16 GB. The topological structure adopted is shown in Figure 3.
We simulated multiple types of botnets, application layers, network layers, low-rate, DRDoS
attacks, and benign traffic of multiple 5G scenarios in the virtual machine.

The attack domain deploys the attack tools and scripts in Figure 3. After the attackers
execute the tools or scripts, malicious and normal behaviors pass the ingress router to
reach the target domain. The following five types of attacks are involved in the experimen-
tal platform:

Low-rate DDoS: In the LDDoS area, we used eight hosts, including two routers,
four attack hosts, and two web servers. The attack hosts used Slow HTTPTest (https:
//github.com/shekyan/slowhttptest/ (accessed on 11 March 2021)) to send LDDoS attacks
to the web server. The LDDoS attacks included slow headers, slow body, shrew, and
slow read.

http://www.vmware.com/cn.html
http://www.vmware.com/cn.html
https://github.com/shekyan/slowhttptest/
https://github.com/shekyan/slowhttptest/


Sensors 2022, 22, 2532 12 of 30Sensors 2022, 22, x FOR PEER REVIEW 12 of 31 
 

 

Attack Host Attack Host

Attack Host Attack Host

Application 
Attack Area

Attack Host Attack Host

Attack Host Attack Host

DRDoS 
Attack Area 

Attack Host

Server

Server

Botnet 
Attack Area

Attack Host
Control 

Command 
Servers

Network 
Attack Area

Attack Host Attack Host

Attack Host

5G Benign Traffic

LDDoS  
Target Area

Victim Host

Application 
Target Area

DRDoS  
Target Area

Victim HostVictim Host

Web Server Web Server

Botnet  
Target Area

Victim Host

Network
Target Area

Victim Host

5G Benign Traffic

Ingress Router Engress Router

LDDoS 
Attack Area

 
Figure 3. Network topology diagram. 

Application Layer DDoS: we utilized four hosts to generate four application layer 
DDoS. We separately used the Hulk (https://dl.packetstormsecurity.net/DoS/hulk.zip (ac-
cessed on 5 February 2021)), Webbench (http://www.ha97.com/4623.html (accessed on 5 
February 2021)), and Golden Eye tools (https://github.com/jseidl/GoldenEye (accessed on 
5 February 2021)) to simulate HTTP Flood attack, CC (Challenge Collapsar) attack, HTTP 
Post attack, and HTTP Get attack. 

DRDoS: In the reflection amplification attack domain, we used one attack host and 
two servers. The attacker used the Scapy library (https://scapy.net (accessed on 18 Febru-
ary 2021)) to send fake requests to the two servers to generate DRDoS attack traffic, in-
cluding Memcached, TFTP (Trivial File Transfer Protocol), Chargen, NTP (Network Time 
Protocol), SNMP (Simple Network Management Protocol), and SSDP (Simple Service Dis-
covery Protocol). The victim host receives a large number of responses from the server.  

Botnet attack: In the zombie attack domain, we used four hosts and four control com-
mand servers. The control and command server are used to maintain the connection with 
the zombie host. According to the commands of the control command server, the zombie 
host will execute malicious behaviors, including Ares (https://github.com/sweetsoft-
ware/Ares (accessed on 5 February 2021)), BYOB (https://github.com/malwaredllc/byob 
(accessed on 10 February 2021)) Zeus (https://github.com/Visgean/Zeus (accessed on 20 
February 2021)), and Mirai (https://github.com/jgamblin/Mirai-Source-Code (accessed on 
7 April 2021)). 

Figure 3. Network topology diagram.

Application Layer DDoS: we utilized four hosts to generate four application layer
DDoS. We separately used the Hulk (https://dl.packetstormsecurity.net/DoS/hulk.zip
(accessed on 5 February 2021)), Webbench (http://www.ha97.com/4623.html (accessed on
5 February 2021)), and Golden Eye tools (https://github.com/jseidl/GoldenEye (accessed
on 5 February 2021)) to simulate HTTP Flood attack, CC (Challenge Collapsar) attack,
HTTP Post attack, and HTTP Get attack.

DRDoS: In the reflection amplification attack domain, we used one attack host and two
servers. The attacker used the Scapy library (https://scapy.net (accessed on 18 February
2021)) to send fake requests to the two servers to generate DRDoS attack traffic, including
Memcached, TFTP (Trivial File Transfer Protocol), Chargen, NTP (Network Time Protocol),
SNMP (Simple Network Management Protocol), and SSDP (Simple Service Discovery
Protocol). The victim host receives a large number of responses from the server.

Botnet attack: In the zombie attack domain, we used four hosts and four control com-
mand servers. The control and command server are used to maintain the connection with
the zombie host. According to the commands of the control command server, the zombie
host will execute malicious behaviors, including Ares (https://github.com/sweetsoftware/
Ares (accessed on 5 February 2021)), BYOB (https://github.com/malwaredllc/byob (ac-
cessed on 10 February 2021)) Zeus (https://github.com/Visgean/Zeus (accessed on 20
February 2021)), and Mirai (https://github.com/jgamblin/Mirai-Source-Code (accessed
on 7 April 2021)).

https://dl.packetstormsecurity.net/DoS/hulk.zip
http://www.ha97.com/4623.html
https://github.com/jseidl/GoldenEye
https://scapy.net
https://github.com/sweetsoftware/Ares
https://github.com/sweetsoftware/Ares
https://github.com/malwaredllc/byob
https://github.com/Visgean/Zeus
https://github.com/jgamblin/Mirai-Source-Code
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Network layer DDoS: We used three attack hosts in the network layer attack domain.
With the hping tool (https://github.com/antirez/hping (accessed on 13 March 2021)), a
large number of data packets were sent to the host in the target domain. The network layer
attacks included SYN, ACK, and UDP.

