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Abstract: The advent of the Internet of Things (IoT) has enabled millions of potential new uses for
consumers and businesses. However, with these new uses emerge some of the more pronounced risks
in the connected object domain. Finite fields play a crucial role in many public-key cryptographic
algorithms (PKCs), which are used extensively for the security and privacy of IoT devices, consumer
electronic equipment, and software systems. Given that inversion is the most sensitive and costly
finite field arithmetic operation in PKCs, this paper proposes a new, fast, constant-time inverter over
prime fields IF, based on the traditional Binary Extended Euclidean (BEE) algorithm. A modified BEE
algorithm (MBEEA) resistant to simple power analysis attacks (SPA) is presented, and the design
performance area-delay over I, is explored. Furthermore, the BEE algorithm, modular addition, and
subtraction are revisited to optimize and balance the MBEEA signal flow and resource utilization
efficiency. The proposed MBEEA architecture was implemented and tested on Xilinx FPGA Virtex #5,
#6, and #7 devices. Our implementation over ', (length of p = 256 bits) with 2035 slices achieved one
modular inversion in only 1.12 us on Virtex-7. Finally, we conducted a thorough comparison and
performance analysis to demonstrate that the proposed design outperforms the competing designs,
i.e., has a lower area-delay product (ADP) than the reported inverters.

Keywords: IoT; PKCs; prime field; modular inversion; BEEA; modular addition and subtraction;
SPA; ADP; FPGA

1. Introduction

The IoT encompasses the idea that everyday objects can be connected to the Internet
and interfere with each other. Thus, these objects are capable of exchanging and storing
data. The concept of IoT is to create a link between the real world and the digital world.
However, several high-profile incidents have highlighted the vulnerability of IoT security
because a common device was used to penetrate a larger network.

Connected objects are being used more and more, especially with the new connected
cities projects. This increases the security risks of the IoT, especially when there is no
monitoring or management of the devices. For example, any security breach in medical
devices in healthcare applications (wearable or implantable ones) needs increasing attention
to protect patient privacy.

In an IoT environment, there are several challenges to securing devices and ensuring
end-to-end security. Additionally, since IoT is still an emerging market, many manufactur-
ers and designers are more concerned about launching their products to market than about
designing and building security at the beginning.
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One of the most frequently cited security concerns with IoT is the use of hard-coded
or default passwords.

Furthermore, since a large number of IoT devices are designed to be “set and forget”—
placed on a machine or the field and left at the end of their lifespans—they rarely receive
security or patch updates. Adding security upfront can be costly, slow development, and
prevent the device from working properly.

Another security challenge is connecting legacy assets that are not designed for IoT
connectivity. It would be prohibitively expensive to replace legacy infrastructure with
connected technologies. In spite of this, there are still some objects that probably have
never been updated or protected against modern threats. As a result, the potential attack
surface has grown.

There are also a limited number of industry-recognized standards for IoT security.
Despite the existence of several IoT security frameworks, there is no single framework that
has been agreed upon.

Security and privacy must be prioritized by product manufacturers and service
providers. For example, default encryption and authorization should be included.

Smart homes, connected cars, and manufacturing plants are all examples of environ-
ments that may experience IoT security breaches. For example, an attack that disables the
brakes on a connected car or on a connected healthcare device can have life-threatening
effects. Likewise, an attack on critical infrastructures—such as an oil well, energy grid, or
water supply—could have dire consequences. Therefore, relevant industries are adopting
procedures and implementing measures to ensure their safety. An analysis method that
processes the data generated from all security equipment, and a measure based on previous
attacks against control systems, have been developed [1].

The rise of IoT has sparked worries about the security of data transmitted between
IoT devices and the edge. Indeed, Kim et al. in 2019 [2] conducted a study to address the
security flaws of existing IoT devices such as sensor multi-platforms, and they proposed a
model that addressed their security vulnerability.

The Elliptic/Hyperelliptic Curve (ECC/HECC) has gained increased attention in
recent years because it provides shorter private key lengths with the same level of security
as other PKCs such as RSA [3]. At present, cryptosystems based on asymmetric algorithms
such as ECC/ECDSA are employed by many loT devices to safeguard their data and
connections [4-6].

In the ECC/ECDSA algorithms, protecting the private and ephemeral keys (d, k) is
essential because, if an adversary obtains these keys, they could modify messages and
signatures, thus making the algorithms useless. Several physical attacks aim to retrieve
private and ephemeral keys (d, k) [7,8]. A side-channel attack (SCA) in cryptography is
used to extract cryptographic keys and other secret information from a device such as IoT
sensors, a smart card, and an integrated circuit.

The power consumption of an electronic device while processing secret data can reveal
some of those details. SPA, which uses the existence of visually recognizable power con-
sumption patterns that may expose the sequence of operations conducted by an algorithm,
is one of the approaches that can be used to recover hidden information [9,10]. Hence,
leakage power consumption is determined by tracking voltages of the device and then
dividing by the transition count leakage and Hamming weight, with the first reflecting the
number of 1-bit bits treated in time and the second reflecting the number of state variables
loaded at a time [11]. Thus, if a secret value is required for this sequence of operations, the
implementation is SPA-vulnerable.

Many state-of-the-art studies have examined the protection of the IoT environment
against power analysis attacks [12]. Through a bit-checking mechanism, Moon et al. [13]
proposed a side-channel attacks countermeasure for IoT systems. In order to eliminate
branching in modulus operations, bit checking was introduced. In 2021, a statistical
experimental design was proposed to optimize the power attack parameters of an IoT
transducer with a minimum cost [14].
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In the same year, against differential power analysis (DPA) attacks, two novel coun-
termeasures were proposed. The two methods are based on the back-gate bias technique
of fully depleted silicon on insulator (FD-SOI) technology [15]. Using the proposed coun-
termeasures, the required number of traces to recover the secret was increased, as demon-
strated by the experimental results.

