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Abstract: Sugarcane is the main industrial crop for sugar production, and its growth status is closely
related to fertilizer, water, and light input. Unmanned aerial vehicle (UAV)-based multispectral
imagery is widely used for high-throughput phenotyping, since it can rapidly predict crop vigor at
field scale. This study focused on the potential of drone multispectral images in predicting canopy
nitrogen concentration (CNC) and irrigation levels for sugarcane. An experiment was carried out in a
sugarcane field with three irrigation levels and five fertilizer levels. Multispectral images at an altitude
of 40 m were acquired during the elongating stage. Partial least square (PLS), backpropagation neural
network (BPNN), and extreme learning machine (ELM) were adopted to establish CNC prediction
models based on various combinations of band reflectance and vegetation indices. The simple ratio
pigment index (SRPI), normalized pigment chlorophyll index (NPCI), and normalized green-blue
difference index (NGBDI) were selected as model inputs due to their higher grey relational degree
with the CNC and lower correlation between one another. The PLS model based on the five-band
reflectance and the three vegetation indices achieved the best accuracy (Rv = 0.79, RMSEv = 0.11).
Support vector machine (SVM) and BPNN were then used to classify the irrigation levels based
on five spectral features which had high correlations with irrigation levels. SVM reached a higher
accuracy of 80.6%. The results of this study demonstrated that high resolution multispectral images
could provide effective information for CNC prediction and water irrigation level recognition for
sugarcane crop.

Keywords: sugarcane; multispectral image; canopy nitrogen concentration; irrigation classification;
UAV

1. Introduction

As the most important sugar crop, sugarcane is mainly grown in tropical and sub-
tropical areas and provides approximately 80% of the world’s sugar [1,2]. The growth
of sugarcane is closely related to fertilizer, water, and radiation intensity. Evaluating the
growth situation of sugarcane in a timely manner, and adjusting the field management
strategy accordingly, is of great significance to the yield and quality of sugarcane. In re-
cent years, remote sensing with spectral images at different scales has been considered
an effective high-throughput phenotyping solution for predicting the growth and yield
of crops.

Large-scale spectral imagery can cover an area ranging from 25 to 3600 km2 per image.
Spatial resolutions generally range from more than 1 m to tens of meters, and some data
can reach 0.3 m [3,4]. They are mainly obtained by satellites, such as Sentinel [5], Gaofen
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(GF) [6], Landsat [7,8], GeoEye [9], and QuickBird [10], which are normally provided
by governments or commercial companies. Their main agricultural applications include
land cover and land use investigation, vegetation classification, and crop yield forecasting.
However, due to the limitations of low spatial resolution and fixed revisit cycles, it has
formidable deficiencies for small-scale applications, which usually need more subtle and
frequent data acquisition for crop growth monitoring [11].

Middle-scale spectral imagery can provide data with submeter spatial resolutions
ranging from less than 1 m to a few meters [4,12]. These kinds of images are mainly
acquired by aviation aircraft platforms, integrated with multispectral or hyperspectral
imaging sensors, at an altitude of several kilometers with fairly large coverage and high
spatial resolutions [13,14]. However, these kinds of platforms are not popular due to their
high costs.

Small-scale spectral imagery is usually acquired by unmanned aerial vehicles (UAVs)
and can normally cover up to hundreds of hectares [3,4]. With the rapid development of
UAVs, combined with the increasing availability and decreasing cost of spectral imaging
sensors, opportunities to capture spectral images with high spatial and spectral resolutions
have abounded. UAV-based remote sensing systems can easily reach spatial resolution
of centimeter, which means that they are more sensitive to spatially heterogeneous infor-
mation. Over the past 10 years, UAVs, especially drones, have been rapidly accepted and
popularized to acquire reliable field crop information, weather permitting [15]. They can
provide subtle information about the crop canopies in every inch of a field, which is difficult
to acquire via ground-based scouting by people, especially for tall plants. As such, these
systems save labor and time [16,17].

Many previous studies have shown that crop yield [18,19], nitrogen (N) status [20–22],
protein content [23,24] and water stress [25,26] can be predicted by drone-based multi-
spectral and RGB imagery. When establishing models for different crops, various spectral
features including spectral reflectance, existed vegetation indices (VIs), and newly proposed
VIs can be used as input variables. Taking N prediction as an example, Peng et al. used
the ratio vegetation index (RVI), the normalized difference red-edge index (NDRE) and
the terrestrial chlorophyll index (TCI), to predict potato N status [27]. Zhang et al. used
RVI and the normalized difference vegetation index (NDVI) to predict rice N status [28].
Osco et al. used NDVI, NDRE, the green normalized difference vegetation (GNDVI), and
the soil-adjusted vegetation index (SAVI) to predict maize leaf nitrogen concentration
(LNC) [29]. For water status prediction, SAVI [25], the normalized green-red difference
index (NGRDI) [26], NDVI [30], NDRE [31] and so on, were reported in different studies for
different crops. One of the main reasons why different spectral features are used in different
crops is that the physiological characteristics and canopy distribution characteristics of
different crops are different. Sugarcane is a tall and dense sugar crop. Unlike other crops,
its stalk is the main raw material for sugar production, and it is an important organ for
accumulating nutrients. Sugarcane has a long growing season, blooms late, and most of the
time its canopy contains only leaves. Therefore, it is of practical significance to find suitable
spectral features and establish corresponding growth prediction models for sugarcane.

