Miniaturized Bandpass Filter Using a Combination of T–Shaped Folded SIR Short Loaded Stubs
Abstract
:1. Introduction
2. Analysis for Phenomenon of a BPF
3. Design and Fabrication
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tambare, P.; Meshram, C.; Lee, C.C.; Ramteke, R.J. Performance Measurement System and Quality Management in Data-Driven Industry 4.0: A Review. Sensors 2022, 22, 224. [Google Scholar] [CrossRef] [PubMed]
- Manjula, J.; Malarvizhi, S. Performance Analysis of Active Inductor Based Tunable Band Pass Filter for Multiband RF Front end. Int. J. Eng. Technol. (IJET) 2013, 5, 2930–2938. [Google Scholar]
- Abdolrazzaghi, M.; Daneshmand, M.; Lyer, A.K. Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling. IEEE Trans. Microw. Theory Tech. 2018, 66, 1843–1855. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, N.; Abdolrazzaghi, M.; Musilek, P. Comparative analysis of machine learning techniques for temperature compensation in microwave sensors. IEEE Trans. Microw. Theory Tech. 2021, 69, 4223–4236. [Google Scholar] [CrossRef]
- Yoon, K.C.; Lee, J.C. Design of a 5.8 GHz narrow band-pass filter with second harmonic suppression using the open stubs. Microw. Opt. Technol. Lett. 2008, 50, 1763–1766. [Google Scholar] [CrossRef]
- Yoon, K.C.; Lee, T.H.; Kim, C.S.; Shin, K.S.; Son, K.C.; Kim, S.C. Compact size of the UWB BPF using π-type meander structure and folding short stubs. Microw. Opt. Technol. Lett. 2018, 60, 2642–2647. [Google Scholar] [CrossRef]
- Yun, T.S.; Yoon, Y.K.; Lee, B.; Choi, J.J.; Kim, J.Y.; Lee, J.C. Analysis and design of stub bandpass filters using tapped-line geometry. Microw. Opt. Technol. Lett. 2009, 51, 2338–2341. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, K.; Wu, Q.; Jiang, T. A compact wideband filter based on spoof surface plasmon polaritons with a wide upper rejection band. IEEE Photonics Technol. Lett. 2020, 32, 1511–1514. [Google Scholar] [CrossRef]
- Hong, J.S.; Lancaster, M.J. Microstrip Filter for RF/Microwave Applications; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Wei, F.; Yu, J.H.; Zhang, C.Y.; Zeng, C.; Shi, X.W. Compact balanced dual-band BPFs based on short and open stub loaded resonators with wide common–mode suppression. IEEE Trans. Circuits Syst.–II Express Briefs 2020, 67, 3043–3047. [Google Scholar] [CrossRef]
- Danaeian, M.; Zaboly, M.; Yahyazadeh, M. Ultra–compact ultra–wideband bandpass filter based on multi mode resonator concept. J. Commun. Eng. 2021, 9, 242–257. [Google Scholar]
- Upadhyay, D.K.; Kumar, U.; Mishra, G.K.; Shahu, B.L. Design of a compact UWB bandpass filter using via-less CRLH TL. J. Microw. Optoelectron. Electromagn. Appl. 2017, 16, 336–350. [Google Scholar] [CrossRef]
- Bai, L.; Zhuang, Y.; Zeng, Z. Compact quintuple notched-band UWB BPF with high selectivity and wide bandwidth. Int. J. Microw. Wirel. Technol. 2021, 13, 435–441. [Google Scholar] [CrossRef]
- Shome1, P.P.; Khan, T. A quintuple mode resonator based bandpass filter for ultra-wideband applications. Microsyst. Technol. 2020, 26, 2295–2304. [Google Scholar] [CrossRef]
- Zheng, X.; Pan, Y.; Jiang, T. UWB Bandpass filter with dual notched bands using T-shaped resonator and L-shaped defected microstrip structure. Micromachines 2018, 9, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Feng, W.; Che, W. Compact ultra-wideband bandpass filter with improved upper stopband using open/shorted stubs. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 123–125. [Google Scholar] [CrossRef]
- Malherbe, J.A.G. Wideband bandpass filter with extremely wide upper stopband. IEEE Trans. Microw. Theory Tech. 2018, 66, 2822–2827. [Google Scholar]