Finally, SPA has been successfully implemented against a variety of cryptographic
algorithms. The ECC/ECDSA key generation technique in the IoT environment is one of
the algorithms that has been targeted by this type of attack.

Jérémy et al. [16] published a review on passive attacks on ECC scalar multiplication
algorithms in 2016, including leakage sources and frequent errors exploited to attack the
ECDSA system. This work described the link between lattice attacks and partial leakage to
show how tiny leaks affect ECDSA security. In the same year, Genkin et al. [17] investigated
the susceptibility of mobile devices” ECC implementations to side-channel key extraction,
finding that these implementations are vulnerable to electromagnetic and power side-
channel assaults.

The authors demonstrated partial key leakage from OpenSSL running on Android
and from iOS” CommonCrypto, and complete key extraction from OpenSSL running on
iOS devices. In 2018, to recover the ECDSA secret key to SM2 Digital Signature Algorithm
(SM2-DSA), Zhang et al. [18] extended the new lattice-based attack introduced by Later
Nguyen and Shparlinski. SM2-DSA is a Chinese version of ECDSA. They tested the security
of the SM2-DSA on the Atmegal28 microcontroller using a lattice attack.

In 2019, Wunan et al. [19] published a threat analysis on the broken digital signature
of data transactions and an improved SPA against ECDSA. ECDSA’s private key can be
obtained by using the described attack method combined with a power trace. Moreover,
Wunan et al. proposed a side-channel attacks countermeasure for blockchain devices
by inserting empty operations into ECC-(point doubling/point addition) operations. In
2021, Thiebault et al. [20] presented a high-quality hardware ECDSA core and provided a
complete open-source ECDSA attack artifact. They demonstrated an effective PAA against
its FPGA implementation.

In ECC/ECDSA cryptosystems, the SPA leakage-based side-channel research concen-
trates on the modular-inversion process necessary to generate an ECC/ECDSA private key.
The conversion of coordinates in an ECC implementation from projective to affine based
on conventional modular inversion, for example, can lead to the disclosure of information,
and an adversary could obtain the secret key. Additionally, ECDSA inverts the per-message
random secret after scalar multiplication to generate a digital signature [21].

A challenge for cryptographic implementations is a modular inversion because it
is one of the most time-consuming field operations in ECC computations. Computing
modular inverses can be performed in a variety of ways. Using Fermat’s little (FLT) theorem,
the Extended Euclidean algorithm (EEA), or any binary variant based on Montgomery’s
Modular Inverse (MMI) algorithm, it is possible to compute the inverse function. Figure 1
shows the two popular methods, which are the FLT (its variation is the Itoh-Tsujii technique)
and the EEA (its variations are the Binary Inversion Algorithm, Left Shift Binary Algorithm,
Right Shift Binary Algorithm, and the Montgomery Inversion Algorithm) [22].
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Figure 1. Modular inversion methods in IF,.

A comparison between the FLT, EEA, and BEEA methods is presented in Table 1. It
shows that the BEEA binary version has high performance and efficiency, which meets the
requirements of electronic devices (smart cards, RFID tags, mobile phones, IoT devices, etc.).

Table 1. Comparison between FLT, EEA, and BEEA methods.

FLT EEA BEEA
. More complicated than EEA . Suitable for hardware .
. Higher complexity O (log® n) implementation because it
. Slower (consumes a lot of . More efficient than FLT replaced expensive divisions

time compared to EEA) Less complexity O (log? n) with shift-right operations

o Faster than EEA
* Uses a ‘large nu.ml.aer 9f L Very fast and commonly used Less complicated (uses only
repetitive I_nultlphcatlons for large operands oodinary additions and
. Secure against SPA and bt tY )
A subtractions
timing attack ° No need for multiplications

or divisions

The BEEA method is commonly favored to eliminate the divisions needed in the
EEA algorithm since it uses right-shift operations to replace multi-precision divisions.
This improvement results in high-performance software-hardware implementations. The
BEEA’s execution flow is heavily reliant on its inputs. This attribute was investigated in
an attempt to find side-channel vulnerabilities that could seriously affect the privacy of a
secret variable processed by BEEA.

It is possible to leak information as a result of a typical BEEA implementation. This is
because BEEA's execution flow is heavily reliant on its inputs. Hence, the time required
to calculate the result is dependent on the inputs. As a countermeasure, one of the most
important elements is to ensure that the implementation has constant run-time (worst-case),
meaning that the implementation’s execution time is unaffected by the input. This is usually
accomplished by removing any data-dependent BEEA code branches. Hence, the main idea
of this work is to compute an inverse using the same number of constant-time iterations
each time. Figure 2 shows the class diagram of this work.
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Figure 2. UML class diagram of IoT/modular inversion/SPA.

In addition, a high-performance modular inverter is required to speed up the cal-
culation of a PKC system. However, key sizes grow as security levels increase, and this
becomes a limiting factor in inverter design over prime field F), due to the carry propaga-
tion problem. As a result, adding two prime numbers (A and B) in [F,,, where p is a prime of
length > 128 bits has a direct impact on the efficiency of calculations in hardware/software
(HW/SW) inverter implementations.

Over [, carry skip (CSK), carry select (CSL), carry-save (CSA), carry-lookahead
(CLA), and parallel prefix (PPF) adders are some of the fast binary adders proposed in the
literature [23]. The Kogge-Stone adder (KSA) is the fastest adder in the literature because it
has a lower fan-out at each stage, which then increases its performance, and is thus widely
considered as a standard adder in the industry for high-performance arithmetic circuits [24].
However, it takes more area to be implemented because it computes the carries in parallel.
Therefore, KSA performs parallel additions in microprocessors, DSPs, mobile devices, and
other high-speed applications.