Preliminary studies of remote sensing for sugarcane have also been conducted in recent
years. Sugarcane planting areas classification [32], and large-scale yield prediction, [33,34]
were reported based on satellite images. Predictions of sugarcane canopy nitrogen concen-
tration (CNC) or LNC based on hyperspectral data [35] or hyperspectral imagery [36] were
also reported. However, studies on CNC prediction and irrigation level classification based
on high resolution multispectral imagery were seldomly reported.

In terms of modeling algorithms, both traditional machine learning algorithms and
newly developed deep learning algorithms were used. Each has its own advantages
and disadvantages. Deep learning algorithms have better performance in the case of
sufficient samples. Ma et al. developed a county-level corn yield prediction model based
on the Bayesian Neural Network (BNN) using multiple publicly available data sources
over 20 years, including satellite images, climate observations, soil property maps and
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historical yield records [37]. Khaki et al. proposed a convolutional neural network model
called YieldNet to predict corn and soybean yield based on MODIS products [38]. Yang
et al. tried to use one-year hyperspectral imagery to train a CNN classification model
to estimate corn grain yield [39]. Prodhan et al. monitored drought over South Asia
using a deep learning approach with 16 years of remote sensing data [40]. It can be
seen that a large volume of image data, as well as ground truth data in years, were
commonly needed to provide a sufficient dataset to train a deep learning network. To collect
this large number of data samples is very challenging. Therefore, the dataset of deep
learning is difficult to produce in some circumstances. By contrast, the traditional machine
learning methods which are generally based on statistics are suitable for most of the
modeling problems when relatively small number of samples are available [41,42]. Partial
least squares (PLS), extreme learning machines (ELMs), backpropagation neural networks
(BPNNs), support vector machine (SVM), and others, have been widely used in crop
nutrient predictions. For example, Li et al. [43] used PLS to establish 12 models of fruits
and seeds for rapid analysis and quality assessment. Kira et al. established a model
for estimating the chlorophyll and carotenoid contents of three tree varieties based on
BPNN [44]. Chen et al. constructed a BPNN model to invert rice pigment content with
several spectral parameters as input [45]. Pal et al. used an ELM algorithm to classify land
covers with multispectral and hyperspectral data [46]; it achieved a better classification
accuracy than models established with BPNN and support vector machine (SVM), with far
less computational complexity. Different machine learning methods can suit for different
cases depending on variable quantity, sample quantity, and the potential relationship
between inputs and output.

In this study, in order to monitor the growth status of sugarcane canopies by a high
throughput method, high-resolution multispectral images of an experimental sugarcane
field were obtained by a low-altitude UAV. The objectives of this study were (1) to determine
the sensitive spectral features for the predictions of the CNC and irrigation levels; (2) to
establish the prediction models of the CNC based on different machine learning algorithms
such as PLS, BPNN, and ELM; (3) to establish classification methods of irrigation levels
based on SVM and BPNN.

2. Materials and Methods
2.1. Study Area

The sugarcane experimental field was in Nanning, Guangxi Autonomous Region,
China (latitude 22.84◦ N, longitude 108.33◦ E), as shown in Figure 1. From the captured
multispectral image (displayed in RGB) in the right of Figure 1, it can be seen that the
experimental field had 12 plots with concrete partitions. Three irrigation treatments and
five fertilization treatments were applied in the field. Urea, calcium magnesium phosphate,
and potassium chloride were chosen as N, phosphorus (P), and potassium (K) fertilizers,
respectively. Eight plots with different irrigations and fertilizers and four blank plots
without fertilizer and irrigation (denoted by BL) were set in the field. Concrete partitions at
a depth of 1.2 m were built between each plot to prevent water and fertilizer infiltration. The
planted seedlings were limited to 975,000 plants per hectare. The two irrigation treatments
included 180 m3/ha (denoted by W0.6) and 300 m3/ha (denoted by W1.0), while the
four fertilizer treatments included F1.0 (250 kg/ha of N, 150 kg/ha of P2O5, 200 kg/ha
of K2O), F0.9 (90% of the amount of F1.0), F1.1 (110% of F1.0) and F1.2 (120% of F1.0).
Water and fertilizer were applied via drip irrigation pipes. Micronutrient fertilizers were
equally applied to all the plots except the blank plots. The eight plots had the same size
of 20 m × 6 m, with their different treatments denoted by W0.6F0.9, W0.6F1.0, W0.6F1.1,
W0.6F1.2, W1.0F0.9, W1.0F1.0, W1.0F1.1 and W1.0F1.2.
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rate of 180 m3/ha, W1.0 represents the irrigation of 300 m3/ha; F1.0 represents the standard fertiliza-
tion rate, F0.9 represents 90% of the amount of F1.0, F1.1 represents 110% of F1.0 and F1.2 represents 
120% of F1.0; BL1, BL2, BL3, BL4 indicate that four blank plots without fertilizer and irrigation. 