Benign traffic: We use the socket package (https://docs.python.org/3/library/socket.
html (accessed on 15 April 2021)) to establish a connection between the client and the server
to send packets. According to [47], the virtual machines simulated the 5G environment,
including public services, smart homes, PC Internet, and MTC communication. This
scenario generated normal communication traffic. In addition, to enrich the normal traffic
category, we adopted the benign traffic in the CICIDS2017 dataset [48] as the background
traffic, which can add to the traffic complexity.

At the ingress router, we used the Tcpdump (https://www.tcpdump.org (accessed on
18 April 2021)) tool to capture the network traffic to be detected within a certain period of
time. This obtained the original dataset, containing attack traffic and benign traffic.

The investigation showed that different flow features are helpful for traffic analysis,
which can provide relevant communication information [49]. Several approaches utilize
these features to improve the abnormal detection performance [50,51]. The information
of IP flow is more comprehensive; thus, we used the CICFlowmeter tool [52] to generate
flow features from the PCAP file. A network flow consists of all packets sharing a common
combination of source IP, destination IP, port, and transport protocol. We extracted the
network traffic with the CICFlowmeter tool, which is composed of 84 traffic flow features.
The main features are the forward and backward data packet number, the data packet
arrival time, the length of the data packet, the header flag count and header feature, and
their statistical features, such as the minimum, maximum, average, and standard deviation.
For a complete description, readers are referred to the CICFlowmeter document [52].

Our self-generated dataset contains multiple attacks and benign traffic, which are
suitable for processing a large volume of traffic with neural networks. Based on the
above implementation methods, Table 2 summarizes the initiation time of attack traffic
and benign traffic, as well as the source and destination IP addresses. According to the
timetable, we launched different types of attacks, including botnet, low-rate, network layer,
application layer DDoS attacks, and DRDoS attacks. The dataset is publicly available at
https://github.com/liliMpro/source_dataset (accessed on 22 February 2022).

Table 2. DDoS datasets timetable.

Collection Time SrcIP DstIP Label

11 May 2021,
20.00–23.50

13 May 2021, 15:00
19 May 2021, 12:00

10.1.0.20–10.1.0.30 10.1.1.1 Benign

10.1.0.1 10.1.1.1 Ares

10.1.0.2 10.1.1.2 BYOB

10.1.0.4 10.1.1.4 Mirai

10.1.0.7 10.1.1.99 Zeus

22 May 2021,
15:31–15:56

12.1.0.1 12.1.1.1 CC

12.1.0.2 12.1.1.1 HTTP-Flood

12.1.0.3 12.1.1.1 HTTP-Post

12.1.0.4 12.1.1.1 HTTP-Get

12.1.1.20–12.1.1.30 12.1.0.3 Benign

22 May 2021,
20:14–20.25

12.1.0.4 12.1.0.3 Memcached, Chargen, NTP,
SSDP, SNMP, TFTP

12.1.1.20–12.1.1.30 12.1.0.3 Benign

23 May 2021,
11:08–11:11

13.1.0.3 13.1.1.1 SYN

13.1.0.20–13.1.0.30 13.1.1.1 Benign

https://github.com/antirez/hping
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://www.tcpdump.org
https://github.com/liliMpro/source_dataset
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Table 2. Cont.

Collection Time SrcIP DstIP Label

23 May 2021,
11:13–11:16

13.1.0.2 13.1.1.1 ACK

13.1.0.20–13.1.0.30 13.1.1.1 Benign

23 May 2021,
11:18–11:21

13.1.0.1 13.1.1.1 UDP

13.1.0.20–13.1.0.30 13.1.1.1 Benign

23 May 2021,
15:35–16:15

11.1.0.1 11.1.1.1 Slow Headers

11.1.0.2 11.1.1.1 Slow Body

11.1.0.3 11.1.1.1 Slow Read

11.1.0.4 11.1.1.1 Shrew

11.1.0.20–11.1.0.30 11.1.1.1 Benign

We obtained the network traffic pcap file at the ingress router, and used the CI-
CFlowmeter tool to extract the flow feature information of the traffic to obtain the multi-type
DDoS attack dataset. Table 3 shows the flow type, number of data samples, and ratio.

Table 3. Traffic type and number.

Type Proportion Number

Benign Benign 0.3127 880,693

Network
DDoS

ACK 0.0465 131,072

UDP 0.0464 130,844

SYN 0.0448 126,415

LDDoS

SlowBody 0.0348 98,148

Shrew 0.0157 44,280

SlowHeaders 0.0342 96,542

SlowRead 0.023 64,997

Botnet

Ares 0.252 709,748

BYOB 0.001 2926

Mirai 0.0007 2251

Zeus 0.0001 327

DRDoS

TFTP 0.0141 39,977

Memcached 0.0137 38,586

SSDP 0.0044 12,513

NTP 0.0033 9319

Chargen 0.0004 1269

SNMP 0.0002 582

Application
DDoS

CC 0.09 253,525

HTTP-Get 0.0225 3435

HTTP-Flood 0.0202 56,886

HTTP-Post 0.0183 51,556
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4.2. Evaluation Metric

The statistical analysis detection method distinguishes attack traffic from benign traffic.
We utilized the detection rate to evaluate the detection performance, and used the response
time to evaluate the detection period of the statistical algorithm proposed in Section 3.2.