Based on the above discussions, this paper proposes an alternative method for com-
puting modular inversion in constant time in order to prevent SPA attacks. We modify
the (non-constant-time) BEEA approach by removing the conditional instructions and
dividing the algorithm into four branches with sub-functions. Since the power traces will
be the same regardless of input changes, the adversary cannot distinguish the branch’s
computation. Therefore, a novel BEEA-based inverter over prime fields is proposed and
implemented (MBEEA).

The BEE algorithm, modular addition, and subtraction are revisited to perform MBEEA
concurrently, resulting in competitive time and area complexities. Since addition is an
essential operation in MBEEA, this paper introduces the generic G-KSA /S adder/subtractor
to be reused for any prime number length.

The remainder of the paper is structured as follows: The (modular inversion-SPA)
related works are introduced in Section 2. A brief description of BEEA is given in Section 3.
Section 4 develops the constant-time BEEA-based inverter. The MBEEA architecture design
is presented in Section 5. Section 6 contains the results and analysis of performance. The
conclusion is given in Section 7.
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2. Related Works

In the literature, several algorithms have been proposed for computing modular
inversion. Some works were interested in analyzing SPA leakages of modular inversion
implementation and their countermeasures. In 2014, to prevent combinational attacks (SPA
and lattice techniques), Joppe W. Bos [25] modified the non-constant-time approach form of
the Montgomery Inversion based on the EE greatest common divisor algorithm to compute
both the classical and the MMI in constant time. He demonstrated that when the modulus
has a special form, such as the Curve25519 (Elliptic curve with 256-bit key size offering
128-bit security), the FLT performance is comparable to the BEEA. However, the software
implementation is done on ARM 32-bit, and the results showed that the constant-time
almost inversion is much slower than the classic one.

The famous and easiest method to resist the leakage of information is the blinding
technique using simple multiplicative masking [26]. When Z is the z-coordinate in pro-
jective coordinates of a given point and u is a random element in F,, (unknown to the
attacker), the inversion will be performed for the product Zu instead of directly inverting
Z using the BEEA; finally, the result (Zu) “is multiplied by u to obtain Z~!. However,
this method requires two additional modular multiplication operations. Since the modular
inversion based on FLT is based on modular exponentiation, Xu et al. constructed, in 2017,
a secure and efficient modular exponentiation using Montgomery friend primes described
by NIST to obtain an efficient and constant-time modular inversion over Fj, [27]. Their
improvement allows reducing the number of modular multiplications (a saving of 90%),
which are computed using only subtractions and shifts.

In [28], the power consumption traces of two different BEEA implementations are in-
vestigated in detail in order to extract the SPA leakages that the binary EEA implementation
may exhibit during the computation of the RSA key generation algorithm.

In 2018, Savas et al. proposed two efficient constant-time Montgomery Inversion
Algorithms that can be used to counter SCA [29].

The first algorithm is based on the BEEA method, and the second uses Kaliski’s
method. The two algorithms have comparable performance. The number of iterations for
the Montgomery Inversion Algorithm based on BEEA was 2n (where # is the bit length
of modulo p) which is less than for the Montgomery Inversion Algorithm using Kaliski’s
method (2n + 1). Furthermore, to speed up (upper-bounded by 2) computation in the
software implementation of a multi-core processor, the author proposed a simple parallel
algorithm of Montgomery Inversion.

In 2019, Bernstein et al. introduced streamlined constant-time variants of Euclid’s
algorithm for polynomial and integer inputs [30]. They presented simple, fast, constant-
time “division steps” that work the same for integer and polynomial inputs. After applying
the main algorithm to GCD, they studied the software speed of modular inversion of
polynomials as part of a key generation in the NTRU cryptosystem.

In 2021, Awaludin et al. presented a high-speed ECC processor for arbitrary Weier-
strass curves over GF (p) [31]. The proposed processor works in constant time and is
suitable for applications that require high speed and SCA resistance. To preserve the
SCA-resistance, they used constant-time Fermat'’s little theorem to perform field inver-
sion operations.

Similarly, Sarna et al. presented a constant-time modular inversion algorithm de-
velopment process capable of achieving a high level of security against timing and SPA
Attacks [32].

In their work, Aldaya et al. present a novel SPA of the BEEA algorithm that reveals
some exploitable power consumption-related leakages [33]. Using traces, they used the
ECDSA protocol to apply SPA to reveal standardized private key sizes. An investiga-
tion was conducted into three countermeasures for eliminating SPA leakages from BEEA
implementations.
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3. BEE Algorithm

Several cryptographic algorithms use modular inverses. The BEEA is one of the most
common ways to carry out the inversion operation. Given two integer numbers ‘a” and “p’,
BEEA computes x and y such that ax + py = gcd(a, p). When gcd(a, p) = 1, the calculated
value for x refers to the multiplicative inverse of (2 mod p).

The BEEA has been reported in a few different forms in the literature. The original
BEEA can be shortened when it is known in advance that the modulus p is a prime number,
as in ECDSA. Algorithm 1 illustrates the updated version of the BEEA.

According to Algorithm 1, ‘v-loop’ refers to the loop that divides ‘v” by 2, while “u-loop
refers to the loop that divides ‘u” by 2.

Additionally, the term sub-step is associated with subtraction operations executed in
step 5.5 to update u and x and v and y, respectively.

