An Experimental Feasibility Study Evaluating the Adequacy of a Sportswear-Type Wearable for Recording Exercise Intensity
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Data Collection
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, M.H.; Aydin, A.; Brunckhorst, O.; Dasgupta, P.; Ahmed, K. A Review of Wearable Technology in Medicine. J. R. Soc. Med. 2016, 109, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the in-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.S.; Asch, D.A.; Volpp, K.G. Wearable Devices as Facilitators, Not Drivers, of Health Behavior Change. JAMA 2015, 313, 459–460. [Google Scholar] [CrossRef]
- Cross, M.J.; Williams, S.; Trewartha, G.; Kemp, S.P.; Stokes, K.A. The Influence of in-Season Training Loads on Injury Risk in Professional Rugby Union. Int. J. Sports Physiol. Perform. 2016, 11, 350–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duggan, J.D.; Moody, J.A.; Byrne, P.J.; Cooper, S.M.; Ryan, L. Training Load Monitoring Considerations for Female Gaelic Team Sports: From Theory to Practice. Sports 2021, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.; Stewart, A.M.; Hopkins, W.G.; Elias, G.P.; Lazarus, B.H.; Rowell, A.E.; Aughey, R.J. Normal Variability of Weekly Musculoskeletal Screening Scores and the Influence of Training Load Across an Australian Football League Season. Front. Physiol. 2018, 9, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Carmona, C.D.; Bastida-Castillo, A.; Ibáñez, S.J.; Pino-Ortega, J. Accelerometry as a Method for External Workload Monitoring in Invasion Team Sports. A Systematic Review. PLoS ONE 2020, 15, e0236643. [Google Scholar] [CrossRef] [PubMed]
- Harper, D.J.; Carling, C.; Kiely, J. High-Intensity Acceleration and Deceleration Demands in Elite Team Sports Competitive Match Play: A Systematic Review and Meta-Analysis of Observational Studies. Sports Med. 2019, 49, 1923–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolella, D.P.; Torres-Ronda, L.; Saylor, K.J.; Schelling, X. Validity and Reliability of an Accelerometer-Based Player Tracking Device. PLoS ONE 2018, 13, e0191823. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, N.J.; Robinson, M.A.; Eusterwiemann, E.; Drust, B.; Lisboa, P.J.; Vanrenterghem, J. The Relationship between Whole-Body External Loading and Body-Worn Accelerometry During Team-Sport Movements. Int. J. Sports Physiol. Perform. 2017, 12, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardinale, M.; Varley, M.C. Wearable Training-Monitoring Technology: Applications, Challenges, and Opportunities. Int. J. Sports Physiol. Perform. 2017, 12 (Suppl. S2), S255–S262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.; Hanakam, F.; Wiewelhove, T.; Doweling, A.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Heart Rate Monitoring in Team Sports-A Conceptual Framework for Contextualizing Heart Rate Measures for Training and Recovery Prescription. Front. Physiol. 2018, 9, 639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, R.B. Net Heart Rate as a Substitute for Respiratory Calorimetry. Am. J. Clin. Nutr. 1971, 24, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Bonomi, A.G.; Ten Hoor, G.A.; de Morree, H.M.; Plasqui, G.; Sartor, F. Cardiorespiratory Fitness Estimation from Heart Rate and Body Movement in Daily Life. J. Appl. Physiol. 2020, 128, 493–500. [Google Scholar] [CrossRef]
- Bot, S.D.M.; Hollander, A.P. The Relationship between Heart Rate and Oxygen Uptake during Non-Steady State Exercise. Ergonomics 2000, 43, 1578–1592. [Google Scholar] [CrossRef] [PubMed]