DetectionRate =
DetectAbnormalTrafficNumber

TotalTrafficNumber
(14)

In Equation (14), the numerator is the incoming traffic that is classified as abnormal
traffic through the MFPK algorithm, and the denominator is the incoming traffic.

In order to measure the neural network detection performance, we provide the follow-
ing performance metrics: response time, accuracy, precision, recall, confusion matrix, and
loss. The model output was used to indicate the fine-grained category of DDoS attacks.

We utilized a Python script to save on the response time. The response time reflects
the model’s complexity. The more complex the model, the longer the response time.

We base our definition of accuracy, precision, and recall on the following four previous
definitions: (1) false positive (FP) is the number of benign samples that are misclassified as
attack traffic; (2) false negative (FN) is the number of attack samples that are misclassified
as benign traffic; (3) true positive (TP) is the number of attack samples that are correctly
classified as attack traffic; and (4) true negative (TN) is the number of benign samples that
are correctly classified as benign traffic [53].

Considering these previous definitions, accuracy (Acc) refers to the proportion of
samples correctly classified in the total.

Acc =
TP + TN

TP + TN + FP + FN
(15)

Precision (Pre) indicates the proportion of correctly predicted attack traffic to the
predicted attack traffic.

Pre =
TP

TP + FN
(16)

Recall (Rec) indicates the proportion of correctly predicted attack traffic to all attack
traffic samples.

Rec =
FN

TP + FN
(17)

The normalized confusion matrix is mainly used to analyze the classification results of
the detection model and the matching degree between prediction type and actual type.

The loss function is used to evaluate the difference between a single traffic prediction
type and the real type. The smaller the loss function, the better the robustness of the
detection model. The loss function is mainly in the model training stage. After the batch size
data are fed into the model, the forward propagation output is the predicted value, then, the
loss function calculates the loss value. According to the loss value, the model updates each
parameter to reduce the loss through back propagation, and to make the predicted value
generate closer to the real value and achieve the learning purpose. Therefore, the purpose
of the loss function is to reduce the loss of each iteration. This is a multi-classification
problem, and we use the sparse categorical cross-entropy loss function as our loss function:

ψ = − 1
N ∑

m∈M
∑
s∈S

1m∈M log p(m ∈ s) (18)

where ψ is the sparse categorical cross-entropy loss function, m is the sample number, and
s is the class label.

In addition, in order to analyze the online detection ability, we defined a new evalu-
ation metric: malicious traffic detection capability. Malicious traffic detection capability
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(MTDC) means the ability to detect attack traffic after online detection. The equation is
as follows:

MTDC =
1

k
∑

i=1
Ti/

k
∑

i=1
Ai

(19)

where MTDC is the malicious traffic detection capability, Ai represents the total traffic of
attack traffic type i, k indicates the type of attack traffic, and Ti indicates the traffic correctly
detected as attack traffic type i.

5. Experimental Results

In this section, we verify the detection performance of the two algorithms proposed in
Section 3 and compare them with benchmark algorithms. Using the MFPK algorithm, we
select the time window ∆T and the threshold δ parameters that affect the detection perfor-
mance. The time window selected was the 90 s, and the threshold δ was 1.1. Compared
with the existing methods [31–34], the MFPK can have a higher detection rate and lower
response time.

For the neural network model, we first selected the CANT neural network model
hyperparameters. Through our experimental analysis, we determined that the batch
size was 15, the optimizer Adam, and the learning rate was 0.0001. After setting these
hyperparameters, we trained the CNAT model proposed in the offline phase, deployed the
trained model at the ingress router, and utilized the CNAT model to detect abnormal traffic
in the online phase. Compared with the existing model [40,41], the CNAT model has a
higher malicious traffic detection capability and a shorter response time. The experimental
results show that the model can also detect 21 different types of DDoS attacks at the
ingress router.

5.1. Distinguishing Attack Traffic from Benign Traffic

We used a statistical analysis detection method to distinguish attack traffic from benign
traffic. In the statistical detection model, the time window ∆T of the MFPK method and
threshold δ are two important parameters. We collect network traffic periodically at the
ingress router, and the time window will be a key feature that affects the detection result. If
the time window is too small, some features may take a long time to capture and it may not
be possible to capture all the traffic. If the time window is too large, this will take a long
time to detect. Therefore, the time window ∆T affects the performance of the statistical
model. If δ is too high, many DDoS packets will be judged as normal packets, which will
decrease the similarity between normal and DDoS packets. If δ is too small, many normal
packets will be deemed DDoS attacks. To obtain the best parameters for ∆T and δ, we
performed experiments and analyses.

5.1.1. Similarity vs. Time Window

The reason for using distance to represent similarity has been explained in Section 3.2.
As shown in Figure 4, the y-axis represents the difference of the distance values, and the
x-axis represents the time window used for computing the distance values.