According to Algorithm 1, in accordance with the least significant bit (LSB) of ‘a’, only
the u-loop during the first iteration can be executed since ‘v is equal to ‘p” and ‘p’ is a
prime number. Additionally, for the rest of the iterations, due to the subtraction at step 5.5,
only one loop is executed per iteration. Hence, ‘u” and ‘v” are odd integers just before the
execution of the sub-step stage.

A BEEA side-channel analysis was presented in [33]. It concluded that a full recovery
of the algorithm’s inputs can be achieved when the adversary can collect Z; and SUBS[i]
for all iterations, where Z; is the number of times that an x-loop (x = u or v) is executed at
iteration ‘i and SUBS]i] is the output of the sub-step function of Algorithm 1 at iteration.
When u > v, SUBSJi] = u, else SUBSJ[i] = v.

7

Algorithm 1: Pseudo-code of the BEE algorithm.

1. Input: Integers a and p such that ged(a, p)=1
2. Output:b= a™! modp
3. Definggu=a;v=p
4. Define;x1=1;x2=0
5. While(u # 1and v+ 1){
5.1. While u is even {

5.1.1. u~ui2;

5.1.2. If x1 is even { '
5.1.2.1.x1 « x1/2;
5.1.2.2. Else
51.23.x1 « (x1 +p)/2;

513.} :
52} i
5.3. While v is even {

5.3.1. vev/2;

5.3.2.If x2 iseven {
5.3.2.1. x2 « x2/2;
5.3.2.2. Else
53.23.x2 « (x2 +p)/2;

}

- v-loop

L
O M
— e

o

m ot

= = W L L .

=>vf

=

e

 UU-T; :

. x1 « x1- x2; :
Else : sub-step

e o=

L T :

SRS

x2 « x2-x1;

wn

5.6. :
5.7.
6. If(u =1

6.1. Return x1 mod p;
6.2. Else

6.3. Return x2 mod p;
64. }
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By knowing only Z;, the authors were able to recover some SUBS[i] and to express a
certain number of bits from one of the BEEA inputs as a function of the other.

It is very interesting to consider this approach in the context of power-based side-
channel analysis since it appears very difficult to extract the SUBS[i] directly from power
traces, while it is easier to extract the Z; when the sub-step can be differentiated.

We can segment BEEA iterations into x-loops followed by sub-steps. Consequently, the
Z; is based on the duration between two consecutive sub-steps. Therefore, if an adversary
can distinguish between the sub-steps of the BEEA in the power trace, then he can exploit
the Zi~

Remarkably, Algorithm 1 is based on conditional instructions (loops while and if
statements). Therefore, the execution time of Algorithm 1 depends on ‘a” and ‘p’ values.
Furthermore, the input ‘a’ presents the scalar multiplication algorithm results in affine
coordinates, and a modular inversion will convert it to projective coordinates. Hence, the
inversion should be secure against SPA attacks to prevent information leakage. For this
reason, our contribution is to ensure a countermeasure to prevent Algorithm 1 from a
specific SPA attack.

4. Constant-Time Modular Inversion

Input-dependent execution flows of the BEEA have prompted the development of anti-
side-channel measures. A modified version of BEEA that operates in constant time and is
resistant to SPAs is proposed in this section. As a countermeasure, we propose eliminating
the conditional branches in Algorithm 1 in order to reduce the data dependency.

Algorithm 1’s execution time depends on both ‘a” and ‘p’. In such an algorithm, when
different inputs are used, the number of iterations in the while loop that have to be removed
at the end of the algorithm may vary significantly.

Algorithm 1 may be converted into a constant-time algorithm by meeting the follow-
ing conditions:

e  The same amount of time is always taken to compute an iteration. In constant time,
this requires computing all four branches of Algorithm 1 and selecting the appropriate
values. As a result, the computed time of each iteration is independent of the branch
taken; however, it may be increased to (at most) that of the computation of the sum of
all the branches.

e  The algorithm always has the same number of iterations. As a result, the worst-
case number of ‘K’ iterations should always be calculated. It can be achieved by
determining when Algorithm 1 terminates (when we reachv=1oru =1).

The constant-time version of Algorithm 1 is described in Algorithm 2. The first two
branches are computed in every cycle (constant run-time) regardless of whether the values
of u and v are even or odd. Thus, the sequence of the parity computation deduced from the
power trace does not reveal any information about the inputs (the bits of a).

In Algorithm 2, the comments showing which branches from Algorithm 1 are being
computed are displayed after an ‘#. As shown in Algorithm 2, the “while loops” of
Algorithm 1 are replaced by “for loops” whose higher bound is ‘K’. ‘K’ presents the cycle
number of the biggest number inverse in the finite field [, such that (a < p). Therefore, K
presents the worst case of iterations.

It is not difficult to determine the number of iterations (‘K’) in the worst-case scenario
of Algorithm 1. In every iteration, either ‘u” or ‘v” are reduced by at least a factor of two, so
the maximum number of iterations is 2/0g>(p), where p is a prime number of n-bit length.
It follows that the minimum number of iterations is log»(p). This reveals the bounds on the
exponent ‘k’ when the algorithm terminates. The functions presented in Algorithm 2 are:

e  The shift-by-one function denoted by Ishift, (z, x): this function shifts x by one position
to the left and stores the result in z.
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e  The subtraction and addition functions are denoted respectively by sub (z, x, y) and
add (z, x, y)) computing z <— x — y and z < x + y. Those two functions are computed
by the adder/subtractor G-KSA /S which is discussed in the next section.