- Chow, H.W.; Yang, C.C. Accuracy of Optical Heart Rate Sensing Technology in Wearable Fitness Trackers for Young and Older Adults: Validation and Comparison Study. JMIR MHealth UHealth 2020, 8, e14707. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Kim, Y.; Welk, G.J. Validity of Consumer-Based Physical Activity Monitors. Med. Sci. Sports Exerc. 2014, 46, 1840–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sushames, A.; Edwards, A.; Thompson, F.; McDermott, R.; Gebel, K. Validity and Reliability of Fitbit Flex for Step Count, Moderate to Vigorous Physical Activity and Activity Energy Expenditure. PLoS ONE 2016, 11, e0161224. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.; Simoes-Capela, N.; Van Hoof, C.; Van Helleputte, N. Heart Rate Estimation from Wrist-Worn Photoplethysmography: A Review. IEEE Sens. J. 2019, 19, 6560–6570. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Heart Rate Monitoring: Applications and Limitations. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.; Memmert, D.; Raabe, D.; Dornberger, R.; Donath, L. Wearables for Integrative Performance and Tactic Analyses: Opportunities, Challenges, and Future Directions. Int. J. Environ. Res. Public Health 2020, 17, 59. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.A.; Alves, J.L.B.; Silva, J.H.D.C.; Costa, M.D.S.; Silva, A.S. Validity of a Smartphone Application and Chest Strap for Recording RR Intervals at Rest in Athletes. Int. J. Sports Physiol. Perform. 2020, 15, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Weippert, M.; Kumar, M.; Kreuzfeld, S.; Arndt, D.; Rieger, A.; Stoll, R. Comparison of three mobile devices for measuring R-R intervals and heart rate variability: Polar S810i, Suunto t6 and an ambulatory ECG system. Eur. J. Appl. Physiol. 2010, 109, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Pasadyn, S.R.; Soudan, M.; Gillinov, M.; Houghtaling, P.; Phelan, D.; Gillinov, N.; Bittel, B.; Desai, M.Y. Accuracy of commercially available heart rate monitors in athletes: A prospective study. Cardiovasc. Diagn. Ther. 2019, 9, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Gilgen-Ammann, R.; Roos, L.; Wyss, T.; Veenstra, B.J.; Delves, S.K.; Beeler, N.; Buller, M.J.; Friedl, K.E. Validation of ambulatory monitoring devices to measure energy expenditure and heart rate in a military setting. Physiol. Meas. 2021, 42, 085008. [Google Scholar] [CrossRef]
- An, X.; Stylios, G.K. A Hybrid Textile Electrode for Electrocardiogram (ECG) Measurement and Motion Tracking. Materials 2018, 11, 1887. [Google Scholar] [CrossRef] [Green Version]
- Arquilla, K.; Webb, A.K.; Anderson, A.P. Textile Electrocardiogram (ECG) Electrodes for Wearable Health Monitoring. Sensors 2020, 20, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singhal, A.; Cowie, M.R. The Role of Wearables in Heart Failure. Curr. Heart Fail Rep. 2020, 17, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Purnama, S.I.; Kusuma, H.; Sardjono, T.A. Electrocardiogram Feature Recognition Algorithm with Windowing and Adaptive Thresholding. J. Phys. Conf. Ser. 2019, 1201, 012048. [Google Scholar] [CrossRef]
- Lynn, H.M.; Kim, P.; Pan, S.B. Data Independent Acquisition Based Bi-Directional Deep Networks for Biometric ECG Authentication. Appl. Sci. 2021, 11, 1125. [Google Scholar] [CrossRef]
- Suarez, A.; Javier, L.; Gonzalez, M. Match running performance in Spanish elite male rugby union using global positioning system. Isokinet Exerc. Sci. 2012, 20, 77–83. [Google Scholar] [CrossRef]