The seed canes were planted on 24 March 2018. The seedling fertilizers, which ac-
counted for 30% of the total fertilizer application, were applied on 11 May (28 days after 
planting). The tillering fertilizers, which accounted for 70% of the total fertilizer applica-
tion, were applied on 29 June (67 days after planting). The irrigation schedule is listed in 
Table 1. 

Table 1. Irrigation amount at different growth stages. 

Growth Stage Irrigation Date 
Irrigation Level (m3/ha) 

W0.6 W1.0 
Seedling 10 April 2018 60 90 
Tillering 29 May 2018 30 60 

Elongating 4 July 2018 60 120 
Maturing 12 October 2018 30 30 

Total  180 300 

Rainfall was another way that water entered the open field. The rainfall in this field 
was 509.8 mm from the day of planting (24 March) to the day of image acquisition (11 
July), and the monthly average rainfall was 127 mm. The meteorological conditions of the 
experiment field, including precipitation (without the irrigation), temperature and mean 
relative humidity, are shown in Figure 2. It can be seen that there was almost no rainfall 
for 15 days before the day of image acquisition. As such, the last event of water input in a 
large amount was the controlled irrigation on 4 July, which was a week before canopy 
image acquisition. This means that the rainfall had a very limited influence on the remote 
evaluation of water stress conditions under specific irrigation amounts. 

Figure 1. The study site and the field management layout with different irrigation and fertilization
levels based on the captured multispectral image (displayed in RGB). W0.6 represents the irrigation
rate of 180 m3/ha, W1.0 represents the irrigation of 300 m3/ha; F1.0 represents the standard fertiliza-
tion rate, F0.9 represents 90% of the amount of F1.0, F1.1 represents 110% of F1.0 and F1.2 represents
120% of F1.0; BL1, BL2, BL3, BL4 indicate that four blank plots without fertilizer and irrigation.

The seed canes were planted on 24 March 2018. The seedling fertilizers, which ac-
counted for 30% of the total fertilizer application, were applied on 11 May (28 days after
planting). The tillering fertilizers, which accounted for 70% of the total fertilizer application,
were applied on 29 June (67 days after planting). The irrigation schedule is listed in Table 1.

Table 1. Irrigation amount at different growth stages.

Growth Stage Irrigation Date
Irrigation Level (m3/ha)

W0.6 W1.0

Seedling 10 April 2018 60 90
Tillering 29 May 2018 30 60

Elongating 4 July 2018 60 120
Maturing 12 October 2018 30 30

Total 180 300

Rainfall was another way that water entered the open field. The rainfall in this field
was 509.8 mm from the day of planting (24 March) to the day of image acquisition (11 July),
and the monthly average rainfall was 127 mm. The meteorological conditions of the
experiment field, including precipitation (without the irrigation), temperature and mean
relative humidity, are shown in Figure 2. It can be seen that there was almost no rainfall
for 15 days before the day of image acquisition. As such, the last event of water input in
a large amount was the controlled irrigation on 4 July, which was a week before canopy
image acquisition. This means that the rainfall had a very limited influence on the remote
evaluation of water stress conditions under specific irrigation amounts.
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Figure 2. Meteorological data of the experimental field.

2.2. Data Collection

The multispectral images were captured at noon on 11 July 2018 (109 days after
planting), in the elongating stage. The weather was sunny, cloudless, and windless. The
image acquisition system was mainly composed of a drone modeled Phantom 4 Pro (DJI,
Shenzhen, China) and a multispectral image sensor RedEdge-MX (MicaSense, Seattle, WA,
USA), as shown in Figure 3a,b, respectively. RedEdge-MX image sensor has five spectral
bands at 475 nm (blue, B), 560 nm (green, G), 668 nm (red, R), 717 nm (red edge, RE), and
840 nm (near infrared, NIR), and is equipped with a light intensity sensor and a reflectance
correction panel (Group VIII, USA, Figure 3c) for radiation correction. The optical intensity
sensor can correct the influence caused by changes in sunlight on the spectral images during
a flight, and the fixed reflectance correction panel can be used for reflectance transformation.
The drone flew at an altitude of 40 m, with 85% forward overlap and 85% side overlap.
The time interval of image acquisition was 2 s, and the ground sample distance (GSD) was
2.667 cm. Four calibration tarps with reflectivity of 5%, 20%, 40% and 60%, respectively,
were also placed at the open space next to the field before image acquisition, as shown in
Figure 3d. Two hundred and sixty multispectral images were finally collected.
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Figure 3. The image acquisition system. (a) DJI Phantom 4 Pro; (b) RedEdge-MX multispectral image
sensor; (c) reflectance correction panel of RedEdge-MX; and (d) calibration tarps.