In the case of attack traffic, the attackers generate small packets in a short period
of time, and the attack traffic is more similar to legitimate traffic. This causes significant
deviation from the legitimate traffic. In different time windows, the similarity of benign
traffic is lower than that of attack traffic. Benign traffic is composed of 5G legal requests
and human interaction behaviors. We simulated different 5G application scenarios (such as
smart home, public service, and MTC communication). The request packet size and request
period are different in each scenario. In the CICIDS dataset, benign traffic is generated
by human interaction (e.g., HTTP, HTTPS, SSH, or email). To access the website, the user
sends a normal request. During the request generation process, a data packet is randomly
generated. When a network resource is requested, the user will stay on the website for a
period of time, and the user can browse the web. Thus, the number of the flow is small
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in the process of requesting resources. Combining both situations, the data packets are
random, large packets are transmitted, and the payload of the packets is various in the
normal flow, so the similarity of the normal flow is low.
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In Figure 4, the attack traffic distance is generally smaller than the benign traffic, so
the attack traffic similarity is high. The distance of benign traffic increases slowly from
30 s to 60 s. The user starts to send different request packets to the server, causing the
distance value to increase, as well as the similarity to become smaller. From 60 s to 90 s,
the user establishes a connection with the server for a certain period of time, and the user
stably sends the same packet size to the server to transfer files. Therefore, the benign traffic
distance value decreases, and the similarity is greater. When the user requests resources,
the user will stay on the website for a period of time to browse the website resources. At
this time, there are fewer packets in the network, so the distance value increases from 90 s to
150 s. From 150 s to 180 s, when the user finishes browsing the website, the user will request
that the server close the connection, and the server will send response packets to the client.
Therefore, the benign traffic distance value drops, and the similarity becomes greater.

For the botnet, the botnet hosts need to inquire about the server status within a certain
period of time. Then, the botnet hosts download the corresponding binary configuration
file, so as to that maintain the communication between the server and the botnet; however,
there are few packets in the communication traffic. Thus, the botnet traffic changes are
stable and the similarity changes smoothly under different time windows.

For the LDDoS, the attackers send a burst to the victim host. As time goes on, there
are incomplete or short packets in the network, which leads to the distance increasing and
then gradually stabilizing. However, there are fluctuations in the network traffic, which
means that the LDDoS distance value will be affected by the network conditions.

For application layer attacks, the application attackers send frequency HTTP requests
to the server, which will affect the attack packets similarity. From 60 s to 90 s, the reason
for the distance decrease is that the attacker sends a few HTTP request packets. From 90 s
to 150 s, although the attacker continues to send HTTP request packets to the server, the
network traffic fluctuation will cause noise, and the noise will affect the similarity. Thus,
the distance value will increase during this period, and the similarity will decrease. Both
network layer and application layer attacks are flood attacks. For network layer DDoS,
attack tools specify the length of the data packet, the number of data packets per second,
and the port number of the target host. These parameters will make the distribution of flow
features consistent. The similarity will increase over time.
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The DRDoS attacker sends forged requests to the server, and the victim receives
responses from the server. As time goes on, the response packets number gradually
increases, so the distance value decreases and the similarity become greater. However, from
120 s to 180 s, the background traffic can disturb the distance value in the experimental
platform, so the distance value increases. In general, the DRDoS distance value is lower
than that of benign traffic, and the similarity is higher than that of benign traffic.

In summary, we choose the time window 90 s. This results in an apparent deviation of
the similarity value between attack traffic and benign traffic in the shortest time.

5.1.2. Detection Rate vs. Threshold Value

As can be seen from Figure 5, the size of the threshold δ will affect the detection rate.
The threshold δ is not proportional to the detection rate. If the threshold δ is too small, the
attack traffic will be misjudged as benign traffic. If the threshold δ is too high, the benign
traffic will be misjudged as attack traffic. Due to the network traffic variability, we have
done a large number of experiments, and the value of the threshold δ ultimately ranges
from 0.5 to 2 in this section. As shown in Figure 5, when the thresholds δ range from 0.5 to
2, the detection rate is close to 1. In Figure 5, when the threshold value is 1.1, the detection
rate reaches 1.
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In summary, we choose a threshold value δ of 1.1 because it can clearly distinguish
between abnormal and benign traffic and the detection rate reaches 1.

5.1.3. Comparison with Other Methods

Callegari et al. [31] pointed out that KL can measure the difference between two
probability distributions, so this is usually used to detect anomalies. Kailath et al. [32]
proposed the Bhattacharyya distance which can measure the similarity of two discrete
probability distributions and the authors pointed out that the Bhattacharyya distance has
found several applications in classical statistics. Therefore, KL and Bhattacharyya are
commonly used to measure similarity. In this article, we compare the proposed method
with the KL and Bhattacharyya distance methods to verify the effectiveness of our method.

In Figure 6a, the horizontal axis gives different similarity methods, the left vertical axis
is the detection rate of different methods, and the right vertical axis is the response time. It
can be seen from the figure that the similarity method proposed has the highest detection
rate, which effectively measures the similarity and completely distinguishes between
benign flow and abnormal flow. The KL and Bhattacharyya algorithms can achieve 0.96
and 0.90 detection rates, respectively. This indicates that the similarity between benign
traffic and abnormal traffic is high, which indicates that some abnormal traffic cannot be
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distinguished by the threshold. Finally, both the KL and Bhattacharyya algorithms can
misjudge abnormal flow as benign flow.
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Figure 6a shows that the detection time of the KL algorithm is at least 135 s, the
proposed method’s is 164 s, and the Bhattacharyya algorithm’s is 170 s. All three algorithms
have a similar response time, which is related to the algorithms’ complexity and the traffic
flows. If the simulated attacks are high-speed attacks (such as application layer attacks and
network layer attacks), the attack packets generated by these attacks are sudden. Thousands
of flows may be collected within a time window of 90 s, which results in a long response
time. If a low-rate attack (such as LDDoS) is simulated, the packet transmission rate is
similar to that of benign traffic, so the traffic collected in the time window may number in
the hundreds, resulting in a short response time. In sum, the proposed method can achieve
both a high detection rate and an appropriate response time.