- Schantz, P.; Salier Eriksson, J.; Rosdahl, H. The Heart Rate Method for Estimating Oxygen Uptake: Analyses of Reproducibility Using a Range of Heart Rates from Commuter Walking. Eur. J. Appl. Physiol. 2019, 119, 2655–2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colosio, A.L.; Pedrinolla, A.; Da Lozzo, G.; Pogliaghi, S. Heart Rate-Index Estimates Oxygen Uptake, Energy Expenditure and Aerobic Fitness in Rugby Players. J. Sports Sci. Med. 2018, 17, 633–639. [Google Scholar]
- Bent, B.; Goldstein, B.A.; Kibbe, W.A.; Dunn, J.P. Investigating Sources of Inaccuracy in Wearable Optical Heart Rate Sensors. NPJ Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fudge, B.W.; Wilson, J.; Easton, C.; Irwin, L.; Clark, J.; Haddow, O.; Kayser, B.; Pitsiladis, Y.P. Estimation of Oxygen Uptake During Fast Running Using Accelerometry and Heart Rate. Med. Sci. Sports Exerc. 2007, 39, 192–198. [Google Scholar] [CrossRef] [PubMed]
- De Brabandere, A.; Op De Beéck, T.; Schütte, K.H.; Meert, W.; Vanwanseele, B.; Davis, J. Data Fusion of Body-Worn Accelerometers and Heart Rate to Predict VO2max During Submaximal Running. PLoS ONE 2018, 13, e0199509. [Google Scholar] [CrossRef]
- Carling, C.; Bloomfield, J.; Nelsen, L.; Reilly, T. The Role of Motion Analysis in Elite Soccer: Contemporary Performance Measurement Techniques and Work Rate Data. Sports Med. 2008, 38, 839–862. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, D.R.; Li, R.T.; Voos, J.E.; Rowbottom, J.R.; Alfes, C.M.; Zorman, C.A.; Drummond, C.K. Wearable Sensors for Monitoring the Internal and External Workload of the Athlete. NPJ Digit. Med. 2019, 2, 71. [Google Scholar] [CrossRef]
- Coutts, A.J.; Duffield, R. Validity and Reliability of GPS Devices for Measuring Movement Demands of Team Sports. J. Sci. Med. Sport 2010, 13, 133–135. [Google Scholar] [CrossRef]
- Hausler, J.; Halaki, M.; Orr, R. Application of Global Positioning System and Microsensor Technology in Competitive Rugby League Match-Play: A Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 559–588. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Monitoring Accumulated Training and Match Load in Football: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 3906. [Google Scholar] [CrossRef] [PubMed]
Acceleration Index and Treadmill Speed | Heart Rate and | |||
---|---|---|---|---|
Walking | Jogging | Running | ||
Slope of regression line | 0.06 (0.05–0.07) | 0.06 (0.04–0.08) | 0.02 (0.01–0.03) | 0.54 (0.47–0.62) |
Coefficient of determination of regression line (R2) | 0.95 (0.86–0.99) | 0.96 (0.93–0.99) | 0.90 (0.77–0.99) | 0.96 (0.90–0.99) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marutani, Y.; Konda, S.; Ogasawara, I.; Yamasaki, K.; Yokoyama, T.; Maeshima, E.; Nakata, K. An Experimental Feasibility Study Evaluating the Adequacy of a Sportswear-Type Wearable for Recording Exercise Intensity. Sensors 2022, 22, 2577. https://doi.org/10.3390/s22072577
Marutani Y, Konda S, Ogasawara I, Yamasaki K, Yokoyama T, Maeshima E, Nakata K. An Experimental Feasibility Study Evaluating the Adequacy of a Sportswear-Type Wearable for Recording Exercise Intensity. Sensors. 2022; 22(7):2577. https://doi.org/10.3390/s22072577
Chicago/Turabian StyleMarutani, Yoshihiro, Shoji Konda, Issei Ogasawara, Keita Yamasaki, Teruki Yokoyama, Etsuko Maeshima, and Ken Nakata. 2022. "An Experimental Feasibility Study Evaluating the Adequacy of a Sportswear-Type Wearable for Recording Exercise Intensity" Sensors 22, no. 7: 2577. https://doi.org/10.3390/s22072577
APA StyleMarutani, Y., Konda, S., Ogasawara, I., Yamasaki, K., Yokoyama, T., Maeshima, E., & Nakata, K. (2022). An Experimental Feasibility Study Evaluating the Adequacy of a Sportswear-Type Wearable for Recording Exercise Intensity. Sensors, 22(7), 2577. https://doi.org/10.3390/s22072577