For the function add (x1, x1,(p” A x1 (0)), we create a bitmask x1(0) since the LSB of
x1 determines the parity of x; (1 indicates odd, 0 indicates even) in order to calculate the
iteration 5.1.2 in Algorithm 1.

add (x1, x1, (P A x1 (0)) = { if xpiseventhen xp (0) ::(3[: 9;11: o

if x1 isodd then x; (0)

N\jﬁ’\’\ﬁf

= + p/

e The function mem, and mem, are used respectively to save the values of u and x; if u
is even (mem, = 0, RAM active 0), and the values of v and x, if v is even (mem, =0,
RAM active 0). As the LUT area is 21, we need four look-up tables to memorize u, x1,
v, and x5.

e  The comparison function is denoted by comp (u, v). This function is used to compare
‘u’” and ‘v’ values.

ifu>vand u #1 then sely =1, elsesely =0 o)
if v>uandu # 1thensel, =1, else sel =0

e  The function denoted mem,, (sel;)

®)

if sel; =1 then u and x alookuped in the look up tables
else no values are stored

e  The occurrence function is denoted by occur (RAM, u, 1, i), which means the first
occurrence of 1 in RAM of u indicates the corresponding i, then:

Ifi<j then b=x @)
Ifj>i thenb=x;

Algorithm 2: Pseudo-code of the proposed modified BEE algorithm

1. Input:panda€F),

2. Output: b=a"'modp
3. Define;u=a;v=p

4. Define;x1=1;x2=0

5. Define; p’ = Rshift(p,1)
Inversion steps

6. for(i=1;i<k;i++){
6.1. Ishifty(u,u)

6.2. lshift1 (xl,xl)

6.3. add(x1, x1,(p’ A x1 (0))
6.4. memy (u(0))

6.5. Ishifti(v,v)

6.6. lshift1 (Xz, xz)

6.7. add(xy, x2,(p" A x2 (0))
6.8. memy (v(0))

6.9. comp(u,v)

6.10. sub(u,u,v) Asely
6.11. sub(x1,x1, x2) A sely
6.12. memy (sely)

6.13. sub(v,v,u) Aselp
6.14. sub(xp, xp, x1) A sely
6.15. mem, (selp)

6.16. occur(RAM, u, 1,i)
6.17. occur(RAM, v, 1,j)
6.18. return (i,j,x)

7.}

#u< SHIFT(u,1)
#x; < SHIFT(x1,1)
#x1 < SHIFT(ADD(x1,p),1)

#0< SHIFT(v,1)

#x; < SHIFT(x,1)

#xy < SHIFT(ADD(x3,p),1)
#Ifu>v

#u< SUB (u,v)

#x1 — SUB (](1, Xz)

#v+ SUB (v,u)

#x7 < SUB (xp, x1)

# Return xq mod p if u equal 1
# Return x, mod p if v equal 1
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Opverall, Algorithm 2 in [F, has two specified inputs: an element ‘2" and a prime
number ‘p’. The output of the algorithm is the multiplicative inverse of ‘a’, i.e., ba = 1 mod p.
Algorithm 2 employs three steps in total to produce the multiplicative inverse result p:

e  The initial step: ‘a” and ‘p” are assigned to ‘u” and ‘v’, respectively. Moreover, in this
step, ‘1’ and ‘0’ are assigned to x1 and x2, respectively.

e  Updating step: u, v, x1, and x2 values are updated by three different operations: add,
sub, left shift (Ishift), mem,, and mem,. The updating process is executed throughout
the entire loop ((1 < i < k) execution time) and managed by two signals: sell and sel2.
The new (u, v, x1, and x2) values are assigned according to sell and sel2, and these
control signals are updated in step 12.9 during each iteration of the “for loop”.

e  Return ‘b’ after k iterations.

5. MBEEA Implementation

As shown in Algorithm 2, inversion is realized mainly by subtracting and shifting
operations. Additionally, shift operations are easily implemented in hardware at no cost.
We can therefore consider in our design a case that allows performing as many shifts as
possible in one clock cycle to reduce the number of clock cycles.

As seen in Algorithm 2, ‘Reg_u’, ‘Reg_v’, ‘Reg x1/, and ‘Regx2’ n-bit registers are
essential for implementing the hardware architecture of MBEEA over a prime field. By
applying this algorithm, the calculation of division, such as ‘u/2’, ‘v/2’,’x1/2/, and ‘y1/2’,
is based on comparisons of parity and magnitude. There are two multiplexers for selecting
‘w, v, 'x1', and ‘x2’. However, exact comparisons can only be made through full n-bit
subtractions, and this has the effect of delaying decisions about the next calculation. To
perform the additions or subtractions, we used n-bit KSA. In the implemented design, all
possible ‘u’, ‘v’, ‘x1’, and “x2’ updated values are computed at once with multiplexers, and
the new values for ‘u” and ‘v” are selected.

Figure 3 depicts the proposed MBEEA inverter design, which is based on Algorithm 2

and includes the following units:

e Controller unit: This generates control signals for all the MBEEA architecture units and
the data flow in the inverter design, and the movement of data between the adder-
subtractor units, the memory units, the comparator unit, and the occurrence units.

o Adder/Subtractor (G-KSA/S): This performs the addition or the subtraction of two values
according to the controller decision.

e Memory unit (MU): The main purpose of this unit is to store different parameters such
as u, v, x1, and x2, and their intermediate results. It constitutes of four blocks of RAM
(RAMu, RAMv, RAMx1, and RAMx2) and multiplexers that are used to read operands
(1, v, x1, and x2) from the MU using the corresponding control signals.

o  Comp unit: This is a comparator between u and v. It has a 3-bit output to indicate
whether u >voru <voru=o.

e Occur unit: This searches for u = 1 occurrence. Return x 1 mod p if u equal 1. Otherwise,
if vis 1, return x2 mod p.
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Figure 3. Proposed MBEEA architecture.