In Section 3.1, we analyzed and selected features that can represent the attack behavior.
To prove the effectiveness of the features selected, we compared the performance with the
existing feature selection methods [33,34].

In Figure 6b, the horizontal axis is different feature selection methods, the left vertical
axis is the detection rate of different methods, and the right vertical axis is the response time.
It can be seen that the proposed feature is the highest and the response time is the shortest.
Both [33,34] used the flow duration time. In DDoS attacks, there is usually sudden traffic,
which leads to an increase in the number of small packets. Therefore, the duration of each
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flow is short. In benign traffic, there are high bandwidth and large file transmission, which
leads to a decreased flow number. Thus, the flow duration time is long [54]. Although the
flow duration can distinguish between attack traffic and benign traffic, the network traffic
is unstable, and the attack flow duration is not concentrated in a specific value. When
calculating the similarity algorithm, it is necessary to increase the response time. Therefore,
although both methods have a high detection rate, they are not suitable for online detection.

In summary, according to our experimental comparison and analysis, the proposed
method has a high detection rate and a low response time.

5.2. Offline Train

This section mainly introduces the offline training module, which includes CNAT
model tuning, and verifies the model detection ability.

In the offline phase, the experiment has been implemented in Python v3.7 (https://
www.python.org/downloads/release/python-373/ (accessed on 3 December 2021)) using
Keras API v2.2.4 (https://github.com/keras-team/keras (accessed on 3 December 2021)).
We used TensorFlow2.1 (http://tensorflow.google.cn/install ((accessed on 3 December
2021)) with GPU support enabled by cuDNN (https://docs.nvidia.com/deeplearning/
sdk/pdf/cuDNN (accessed on 3 December 2021)) a GPU-accelerated library for deep
neural networks.

After applying the statistical detection module in Figure 1, we cleaned the abnormal
dataset, including deleting outliers and so on. The abnormal dataset is composed of 84
traffic flow features with the CICFlowmeter tool. Then, we selected 29 packet payload and
header effective features from the abnormal dataset in Table 4. Then, we divided them into
a training set and a testing set at a ratio of 7:3. The dataset is shown in Table 5.

Table 4. Features subset.

No. Feature Name No. Feature Name

1 Total Fwd Packet 16 Subflow Bwd Bytes

2 Total Length of Fwd Packet 17 Total Bwd packets

3 Fwd Packet Length Max 18 Total Length of Bwd Packet

4 Fwd Packet Length Min 19 Bwd Packet Length Max

5 Fwd Header Length 20 Bwd Packet Length Min

6 Fwd Packet Length Mean 21 Bwd Header Length

7 Fwd Packet Length Std 22 Bwd Packet Length Mean

8 Fwd Segment Size Avg 23 Bwd Packet Length Std

9 Packet Length Min 24 Bwd Segment Size Avg

10 Packet Length Max 25 Packet Length Variance

11 Packet Length Mean 26 Average Packet Size

12 Packet Length Std 27 Fwd Segment Size Avg

13 Subflow Fwd Packets 28 Bwd Segment Size Avg

14 Fwd Seg Size Min 29 Subflow Bwd Packets

15 Subflow Fwd Bytes

Table 5. Abnormal dataset.

Type Number of Abnormal Traffic Events

Training Set 1,607,313
Testing Set 267,885

https://www.python.org/downloads/release/python-373/
https://www.python.org/downloads/release/python-373/
https://github.com/keras-team/keras
http://tensorflow.google.cn/install
https://docs.nvidia.com/deeplearning/sdk/pdf/cuDNN
https://docs.nvidia.com/deeplearning/sdk/pdf/cuDNN
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Optimizing the hyper-parameters is a necessary step to maximize the model accuracy
and minimize the model loss. They influence the training process and the model com-
plexity. By comparing different parameters, we can obtain the CNAT model with the best
performance and save the relevant model structure and parameters. This section adjusts the
three parameters described in Section 3.3, namely the batch size, optimizer, and learning
rate. Based on our experiments, we choose the hyper-parameters’ values based on the
tuning results.

5.2.1. Performance vs. Batch Size

Figure 7 shows the impact of batch size on model accuracy and loss. Batch size is the
number of samples selected for one epoch of training. Each color represents a different
batch sample size. The x-axis is the epoch; the y-axis is the accuracy rate and the loss.
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As can be seen from Figure 7, with the increase in batch size, the training accuracy
slowly increases and the loss slowly decreases. When the batch size is 15, the 10 epochs’
loss is 0.05 and the accuracy is 0.98. When the batch size is 25, the minimum loss is 0.09
and the accuracy is 0.97. When the batch size is 35, the loss decreases from 0.39 to 0.12,
and the accuracy increases from 0.90 to 0.95. The experimental results show that a small
batch size tends to converge to flat minimization, which only changes slightly in the small
neighborhood of minimization. Flat minimization is easier to converge, and can quickly
find the direction of loss function decline, while large batch training converges to sharp
minimization, which causes the loss to fluctuate greatly. Therefore, the training model with
a small batch has better generalization performance and increases the model’s robustness.
The batch size selected for this paper is 15.