2.3. Ground Sampling and CNC Determination

Each plot was divided into three sampling areas. Each sampling area was divided
into nine grids, and one plant was randomly selected to collect the first fully unfolded leaf
for each grid. Nine leaves were collected to form a leaf sample for each sampling area.
A total of 36 samples were finally collected, and these were immediately brought back to
the laboratory for N determination. All the samples were oven-dried at 105 ◦C for 30 min
and afterward at 75 ◦C for about 24 h until at a constant weight. The dried leaves were
ground and weighed to 0.3 g, and the Kjeldahl method [47] was used to determine the total
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nitrogen (TN, %) content. The TN of those first-leaf samples, which were then considered
as the CNC (%), could be calculated by Equation (1).

TN % =
(V1 −V0)×C× 0.014

m
× 100% (1)

where % represents the unit of TN and CNC; V1 is the consumption volume of the acid
standard solution, mL; V0 is the titration blank volume, mL; C is the concentration of the
acid standard solution, mol/L; 0.014 is the 1 mol standard titration solution equivalent to
the weight of N, g; m is the weight of the sample, g.

2.4. Multispectral Image Preprocessing

Pix4DMapper software (Pix4D, Prilly, Switzerland) was used to generate the mosaic
image from the 260 original multispectral images, as shown in Figure 4. The mosaic image
was then imported and processed in ENVI software (L3Harris Technologies, Melbourne,
FL, USA). Two preprocessing steps were conducted in ENVI, including radiation correction
and geometric correction.
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Figure 4. The false-color (NIR, R, and G) mosaic image of the sugarcane experimental field. The
white-circled numbers represent the four ground control points.

Radiation calibration was implemented using the radiometric correction module in
ENVI. The “empirical line” method was selected, since four calibration tarps with known
reflectivity were captured in the image. An empirical line was fitted by comparing the DN
values and the reflectivity of the tarps. Subsequently, all the DN values in the mosaic image
were able to be converted into reflectivity.

Geometric correction was conducted to eliminate the distortion. Four ground control
points were selected at four corners of the field, as marked in the false-color image in
Figure 4. The “image to map” function was selected to implement geometric correction
with the coordinate information of the ground control points. “Nearest neighbor”, which
avoids introducing new pixel values, was used to resample the image to the same coordinate
system (UTM projection, WGS-84 datum) as that of the ground control points.

In order to extract the region of interest (ROI) out of the background, a classification
method, decision tree (DT), was used to extract the sugarcane canopy from the soil, weeds,
shadow, concrete, and other interfering background features. Figure 5 shows the NDVI
image of the extracted canopy, and the white dots in the figure represented 36 sampling
areas. To enhance sample quantity, each area was further divided into nine grids, which
were approximately 1.5 m × 2.0 m in size. The average value of each grid was calculated
as the spectral sample. Therefore, a total of 324 spectral samples were extracted.
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2.5. Feature Extraction and Data Analysis Methods
2.5.1. Extraction of VIs

VIs have been widely used to qualitatively and quantitatively evaluate vegetation
cover varieties and crop vigor. NDVI is the most commonly used VI, and it is also one of
the important parameters closely related to crop chlorophyll and N concentration. Besides
NDVI, nine other commonly used VIs (as shown in Table 2) were also selected to compare
their effects on predicting the CNC. The optimal VI or a combination of VIs was used to
build the prediction models of the CNC and the irrigation levels.

Table 2. The selected VIs and their calculation formulas.

VIs Calculation Formula References

Normalized Difference Vegetation Index (NDVI) (NIR-R)/(NIR + R) [48]
Modified Simple Ratio Index (MSRI) (NIR/R− 1)/

√
NIR/R + 1 [49]

Optimized Soil-adjusted Vegetation Index (OSAVI) 1.16(NIR-R)/(NIR + R + 0.16) [50]
Ratio Vegetation Index (RVI) NIR/R [51]

Soil-adjusted Vegetation Index (SAVI) 1.5(NIR-R)/(NIR + R + 0.5) [52]
Structure Insensitive Pigment Index (SIPI) (NIR-B)/(NIR + B) [53]

Simple Ratio Pigment Index (SRPI) B/R [54]
Normalized Pigment Chlorophyll Index (NPCI) (R-B)/(R + B) [54]

Ratio Vegetation Index 2 (RVI2) NIR/G [55]
Normalized Green-Blue Difference Index (NGBDI) (G-B)/(G + B) [56]

Note: The spectral reflectance of B, G, R, RE and NIR is at the wavelength of 475 nm, 560 nm, 668 nm, 717 nm and
840 nm, respectively.

2.5.2. Grey Relational Analysis

Grey relational analysis (GRA), also called grey incidence analysis (GIA), is an im-
portant part of grey system theory, which was developed by Julong Deng [57]. At its
core, it works to determine the primary and secondary relationships between various
factors by calculating grey relational degree (GRD). The higher the GRD value of any two
factors, the more consistent the change between those two factors. Therefore, it can be
used to select the factor with the greatest influence [58]. Let the reference sequence be
X0 = {x0(k), k = 1, 2, · · · , n} and the comparison sequence be Xi = {xi(k), k = 1, 2, · · · , n}.
The GRD value between X0 and Xi is calculated by Equations (2) and (3).