5.1. Kogge-Stone Adder/Subtractor Unit: Design and Implementation

Adders are widely recognized as the fundamental building blocks for more complex
arithmetic operators such as multipliers and inverters. Usually, subtraction and addition
are implemented using a single circuit. The addition of x, i, and 1 can be used to compute
the subtraction of x — y, where y is the bitwise complement of y. Therefore, hardware
addition can be used to support the subtraction function. To perform the addition and
subtraction in Algorithm 2, four adders/subtractors are needed. The data path of the adder
directly affects the delay of the arithmetic inversion data path. KSA is the fastest adder
and shows good hardware performance. Thus, KSA was selected for use in the MBEEA
architecture for performing addition and subtraction. A parallel prefix adder such as KSA is
suitable for additions with longer word lengths. The tree network of KSA allows reducing
the latency to O(logan) where ‘n’ represents the number of bits.

The KSA algorithm is composed of three stages: preprocessing, parallel prefix network,
and post-processing. In the preprocessing stage, two signals are calculated simultaneously
for each input: Propagate (P) and Generate (G). The intermediate carries are then generated
using these signals in the parallel prefix network. Finally, in the post-processing, we
calculate the sum by XORing the intermediate carries and the propagate signals.

In the MBEEA design, a generic adder/subtractor based on the G-KSA /S algorithm
was developed. The bit-level version of the G-KSA /S algorithm is shown in Algorithm 3,
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which employs n-bit registers to compute three intermediate results P, G, and C. Overall,
Algorithm 3 has two specified inputs: A and B in [F, and a pre-computed vector S. The
pre-computed vector S is represented by a set of elements ‘s;'= 2! where i € [0, m — 1], and
m represents the stage number which depends on the length of the prime number p (1),
such that m = logy(n). Table 2 presents the ‘m” and ‘S’ values for a prime number of lengths
n=4,8,16,32, 64,128, and 256. Hence for m =3, S = {s¢, s1, s2} = {20, 21, 22}.

Table 2. Values of m and S for n =4, 8, 16, 32, 64, 128, and 256 bits.

n m S

4 2 1,2

8 3 1,24

16 4 1,2,4,8

32 5 1,2,4,8,16

64 6 1,2,4,3,16,32
128 7 1,2,4,3,16,32,64
256 8 1,2,4,3,16,32,64,128

A and B in ), two n-bit inputs, are processed in the first stage bit-by-bit, to compute
the generation signals Gp and propagation signals Py which are presented in steps 2.1 and
2.2 of Algorithm 3. To perform the subtraction, the carry_in and the input B are just XORed,
such as presented in step 1 in Algorithm 3.

Algorithm 3: G-KSA /S algorithm

Input: (A,B) € Fp,

Define: n; n = bit length of p
Pre-computed:S =[1,2,4,8,16,32,64,128],j <1, k< 1
Output: (Sum = (A + B)mod p; cout)
Preprocessing

Step 1: For (i =0; i< ton — 1; i++) {
C(i) := cj, ®B();

%

Step 2: For (i =0; i< n — 1; i++) {
2.1:Py (i) := A@)®CG);

2.2:Gy (i) == A>)RC();

I
Parallel Prefix Network

Step 3: For (i = 0; i< j-1; i++) {

3.1: Gi(i) := Gr_1(i),

f.Z: Pk(l) = Pk*l(i)

Step 4: For (i = 0; i< n—j-1){
41:Gi(i+7) = Pe1 (i +7) ® Gre1(i))) V G (i +);
4.2: Pe(i +j) = (Pe1 (i + ) ®; Pea (0));
17

k++;j:=S[k-1], T:=m — 1;

IF(T > 0) go to step 3 ELSE go to step 5
Step 5: For (i = 0; i < n-1; i++) {

5.1: C(i) == Gnp-1()V(cin ® Pnp—1(1));

17

Post-processing

Step 6: 6.1:sum(0) = Py(0) @ cjy,;

6.2: For (i =1;i < n-1; i++){

6.2.1: sum(i) = Py(i)C(i — 1);

7

Step 7: cout = C(N — 1);

Return Sum, ¢,y
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Figure 4 presents the KSA process for 8 bits. As shown in Figure 3, the parallel prefix
network for G-KSA/S is composed of three levels. The carry propagation network is in
charge of transmitting the carry signal from the preceding bit lines. Py and G, are generated
via ‘carry propagation’ steps, steps 4.1.1 and 4.1.2, as shown in Algorithm 3. Finally, the
carry signal obtained in step 5 is used to calculate the sum in the last stage (step 6). The
output step performs the XOR operation between the previous bits of the ‘carry’ signal
(ci—1) and the current bits of the propagation signal (Pi), as shown in steps 6 and 7.

Lels gl leialaiy
L9508 gy 08 g0 0y G GY | ~—
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Ejg ?j ‘ . Ej#lbl

B0 [ Baeeks |

0 A

o

1
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7 ¥6 NES v v vs2 vSi w0
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Figure 4. Eight-bit G-KSA /S data-path.