5.2.2. Performance vs. Optimizer

To determine the most suitable optimizer for efficiently detecting DDoS, we analyzed
the learning loss and accuracy when the Adam, SGD (Stochastic Gradient Descent), and
Adagrad optimization algorithms were used to train the CNAT model. Figure 8 shows the
impact of different epoch times on the model accuracy and loss.
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Each color represents a different kind of optimizer. The x-axis is the epoch; the y-axis
is the accuracy rate and the loss. The blue line is the accuracy and loss rate of the Adam
optimizer. When the number of iterations is in the interval (1, 5), the accuracy increases and
the loss decreases. After the fifth epoch, the changing trend of accuracy and loss maintain
a relatively stable state. The accuracy rate slowly increases and the loss slowly decreases.
Finally, the loss decreases from 0.65 to 0.004 and the accuracy increases from 0.77 to 0.99,
which indicates that the model is constantly fitting data.

The red line is the accuracy and loss rate of the SGD optimizer. When the number
of model training iterations is in the interval (1, 3), the accuracy of the model increases
from 0.75 to 0.77, and the loss decreases from 0.96 to 0.70. When the iteration number of
model training is in the interval (3, 7), the accuracy and loss are less affected by the number
of iterations. With the increase in the number of iterations, the accuracy increases from
0.78 to 0.87, and the loss decreases from 0.65 to 0.32. The green line is the accuracy and
loss of the Adagrad optimizer. With the increase in the number of training epochs, the
data are continuously transmitted to the neural network. When the number of training
rounds is 10, the accuracy is only 0.69 and the loss is 1.07. The loss is the error between
the real label and the predicted label. The smaller the error, the better the neural network
detection performance. Based on the comprehensive consideration, this paper selects Adam
as the optimizer.

5.2.3. Performance vs. Learning Rate

Figure 9 shows the impacts of different learning rates on the model accuracy and loss.
The learning rate is one of the key parameters for training neural networks. Each color
represents a learning rate. The x-axis is the epoch; the y-axis is the accuracy rate and the loss.
The purple line is the accuracy rate and loss with a learning rate of 0.01. With the increase
in the number of epochs, the accuracy rate and loss curve change become unstable, because
the learning rate controls the range of weight parameters after updating each epoch. The
higher the learning rate, the greater the weight update range. This achieved the minimum
value of the loss function. The weight parameter values continue to diverge at both ends
of the extremely optimal value. Therefore, with the increase in the number of epochs, the
loss does not decrease and the accuracy does not increase. When training to 10 epochs, the
accuracy is 0.85 and the loss is 0.47.
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The red line shows the accuracy and loss with a learning rate of 0.001. It can be seen
from the figure that the loss with a learning rate of 0.001 is significantly more stable than
the loss curve with a learning rate of 0.01. The loss decreases from 0.15 to 0.01, and the
accuracy increases from 0.95 to 0.98. However, because the learning rate decreases, the
parameter update speed slows down. When the number of iterations is in the interval (1, 2),
the loss decreases. However, with the increase in the number of epochs, the model loss and
accuracy remain unchanged, so it spends more training resources to obtain the optimal
parameter value.

The cyan line is the accuracy and loss curve with a learning rate of 0.0001. It can be
seen from the figure that when the epoch number is 2, the accuracy increases from 0.82 to
0.96, and the loss rate decreases from 0.52 to 0.14. Relative to the learning rate of 0.001, a
learning rate of 0.0001 is better for rapidly finding the convergence direction. When the
number of epochs is 10, the accuracy rate is 0.99 and the loss rate is 0.01. Through the
above analysis, we selected a learning rate of 0.0001 for this paper. According to the above
parameter, the CNAT model accuracy reached 0.98.

After the parameter configuration of the CNAT model, we retrained the model, saved
the trained model, and utilized it in the online detection module.

5.2.4. Comparison with Other Methods

In order to verify our proposed model for DDoS attacks, we compared it with the LSAT
model [40] and the CNLS model [41]. Then, the best deep learning model has been selected
for the online detection of DDoS attacks. The experiment used evaluation metrics in terms
of response time, precision, recall, and malicious traffic detection capability. Table 6 gives
the detection results.

For the botnet multi-classification, it can be seen from Table 6 that CNAT has the
highest malicious traffic detection capability. Compared with LSAT and CNLS, CNAT
increased by 16 and 28, respectively. In the three methods, the Ares botnet precision and
recall can reach more than 0.96. Regarding the BYOB botnet, LSAT has the highest precision,
reaching 0.91. CNLS precision is 0.85 and CNAT precision is 0.81, respectively. CNAT has
the highest recall, reaching 0.97. LSAT is reduced by 0.29 and CNLS is reduced by 0.27. For
the Zeus botnet, LSAT has the highest precision of 0.99. CNAT has the highest recall of 0.93.
In the three methods, the precision and recall of CNLS are lower than those of the other
two methods, which are 0.44 and 0.09, respectively. The precision and recall of Mirai can
reach more than 0.9. According to the above data analysis, the detection performance of
CNAT and LSAT is the best, but the CNAT response time is the lowest. It takes 20 min to
train the deep learning model. However, the response time of the other two algorithms is
at least 100 min. The higher the complexity of the algorithm, the longer the neural network
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training time. Considering the algorithm’s complexity and limited hardware resources,
CNAT has the best detection ability for botnet multi-classification.

Table 6. Contrast detection result.