GRD =
1
n ∑n

k=1 γ(x0(k), xi(k)) (2)
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γ(x0(k), xi(k)) =
min

i
min

k
|x0(k)− xi(k)|+ ρmin

i
min

k
|x0(k)− xi(k)|

|x0(k)− xi(k)|+ ρmin
i

min
k
|x0(k)− xi(k)|

(3)

where ρ is the identification coefficient, and its value range is 0–1, taken here as 0.5.
The GRA was conducted between all the spectral features and the CNC, which were

all normalized. The GRD, which was higher than 0.8, reflected that the VI had a very strong
influence on the CNC.

2.5.3. Correlation Analysis

Correlation coefficient (R) [59] can reflect the degree of the linear correlation between
two datasets. It can be calculated by Equation (4).

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(4)

where n is sample size, xi and yi are the individual sample points indexed with i; x and y
are the means of xi and yi for n samples.

The higher the absolute value of R, the higher the linear correlation between the two
factors. It is generally considered that 0.7 ≤ |R| < 1 indicates a very high correlation, when
0.4 ≤ |R| < 0.7, it indicates a significant correlation, and when |R| < 0.4, it indicates a
low correlation. Correlation analysis can be applied for multiple purposes in modeling,
including: (1) to analyze the correlations between input variables and predictors to deter-
mine sensitive variables; (2) to analyze the correlations between multiple variables, during
which only the variables with significant correlations should be utilized in order to simplify
the complexity of the model; (3) to analyze the correlation between the predicted values of
a model and the measured values, and to evaluate the effect of the model.

In this study, the correlations between the spectral features were analyzed to pick
proper variables with less redundant information for CNC modeling and irrigation level
classification.

2.6. Modeling Algorithms

At present, there are many machine learning algorithms. Based on previous researches,
four algorithms were selected after comprehensive consideration, as shown in Table 3.

Table 3. Modeling algorithms.

Models Validation Method Algorithms Ratio

CNC Hold-out
PLS

7:3BPNN
ELM

Irrigation level classification Three-fold cross validation
SVM

2:1BPNN
Note: Ratio means the calibration set to the validation set.

PLS, BPNN and ELM were selected for CNC modeling, and the simple validation
method, hold-out [60], was selected for model validation. All 324 samples were divided
into calibration set and validation set according to the ratio of 7:3.

SVM and BPNN were selected for irrigation level classification. Three-fold cross
validation [61] was used to produce more validation samples, and, therefore, to generate a
comprehensive confusion matrix of the classification results.

The PLS algorithm builds a model by minimizing the sum of the squares of the errors.
It combines the advantages of multiple linear regression, canonical correlation analysis
and principal component analysis. BPNN has the characteristics of self-learning and
self-adaptation, showing a strong ability to fit nonlinear functions; it also has a strong anti-
interference ability and may be suitable for complex field environments. The ELM algorithm
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allows for the random generation of the weights and thresholds between the input layer
and hidden layers; users only need to denote the number of hidden layer neurons in the
whole training process. Compared with the traditional classification algorithms, ELM
has a fast-learning speed and strong generalization capability. These three algorithms
have different characteristics and might achieve better prediction results under different
conditions or scenarios, so all three algorithms were adopted and compared for the CNC
prediction in this study. The number of principal components of the PLS was 6. The training
epoch, the learning rate, and the number of hidden layers of the BPNN model were 1000,
0.05, and 22, respectively. The transfer function and the number of hidden layers of the
ELM model were sigmoidal function and 50, respectively.

SVM is a classic machine learning method for classification. It maps data from a low-
dimensional space to a high-dimensional space through a kernel function and separates the
classes with a decision surface that maximizes the margin between the classes. Thus, SVM
was selected for the irrigation levels classification in this study. Due to its strong ability to
perform nonlinear mapping, BPNN is suitable for not only solving fitting problems, but
also classification problems, so BPNN was also selected here for comparison with SVM
in the classification of irrigation levels. The penalty factor and the kernel function of the
SVM model were 10 and 0.167, respectively. The training epoch, the learning rate, and the
number of hidden layers of the BPNN model were 1000, 0.1, and 10, respectively.

2.7. Accuracy Assessment Metrics

R and root mean square error (RMSE) were used to evaluate the accuracies of the CNC
prediction models. R was introduced in Section 2.5, and here the correlation between the
predicted values and the actual values were calculated to evaluate the accuracies of the
prediction models. RMSE, which was calculated by Equation (5), can directly reflect the
errors of the prediction models.

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (5)

where, yi and ŷi represent the estimated value and actual value for sample i, respectively.
The confusion matrix is also known as the probability matrix or error matrix [62]. It is

a specific matrix for visualizing algorithm performance, and is often used to evaluate the
classification results. The rows in the matrix represent the actual irrigation levels and the
columns represent the predicted irrigation levels. The confusion matrix is named because
it can easily indicate whether multiple classes are confused (that is, one class is expected to
be another class). Common indicators including producer’s accuracy (PA), user’s accuracy
(UA), and overall accuracy (OA), can be calculated in the confusion matrix. PA refers to the
ratio of the correctly classified sample numbers in a class to the actual total numbers of that
class, also called true positive rate (TPR). UA refers to the ratio of the correctly classified
sample numbers in a class to the classified total numbers of that class, also called positive
predictive value (PPV). OA refers to the ratio of all correctly classified sample numbers to
all sample numbers of all the classes. The calculation formulas of the two indicators are
shown in Equations (6)–(8).