5.2. The Modular Reduction

The modular reduction in large values is a fundamental operation in the majority of
common PKs that involve intensive computations in prime fields. At the end of Algorithm 2,
the result will be reduced modulo the prime number ‘p’. The prime number should be
chosen carefully to ensure efficient reduction and high performance. The modular reduction
can be calculated in three ways:

e  General module forms (i.e., Barrett and Montgomery algorithms), which are slower
and present an expansive part of the arithmetic operation.

e Based on the LUT method (which is based on pre-computed values); however, this
requires a large amount of memory.

e  Modulo form of prime numbers, such as pseudo-Mersenne numbers. Their special
form makes them appropriate for modular reduction. The pseudo-Mersenne prime
number p is presented with the special form: p = 2% — ¢, where « = n (n represents
the security level) and ‘c’ is a positive integer that is relatively small compared to the
modulus. An integer 0 < z < (2% — ¢)? can be represented in radix-2% by spilling
z up into a lower part Z; and a higher part Zy : Z 2% + Z;.. Then, using the fact
that 2% = ¢ mod p, we have Zy2* + 71 = Zyc + Z;, mod p where 0 < Zyc + Z, <
(c +1)2%. Hence, a multiplication of Zgj by the constant c is needed and the final result
is obtained after the addition of Z; . For the three values of #n (128, 192, and 256), the
resulting primes satisfy p = 3 (mod 4).
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5.3. Controller Unit

The main component of the proposed inverter design is the control unit (CU), which
is in charge of all communications between all MBEEA units.

At the beginning of the algorithm, the start signal is equal to ‘1’, and initial values
‘a’,’p’,"1’,'0/, and ‘p/2’ are assigned to ‘u’, ‘v’, 'x1’, ’x2’, and ‘p’ registers, respectively, by
input multiplexers. The computed intermediate results are stored in the memory units.
The control unit activates the addition/subtraction chains after receiving the input data
(p and a) and the signals “CLK”, “Reset” = “1’, and “Start” = ‘1’. Hence KSA-start takes ‘1’
and Cf becomes ‘0’. If KSA completes the addition function (“KSA-done” = ‘1), the control
unit sends signals of writing to the memory unit to update the ‘u’, ‘v’, “x1’, and “x2” values.
The update process is controlled by five functions belonging to three blocks: addition
and subtraction functions (KSA block), left shifting function (shift registers), writing, and
reading functions (block memory). These new values are determined by two distinct control
signals: sell and sel2. These control signals are updated after the KSA block performs the
‘u-v” function as shown in step 12.9 in Algorithm 2. Hence, the CU generates the signals for
the G-KSA/S components, and the read and write addresses for the memory units. The
MBEEA state machine describing the design data flow is presented in Figure 5.

v is even

u is even

update v
and x2

update u
and x1

State 2
u=u/2, x1=(x1+p)/2

State 3
v=v/2, yl=(yl+p)/2

u>=yv v>=u

update v
and x2

update u
and x1

u=1 v=1
State 6 State 7
Return x1 Return x2

Figure 5. MBEEA state machine.

To implement the MBEEA, FSM is made up of seven states: St#1 is a state of inactivity,
whereas during St#2 to St#7, necessary signals for updating ‘u’, ‘v’, ‘x1’, and ‘x2" are
generated. Of these seven states, two states (5#2, S#3) are executed in parallel. Hence
two additions, four shifting operations, and four reading/writing operations are required.
Similarly, in states 4 and 5, two subtractions and two reading/writing operations are
needed. Finally, based on the output of the comparator unit, ‘u” and ‘x1” or ‘0" and “x2’

are updated.

6. Results and Performance Analysis
The proposed MBEEA inverter and G-KSA /S designs were then developed for a

different prime field of lengths 8, 16, 32, 64, 128, and 256 bits. Modelsim was used to
validate the proposed designs, which were coded in VHDL. The G-KSA /S and MBEEA
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designs were then implemented on various devices (Spartan 3E, Virtex-E, Virtex-II, Virtex
5, Virtex 7) using Xilinx 14.7. Tables 3 and 4 show the obtained results after place and route,
which include the maximum frequency (Fmax, MHz), area usage (slices/CLB), latency (us),
and ADP (ADP = #slices x Latency).

6.1. G-KSA/S Implementation Results

The G-KSA/S algorithm was successfully implemented for I, (p is a prime number of
length 8, 16, 32 64, 128, 256 bits). Figure 6 presents the required logic gates (AND, OR, and
XOR) for the GKSA design (for G-KSA /S, we have to add one XOR gate for subtraction).
We can see that the number of required logic gates grows linearly.

1600

—@— AND
i OR
—6— XOR
1400 -
1200 -
3
£ 1000 [ -
(o))
o
D
S
— 800 -
o
b}
£
S 600 [ _
=z
400 - -
200 - -
0
0 50 100 150 200 250 300

Digits (bits)
Figure 6. Logic gates versus IF),.

For a fair comparison with related works, the G-KSA /S algorithm was implemented
on Spartan3E and Virtex-5, as shown in Table 3. As shown in Table 3, the proposed design
clearly outperforms the existing different prime field-length KSA implementations. We can
see from Table 3 that our proposed design is much smaller (almost 66% for [, (p is a prime
of length 8, 16, and 32), and almost 41% for I}, (p is a prime of length 64, 128, and 256)) and
considerably faster than those of [34,35].

Furthermore, the G-KSA /S proposed design always achieves the best ADP value in
all the prime fields compared to the existing designs. For example, over I, with a length of
p = 256 bits, compared with [35] on the Virtex-5 device, the ADP of the proposed design
has a 28.62% smaller ADP.
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Table 3. Comparison of the proposed and existing G-KSA /S designs for different prime field lengths.

n = Bit Area

Designs Platform Length of p (Slices) Delay (ns) ADP (10-9) Gain %
[34] Spartan-3E 8 83 5.776 479.408