Type

LSTM + Attention(LSAT) CNN + LSTM(CNLS) CNAT

Pre Rec MTDC
Response

Time
(min)

Pre Rec MTDC
Response

Time
(min)

Pre Rec MTDC
Response

Time
(min)

Botnet

Ares 0.99 0.99

81 141

0.99 0.99

69 166

0.96 0.99

97 20
BYOB 0.91 0.68 0.85 0.7 0.81 0.97

Zeus 0.99 0.58 0.44 0.09 0.91 0.93

Mirai 0.99 0.99 0.99 0.99 0.91 0.99

Net-
work

SYN 0.99 0.99

99 140

0.99 0.99

99 156

0.99 0.99

99 22ACK 0.99 0.99 0.99 0.99 0.99 0.99

UDP 0.99 0.99 0.99 0.99 0.99 0.99

LD-
DoS

Slow
Body 0.99 0.98

75 135

0.99 0.93

75 142

0.95 0.91

71 21
Slow

Headers 0.76 0.6 0.77 0.65 0.8 0.43

Slow
Read 0.57 0.78 0.58 0.78 0.52 0.86

Shrew 0.99 0.66 0.99 0.67 0.99 0.66

Appli-
cation

CC 0.56 0.49

58 151

0.68 0.46

64 161

0.62 0.04

46 23

HTTP
Flood 0.8 0.97 0.81 0.97 0.92 0.99

HTTP
Get 0.79 0.31 0.75 0.46 0.43 0.48

HTTP
Post 0.83 0.57 0.85 0.67 0.67 0.35

DR-
DoS

NTP 0.96 0.99

99 113

0.94 0.99

98 171

0.99 0.99

97 18

SNMP 0.95 0.99 0.98 0.98 0.93 0.99

SSDP 0.97 0.99 0.95 0.99 0.96 0.96

Chargen 0.89 0.99 0.91 0.99 0.88 0.99

Memcached 0.99 0.99 0.99 0.99 0.93 0.99

TFTP 0.97 0.99 0.95 0.99 0.95 0.94

The LSAT, CNLS, and CNAT models have similar precision and recall for each traffic
type at the network layer. The precision and recall rates are both 0.99. The malicious traffic
detection capabilities of the three models are 99, but the CNAT response time is the lowest.

For LDDoS attacks, the LSAT and CNLS malicious traffic detection capabilities are
both 75. The malicious traffic detection capabilities of the CNAT model are 71. It can be
seen from Table 6 that the LSAT model shows a large difference in the precision and recall of
each traffic type. In particular, the Slow Read precision is only 0.57, and the Slow Headers
precision is 0.76. The Slow Headers recall is 0.6. The precision and recall of the CNLS model
for the five LDDoS are better than the LSAT model, but will produce 0.77 precision when
we identify Slow Headers. Although the precision of Slow Read and the recall of Slow
Headers of the CNAT model are lower than those of the other two models, the precision
and recall of the CNAT model for identifying other traffic are better than those of CNLS.
For Shrew attacks, the precision can reach 0.99, and the Slow Body precision can reach 0.95.
The response time of the CNAT model is the shortest, at only 21 min. Therefore, the CNAT
model has a lower response time and a better performance for LDDoS attacks.

For application layer attacks, the CNLS model has the highest malicious traffic detec-
tion capability, reaching 64. For the CC attack, the precision of the CNLS model is the best,
and the LSAT model has the best recall. For the HTTP Flood attack, the CNAT model has
the best performance in terms of precision and recall. For the HTTP Get attack, the LSAT
model has the best precision, reaching 0.79. The CNAT model has the best recall, reaching
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0.48. For the HTTP Post attack, the CNLS model has the best performance in terms of
precision and recall. This is because HTTP Post and HTTP Get attacks both send a large
number of requests packets after the TCP three-way handshake. Therefore, it takes a long
time to get HTTP response packets. The two attacks types’ behavior is similar. Therefore,
for HTTP Post and Get attacks, the detection performance of the three models is poor.
According to the above analysis, although the performance of the CNAT model is relatively
poor, the CNAT response time is the shortest. Thus, considering the performance and
response time, the CNAT model is the best detection model.

For DRDoS attacks, all of the models show similar performance in terms of detection
metrics, but CNAT has the shortest response time.

Based on the above analysis, it can be concluded that the CNAT model proposed
is more suitable for detecting 21 DDoS attack types including botnet, LDDoS, Network,
Application, and DRDoS attack.

5.3. Online Detection

After offline training experiments and analysis, the CNAT model showed excellent
detection performance. We have further illustrated that this model’s performance is optimal
for online detection. In this section, experiments compare the CNLS, LSAT, and CNAT
performance in terms of malicious traffic detection capability and response time. Finally,
we selected and deployed the best model at the ingress gateway to achieve a fine-grained
classification of DDoS attacks.

5.3.1. Comparison with Other Methods

First, we replayed the DDoS dataset described in Section 4.1, utilizing Tcpdump to cap-
ture the network traffic within the 90 s time window, as well as extracting the flow feature
information through CICFlowmeter at the ingress router. Then, we utilized the similarity
detection model based on prior knowledge in Section 3.2. It can distinguish between benign
traffic and abnormal traffic. The abnormal traffic feeds into the trained detection model
and the model outputs detection prediction labels and real labels. Eventually, we saved the
model response time and the malicious traffic detection capability, and finally realized the
online detection of DDoS attacks and a reduction in malicious traffic in the network.

In this section, the MFPK detection model is used to distinguish benign traffic from
abnormal traffic; then the CNLS, LSAT, and CNAT models are compared, and the optimal
detection model is selected. Figure 10 shows the malicious traffic detection capability and
response time.
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so the LSTM learns less temporal information from the features, which means that the
model’s detection capability is poor. As can be seen from Figure 10, CNLS has the worst
malicious traffic detection capability. The MTDC is only 82, and the response time is 552 s.
The LSTM is suitable for processing time series features, but the packet payload and packet
header features are spatial features, so LSTM cannot learn the comprehensive features
information. However, the attention mechanism can analyze the relationship between
features and labels, and assign appropriate weights to features. The model can focus on
learning features according to the assigned weights, which can bring useful information to
the model and eliminate the weakness that LSTM cannot fully learn features. Therefore, the
LSAT model performance is second-best. The MTDC is 84, and the response time is 564 s.