PA/TPR =
TP

TP + FN
(6)

UA/PPV =
TP

TP + FP
(7)

OA =
TP + TN

P + N
=

TP + TN
TP + TN + FP + FN

(8)

TP, FP, TN and FN represent the numbers of true positive, false positive, true negative,
and false negative samples in the classify result, respectively.
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3. Results
3.1. CNC Prediction
3.1.1. Relation Analysis between the Spectral Features and the CNC

To eliminate the influence caused by different magnitudes of each variable, the datasets
were firstly normalized before GRA. In the GRA results listed in Table 4, all the VI had a
GRD larger than 0.5 with the CNC, while the SRPI had the strongest grey relation of 0.94.

Table 4. GRA results between each VI and the CNC.

VI GRD with the CNC Rank

SRPI 0.94 1
NPCI 0.93 2
RVI 0.92 3

MSRI 0.89 4
NDVI 0.88 5
SIPI 0.87 6

OSAVI 0.84 7
SAVI 0.82 8

NGBDI 0.70 9
RVI2 0.58 10

Correlation analysis was also conducted for these ten VIs, and the results were shown
in Table 5. Most of the VIs had a very high correlation (R > 0.9) with each other, except
NGBDI and RVI2. Two variables with a higher correlation means more redundant informa-
tion is contained in them, which means that selecting both as inputs could be avoided.

Table 5. Correlations between each VI.

Correlations SRPI NPCI RVI MSRI NDVI SIPI OSAVI SAVI NGBDI RVI2

SRPI 1.00 −0.97 0.98 0.98 0.98 −0.96 0.98 0.97 −0.54 0.15
NPCI 1.00 −0.96 −0.96 −0.96 0.99 −0.98 −0.99 0.60 −0.20
RVI 1.00 1.00 1.00 −0.93 0.99 0.97 −0.51 0.14

MSRI 1.00 1.00 −0.93 0.99 0.98 −0.52 0.14
NDVI 1.00 −0.94 0.99 0.98 −0.52 0.14
SIPI 1.00 −0.96 −0.97 0.62 −0.21

OSAVI 1.00 1.00 −0.53 0.13
SAVI 1.00 −0.53 0.12

NGBDI 1.00 −0.88
RVI2 1.00

Based on the results in Tables 4 and 5, we can find that though most of the VIs (SRPI,
NPCI, RVI, MSRI, NDVI, SIPI, OSAVI and SAVI) had very high GRD (>0.8) with the CNC,
they also had very high correlations (R > 0.9) with each other. Two basic rules, as follows,
should be considered in the selection of spectral features, which could help by selecting
the more sensitive and less-redundant spectral features as the input for CNC prediction
based on the GRA and R results: (1) The GRD of the selected spectral feature(s) should
be relatively high with the CNC (GRD > 0.65); (2) The R between the spectral feature(s)
should be relatively low to avoid introducing redundant information and variable coupling.
Therefore, not all the VIs with higher GRD could be selected as model inputs. Here, the first
two VIs in Table 4, SRPI and NPCI, were recommended as efficient inputs. Furthermore,
NGBDI, which had relatively higher grey relational degree with the CNC and a lower R
with SRPI and NPCI, was also recommended as another efficient input variable.
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3.1.2. Modeling with the Five-Band Reflectance

The five-band reflectance of the multispectral image were firstly taken as the input
variables, and PLS, BPNN, and ELM algorithms were used to build the CNC prediction
models, respectively.

The modeling results were listed in Table 6, while the scatter plots of the measured
values and the predicted values of every model were also presented in Figure 6. As can be
seen, the PLS model had the highest Rv value of 0.73 and the lowest RMSEv value of 0.13
in both the calibration set and the validation set compared to the ELM and BPNN model.
This indicated that PLS had better modeling performance.

Table 6. CNC prediction results with PLS, BPNN and ELM based on the five-band reflectance.

Input Variables Algorithm
Calibration Set Validation Set

Rc RMSEc Rv RMSEv

Five-band
reflectance

PLS 0.81 0.18 0.73 0.13
BPNN 0.78 0.21 0.72 0.20
ELM 0.75 0.28 0.68 1.00

Note: Rc and RMSEc represent the R and RMSE in the calibration set, Rv and RMSEv represent the R and RMSE
in the validation set.
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Figure 6. The CNC prediction results of the PLS, and BPNN ELM models based on the five-band
reflectance. (a) The calibration result of the PLS model; (b) the calibration result of the BPNN model;
(c) the calibration result of the ELM model; (d) the validation result of the PLS model; (e) the validation
result of the BPNN model; (f) the validation result of the ELM model.