- Firmansyah, T.; Praptodinoyo, S.; Wiryadinata, R.; Suhendar, S.; Wardoyo, S.; Alimuddin, A.; Chairunissa, C.; Alaydrus, M.; Wibisono, G.; Liang, G.Z.; et al. Dual-wideband band pass filter using folded cross-stub stepped impedance resonator. Microw. Opt. Technol. Lett. 2017, 59, 2929–2937. [Google Scholar] [CrossRef]
- Zhang, X.C.; Chen, X.; Sun, L.; Huang, Y.S.; Gao, X.F. A microstrip stepped-impedance resonator bandpass filter based on inductive coupling. Frequenz 2018, 73, 1–5. [Google Scholar] [CrossRef]
- Yoon, K.C.; Kim, K.G. Compact size of an interdigital band-pass filter with flexible bandwidth and low insertion-loss using a folded spiral and stepped impedance resonant structure. Electronics 2021, 10, 10162003. [Google Scholar] [CrossRef]
- Rabia Jebin, S.; Shalini, M.; Swetha, P.; Srilekha, D. Design of microstrip UWB bandpass filter using open-circuited resonators. Int. J. Eng. Res. Dev. 2015, 11, 1–6. [Google Scholar]
- Zhou, C.X.; Guo, P.P.; Zhou, K.; Wu, W. Not applicable. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 636–638. [Google Scholar] [CrossRef]
- Lal Shahu, B.; Chattoraj, N.; Pal, S.; Kumar Upadhyay, D. A compact UWB bandpass filter using hybrid fractal shaped DGS. J. Microw. Optoelectron. Electromagn. Appl. 2017, 16, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Xiao, F.; Bao, J.; Tang, X. Compact ultra-wideband bandpass filter with good selectivity. Electron. Lett. 2016, 52, 210–212. [Google Scholar] [CrossRef]
- Sheikhi, A.; Alipour, A.; Mir, A. Design and fabrication of an ultra-wide stopband compact bandpass filter. IEEE Trans. Circuits Syst.-II Express Briefs 2020, 67, 265–269. [Google Scholar] [CrossRef]
- Lu, J.; Wang, J.; Gu, H. Design of compact balanced ultra-wideband bandpass filter with half mode dumbbell DGS. Electron. Lett. 2016, 52, 731–732. [Google Scholar] [CrossRef]
- Kumar, A.; Jayawickrama, C.; Al-shidaifat, A.; Kumar, A.; Song, W.; Song, H. 2–8GHz, 1.6dB Integrated CMOS LNA Using Image network technique for 4G LTE application. Int. J. Eng. Res. Electron. Commun. Eng. 2017, 4, 191–193. [Google Scholar]
Parameter | Value [Ω] | Parameter | Value [deg] |
---|---|---|---|
Zs | 256.1 | θs | 90.0 |
Zsm | 148.0 | θsm | 90.0 |
ZT | 37.30 | θT | 90.0 |
Parameter | Value [Ω] | Parameter | Value [deg] |
---|---|---|---|
Zs | 89.2 | θs | 2.31 |
Zsm | 142 | θsm | 2.79 |
ZT | 75.0 | θT | 2.82 |
Ref [#] | Center Frequency [GHz] | IL [dB] | RL [dB] | BW [%] | Size [λg] | Dielectric Constant |
---|---|---|---|---|---|---|
This work | 2.44 | 0.10 | 19.2 | 120 | 0.068 × 0.059 | 2.45 |
[21] | 2.45 | 0.10 | 15.0 | 59 | 0.171 × 0.136 | 3.30 |
[22] | 6.75 | 0.80 | 11.0 | 100 | 0.60 × 0.54 | 3.55 |
[23] | 4.83 | 1.10 | 10.5 | 131 | 0.29 × 0.275 | 2.20 |
[24] | 7.20 | 1.45 | 17.0 | 111 | 0.69 × 0.18 | 2.20 |
[25] | 6.85 | 1.50 | 15.0 | 109 | 1.10 × 0.40 | 3.55 |
[26] | 6.95 | 0.42 | 19.0 | 97 | 0.128 × 0.37 | 3.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, K.; Kim, K.G.; Lee, T.-H. Miniaturized Bandpass Filter Using a Combination of T–Shaped Folded SIR Short Loaded Stubs. Sensors 2022, 22, 2708. https://doi.org/10.3390/s22072708
Yoon K, Kim KG, Lee T-H. Miniaturized Bandpass Filter Using a Combination of T–Shaped Folded SIR Short Loaded Stubs. Sensors. 2022; 22(7):2708. https://doi.org/10.3390/s22072708
Chicago/Turabian StyleYoon, Kicheol, Kwang Gi Kim, and Tae-Hyeon Lee. 2022. "Miniaturized Bandpass Filter Using a Combination of T–Shaped Folded SIR Short Loaded Stubs" Sensors 22, no. 7: 2708. https://doi.org/10.3390/s22072708
APA StyleYoon, K., Kim, K. G., & Lee, T. -H. (2022). Miniaturized Bandpass Filter Using a Combination of T–Shaped Folded SIR Short Loaded Stubs. Sensors, 22(7), 2708. https://doi.org/10.3390/s22072708