In the CNAT model, CNN is suitable for processing sequence features. For malicious
traffic detection, packet features are sequence features. The CNN learns the spatial in-
formation of packet payload and header features, and then uses attention to strengthen
the model learning capability, which can improve the malicious detection capability. The
model malicious detection capability is 86 and the response time is 66 s.

After the above analysis, the CNAT model proposed can use the convolutional layer
to mine the packet payload and header features; furthermore, the attention mechanism can
fully exploit these features’ information. This effectively distinguishes between different
DDoS attack types. Therefore, the CNAT model proposed has the best malicious traffic
detection capability and response time.

5.3.2. Online Detection Performance

The best CNAT model is deployed to implement online detection at the ingress router.
We evaluated the CNAT model detection performance with a confusion matrix. The
confusion matrix can visually represent each type of classification situation. Figure 11
shows the CNAT normalized confusion matrix performance for detecting various attacks.

Figure 11a is the botnet normalized confusion matrix, and all four botnet types are
above 0.85. The Ares, BYOB, and Mirai accuracy are all above 0.95, and these attack types
have less traffic misidentified as other attack types. Among them, the Zeus accuracy is poor.
Zeus and BYOB will continuously download necessary malicious files from the command
and control (C&C) server. Their attack behaviors are analogous, which results in Zeus
being misjudged as BYOB.

Figure 11b is the network normalized confusion matrix. The ACK, SYN, and UDP
attack behavior are not similar. The ACK attack means that the attack host sends a large
number of ACK packets. The SYN attack means that the attack host sends a large number
of SYN packets, and the UDP attack means that the attack host sends a large number of
UDP packets. All three attacks are flood attacks, but the attack behaviors are different. The
CNAT model can effectively learn the packet payload and header features, and the model
can completely classify the three network attacks.

Figure 11c is the LDDoS normalized confusion matrix. The Shrew and Slow Body
accuracy can exceed 0.9. Show Read and Slow Headers are misidentified as other attacks.
The Slow Read attacker sends a request file to the attack target, and the attack target reads
the response data slowly. Therefore, the attacker and the attack target occupy the HTTP
connection for a long time, so it may fail to respond to normal requests and services. The
Slow Headers attackers continue to send incomplete packets, which can occupy HTTP
resources all the time. Therefore, both of them occupy HTTP connections for a long time to
generate denial of service, and their attack behaviors are similar. The Slow Headers and
Slow Read attacks will misjudge each other. The Slow Headers accuracy reaches 0.43, and
the Slow Read accuracy reaches 0.86.
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Figure 11d is the application normalized confusion matrix. The HTTP flood accuracy
reaches 0.99. The CC and HTTP flood attackers simulate flood attacks, so a large number
of CC attacks will be misjudged as HTTP flood attacks. Both HTTP Post and HTTP
Get attacks set the Golden Eye tool parameters to simulate attack traffic. They are too
similar and it is easy to confuse them. The HTTP Get attack and HTTP Post attack will
misjudge each other. According to Figure 11d, the CNAT model has a poor performance
in identifying application attacks. In the future, we will propose a detection model for
application attacks that can learn application attack features and classify specific attacks
with high performance.
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Figure 11e is the DRDoS normalized confusion matrix. The DRDoS attacker sends a
small number of forged requests, eliciting a large number of responses from the server. All
DRDoS attacks use the server to reflect traffic, but different DRDoS attacks have different
specific traffic amplification principles. Therefore, the CNAT model can distinguish six
types of DRDoS attacks with packet features, and the accuracy is above 0.95.

In summary, we deployed the CNAT model to implement online attack detection.
The model can effectively detect most DDoS types. The model malicious traffic detection
capability is 86, and we reduced the malicious traffic at the ingress router.

6. Conclusions

For DDoS attacks caused by 5G, we proposed a two-stage intelligent detection DDoS
attack mechanism that combines similarity-based prior knowledge and CNN-based at-
tention to detect multiple types of DDoS attacks. We simulated a variety of attacks and
benign traffic in the virtual platform, constructed a DDoS dataset, and applied the detection
method to this dataset. The experiments showed that the similarity detection method can
distinguish between benign and abnormal traffic. The CNN-based attention model deeply
learns packet payload and header statistical features. It can effectively detect multiple
types of DDoS attacks. Furthermore, we defined a metric including malicious detection
capability. Compared with existing statistical and neural network methods, the proposed
model has the shortest response time, the highest detection rate, and an adequate malicious
traffic detection capability.

However, the detection performance for specific types is insufficient. In the future, the
following four research directions are worth exploring:

1. We will select representative features for each attack type, establish the neural network
model suitable for this attack type, and improve the multi-classification performance
by optimizing parameters.

2. To verify the effectiveness of the generated self-generated dataset, we must further
verify the effectiveness of the detection method on the existing benchmark dataset.

3. We will introduce research on the interpretability of the deep learning model, and
visualize the neural network training process. Furthermore, we will analyze the
relationship between model weights and detection results.

4. We will analyze the attention layer parameters and further adjust and optimize the
model structure, which can enhance the model’s detection capability.
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