G-KSA/S Spartan-3E 47 3.6 169.2 74.71%
[34] Spartan-3E 16 166 10.85 1801.1

G-KSA/S Spartan-3E 98 7.3 7154 61.28%
[34] Spartan-3E 2 332 20.56 6825.92

G-KSA/S Spartan-3E 174 12.3 2140.2 68.65%
[35] Virtex-5 64 449 30.5 13,694.5

G-KSA/S Virtex-5 289 27.9 8063.1 41.13%
[35] Virtex-5 128 1111 57.3 63,660.3

G-KSA/S Virtex-5 641 64.4 41,2804 35.16%
[35] Virtex-5 256 1345 106.7 143,511.5

G-KSA/S Virtex-5 737 139 102,443 28.62%

6.2. MBEEA Implementation Results

Table 4 summarizes the MBEEA hardware implementation results on a contemporary
Xilinx Virtex-7 (x7vx330t-2.g1157) FPGA. The proposed MBEEA generic architecture de-
signs were implemented over different prime field lengths (n (bit length of p) = 8, 16, 32,
64, 128, and 256 bits). In practice, 128- and 256-bit lengths for ECC/HECC and pairings
systems, over prime fields, are very useful for modern security applications. The post place
and route-static timing report was used to calculate the minimum clock period.

Table 4. FPGA implementation performance for the proposed MBEEA design in Virtex-7.

Design n = Bit Length of p Freq. (MHz) Area (Slices) Latency (us)
8 530 545 0.179
16 480 770 0.27
MBEEA 32 420 1060 0.346
64 380 1237 0.428
128 310 1532 0.851
256 250 2035 1.24

In Table 5, we compare the corresponding FPGA implementation results with those
of reports available in the literature to additionally assess the actual performance of the
proposed inverter design over Fas6. ) for a prime of length 256 bits is considered to be
the large prime field size. Table 5 lists all related performance metrics: area, frequency
(MHZ), latency (us), and ADP. As an overall performance metric, we used ADP for all
related designs to ensure a fair comparison.

Table 5. Performance analysis of the proposed and the existing modular inversion designs over Fysg.

. Fre Time Area ADP
Ref. FPGA Device (MH%) (us) (Slices) (x10-9)
36 Virtex-7 146.23 2.329 1480 3.44
37 Kintex 7 142.38 2.33 1480 3.45
38 Virtex-6 151 3.39 1190 4.04
39 Virtex-6 146 3.52 1340 4.72
40 Virtex-5 129 7.937 592 4.7
41 Virtex-7 138.3 245 1577 3.87
42 Virtex-II 55.70 6.2 5863 36.35
43 Virtex-II 37 4.98 9213 45.88
44 Virtex-II 68.17 11.60 2085 24.19
10 Virtex-II 34 14.6 9146 133.53
45 Virtex-II 40.68 15.22 14,844 225.26
46 Virtex-II 50 6.4 5477 35
MBEEA Virtex-E 106 2.92 2830 8.26
MBEEA Virtex-II 175 1.77 2530 447
MBEEA Virtex-5 208 1.49 2318 3.45
MBEEA Virtex-6 240 1.29 2140 2.76
MBEEA Virtex-7 276 1.12 2035 2.28

Table 5 clearly shows that the proposed design outperforms the existing large prime
field-size modular inversion implementations.
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In terms of latency, on the Virtex-7 device, the proposed design is 51.2% and 54.29%
faster than those of [36,41], respectively. At the same time, on the Virtex-6 device, the
proposed design is 61% and 63.35% faster than the competing designs of [38,39], respectively.
On the Virtex-II, the proposed design remarkably outperforms all the existing designs
of [10,42—46] in terms of latency and area. For instance, the works presented in [43,46]
utilize 72.54% and 53.81%, respectively, more FPGA slices than this work.

At the same time, Table 5 shows that the proposed design ensures significantly lower
ADP than the existing designs. Compared with [36,37,41] on the Virtex-7 device, the ADP
of the proposed design has 23.81%, 23%, and 41.18% smaller ADP, respectively.

7. Conclusions

Securing the IoT is one of the major, if not the major, challenges for IT systems today.
If the IoT is not sufficiently protected, critical events can occur, such as water or power
outages, or worse, manipulated processes resulting in bacteria in water and faulty products
such as cars, etc., that pose security risks. This urgent need for security, combined with
the lack of security of IoT devices that are simultaneously connected to the Internet, which
has a high risk of threat, illustrates the importance of the topic. The data and connections
of many IoT devices are secured by cryptographic algorithms such as ECC and ECDSA.
ECC/ECDSA is one of the algorithms targeted by the SPA attack. The modular BEEA
inversion process used for generating an ECC/ECDSA private key is the focus of the
leakage-based side-channel study. During the execution of the cryptographic algorithm,
SPA can easily distinguish the conditional branches outcomes since a device consumes
power differently and the execution time is not constant.

A new version of the BEE inversion algorithm was proposed that works in constant
time by avoiding the data dependency of the classical BEEA. To ensure the traces are the
same, thus preventing an attacker from distinguishing the computation across branches,
the proposed method removes conditional instructions and divides the algorithm into
separate branches with sub-functions. The classical BEEA is secured against SPA attacks
due to the new countermeasure.

The new algorithm was designed so that the calculation of the modular inversion is
easy and efficient for hardware implementation. The algorithm complexity is suitable even
for a device having limited resources such as an IoT device. To achieve high performance
on an FPGA, a variety of optimization techniques, including algorithmic reformulation and
architectural optimization, are used. On a Xilinx Virtex-7 FPGA, our design can achieve
a maximum clock rate of 276 MHz and it takes only 1.12 us to perform the 256-bit prime
modular inversion.

The proposed design for [Fp5¢ provides an ADP figure of 2.28 on a Virtex-7, which is
less than the relevant state-of-the-art solutions. Furthermore, our architecture outperforms
others in terms of FPGA area (slices) and delay. Therefore, the proposed design is suitable
for constrained implementations of cryptographic primitives, such as IoT, wireless sensor
nodes, and RFID devices.
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