3.1.3. Modeling with VIs

In addition to the three recommended VIs (SRPI, NPCI and NGBDI), SIPI was also
selected to build prediction models for comparison. Several models were established from
a single VI or a combination of VIs with different modeling algorithms. The results were
listed in Table 7. The PLS model still had a more accurate and balanced performance than
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the BPNN and ELM models. From the results of the single VI-based models, we could find
that VIs which had higher GRD with the CNC had better performance in prediction models.
From the results of the double and multiple VI-based models, the SRPI- and SIPI-based
model showed lower accuracy than the SRPI- and NGBDI- based model, even though SIPI
had a higher GRD than NGBDI. This proved the correctness of choosing NGBDI as the
supplement variable rather than the others. The model with the highest accuracy (Rv = 0.63)
was established based on SRPI and NPCI and NGBDI, rather than all VIs, indicating that
simply increasing the number of input variables does not necessarily improve the accuracy
of the model. As long as the variables are selected correctly, fewer variables may bring
higher accuracy to the model.

Table 7. CNC prediction results with PLS, BPNN and ELM based on VIs.

Input Variables Algorithm
Calibration Set Validation Set

Rc RMSEc Rv RMSEv

SRPI
PLS 0.63 0.13 0.56 0.11

BPNN 0.80 0.94 0.59 0.89
ELM 0.73 0.68 0.52 1.59

NPCI
PLS 0.44 0.15 0.58 0.15

BPNN 0.81 0.62 0.50 1.73
ELM 0.79 0.86 0.45 1. 95

SIPI
PLS 0.60 0.14 0.54 0.19

BPNN 0.90 0.26 0.50 0.97
ELM 0.72 0.67 0.43 0.60

NGBDI
PLS 0.57 0.10 0.42 0.15

BPNN 0.79 0.89 0.46 1.05
ELM 0.77 0.92 0.40 1.04

SRPI & NPCI
PLS 0.60 0.15 0.57 0.15

BPNN 0.83 0.21 0.58 1.14
ELM 0.80 0.86 0.49 0.98

SRPI & SIPI
PLS 0.49 0.15 0.49 0.17

BPNN 0.72 1.28 0.48 1.25
ELM 0.81 0.60 0.44 1.04

SRPI & NGBDI
PLS 0.53 0.12 0.55 0.18

BPNN 0.76 0.96 0.54 1.30
ELM 0.71 0.86 0.51 1.27

SRPI & NPCI & NGBDI
PLS 0.64 0.14 0.63 0.14

BPNN 0.74 1.17 0.62 1.26
ELM 0.75 1.73 0.62 1.96

Ten VIs
PLS 0.65 0.12 0.52 0.16

BPNN 0.81 1.51 0.52 1.12
ELM 0.78 1.62 0.50 1.19

Note: Rc and RMSEc represent the R and RMSE in the calibration set, Rv and RMSEv represent the R and RMSE
in the validation set.

3.1.4. Modeling with the Five-Band Reflectance and VIs

Other types of models based on different combinations of the five-band reflectance
and VIs were established, and the results were listed in Table 8. Of the different modeling
algorithms, PLS still had the best performance among the three algorithms, BPNN had
slightly lower accuracy than PLS, and ELM had an obvious lower accuracy than the other
two algorithms. The PLS model based on FR and the three recommended VIs (SRPI, NPCI
and NGBDI) had the highest accuracy, with the highest Rv of 0.79 and the lowest RMSEv of
0.11. The scatter plots of the prediction result of the best model were presented in Figure 7.
Higher accuracy based on the five-band reflectance combined with proper VIs was reached
because this combination of input variables not only ensured the integrity of information,
but also highlighted the spectral characteristic information. The results also demonstrated
that the selection of input variables was crucial.
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Table 8. CNC prediction results with PLS, BPNN and ELM based on different input variables (FR
represents five-band reflectance).

Input Variables Algorithm
Calibration Set Validation Set

Rc RMSEc Rv RMSEv

FR & SRPI
PLS 0.82 0.08 0.71 0.17

BPNN 0.91 0.01 0.72 0.14
ELM 0.90 0.02 0.64 1.07

FR & SRPI & NPCI
PLS 0.82 0.14 0.72 0.27

BPNN 0.92 0.01 0.66 0.39
ELM 0.84 0.01 0.60 0.69

FR & SRPI & NPCI & NGBDI
PLS 0.85 0.04 0.79 0.11

BPNN 0.87 0.13 0.79 0.39
ELM 0.84 0.24 0.68 1.31

FR & ten-VIs
PLS 0.81 0.19 0.72 0.68

BPNN 0.93 0.01 0.69 1.26
ELM 0.84 0.18 0.53 1.68

Note: Rc and RMSEc represent the R and RMSE in the calibration set, Rv and RMSEv represent the R and RMSE
in the validation set.
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Figure 7. CNC prediction result of the PLS model based on the five-band reflectance combined with
NGBDI, SRPI and NPCI. (a) The calibration result; (b) the validation result.

3.2. Irrigation Level Recognition

Sugarcane is a crop with high stem, large biomass, and long growth period. It has
a large water requirement, as well as being dependent on fertilizers, especially in the
early and middle growing stages (the seedling, tillering and elongating stage). Knowledge
of water conditions during these stages is of great importance for sugarcane irrigation
management.

3.2.1. Correlation Analysis

The correlations between the irrigation amounts and the spectral features, including
the band reflectance and ten VIs, were firstly analyzed, as shown in Table 9. As can be seen,
regardless of the amount of fertilizer applied, irrigation had high correlations of above 0.65
with red, blue, SRPI, NPCI and NGBDI. Red, blue and NPCI were negatively correlated
with irrigation, while SRPI and NGBDI were positively correlated with irrigation. Among
the five spectral bands, red, green and blue bands were negatively correlated with irrigation,
while red edge and NIR bands were positively correlated with irrigation. This phenomenon
is consistent with the spectral variation trend of the green plant (the healthier in growth
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condition, the lower the reflectance in visible range, and the higher the reflectance in red
edge and NIR range).

Table 9. Correlation analysis result between the spectral features and the irrigation levels.

Spectral Features R between the Spectral Features and the Irrigation Levels

Spectral reflectance

NIR 0.48
Red edge 0.25

Red −0.71
Green −0.45
Blue −0.69

VI

NDVI 0.21
MSRI 0.25

OSAVI 0.29
RVI 0.28

SAVI 0.34
SIPI 0.18
SRPI 0.65
NPCI −0.68
RVI2 0.33

NGBDI 0.75

3.2.2. Classification Results

Based on the five parameters of red, blue, SRPI, NPCI, and NGBDI, which had the
highest correlations with irrigations SVM and BPNN were adopted to classify the irrigation
levels. The results were listed in Table 10.

Table 10. Confusion matrix of the classification results of the irrigation levels.

Classifier SVM BPNN

Actual Class
Predicted Class Irrigation_0 Irrigation_180 Irrigation_300 PA Irrigation_0 Irrigation_180 Irrigation_300 PA

Irrigation_0 (108 samples) 94 13 1 87.0% 80 25 3 74.1%
Irrigation_180 (108 samples) 5 89 14 82.4% 15 61 32 56.5%
Irrigation_300 (108 samples) 0 30 78 72.2% 2 47 59 54.6%

Total 99 132 93 97 133 94
UA 94.9% 67.4% 83.9% OA = 80.6% 82.5% 45.9% 62.8% OA = 61.7%

As shown in Table 10, the OA of SVM for irrigation level recognition was 80.6%,
while the OA of BPNN was only 61.7%. From the classification results of SVM, the UA
and PA of irrigation_0 were the highest, reaching 94.9% and 87.0%, respectively. The
accuracies of the other two levels generally exceeded 70%. This result reflects that the
larger the difference in irrigation amount, the higher the classification accuracy. In addition,
most of the misclassified samples were misclassified due to adjacent irrigation levels.
For example, among the 108 samples in Irrigation_0, 94 samples were correctly identified,
13 samples were misidentified as Irrigation_180, and only one sample was misidentified
as Irrigation_300. Among the total number of 63 misclassified samples, 62 samples were
misclassified into adjacent levels, and only one sample was misclassified into a level far
away. This indicated that the identification of irrigation levels using multispectral images
had great potential and could be used for the recognition of crop water stress condition.

4. Discussion

The results in Tables 6–8 indicated that the PLS models had the best performance
for sugarcane CNC prediction based on different input combinations, which is consistent
with research into citrus CNC prediction by Liu et al. [63], grapevine LNC prediction by
Moghimi et al. [64], etc. The sugarcane CNC prediction model showed a highest accuracy
of R = 0.79 and RMSE = 0.11, which was also close to the previous studies by Liu et al.



Sensors 2022, 22, 2711 15 of 19

(R = 0.65, RMSE = 0.13) [63] for the citrus CNC prediction and Moghimi et al. (R = 0.74,
RMSE = 0.23) [64] for grapevine LNC prediction.

Compared to the five-band reflectance models in Table 6, VI-based models in Table 7
had obvious lower accuracy, indicating that taking VIs alone as the input would decrease
the prediction accuracy comparing to taking the entire five-band reflectance as the inputs. It
reflected that the VIs did not exert their characteristics, which should enhance the spectral
features and reduce environmental interference [65]. The main reason was that VIs do have
advantages when it comes to reducing the influence caused by uneven light (illumination)
and different backgrounds. However, in this study, only one image of a small field was
acquired in a very short time, meaning that the light difference and background difference
was not significant. This made the contribution of VIs less than that of the whole spectral
reflectance [66,67].

Regardless, VIs could still help to improve the modeling accuracy, and this was proved
in the results listed in Table 8. Among different combinations of input spectral features,
the five-band reflectance combined with the three VIs (SRPI, NPCI, and NGBDI) had
the highest accuracy in CNC prediction, with the Rv of 0.79 and the RMSEv of 0.11; this
was 8.2% higher in Rv, and 15.4% lower in RMSEv, than the five-band prediction model
(Rv = 0.73, RMSEv = 0.13).

Moreover, all three of those VIs were calculated from the visible bands (SRPI and NPCI
are both calculated from the green and red bands, while NGBDI is calculated from the blue
and green bands), indicating that the visible bands contained more sensitive information
for sugarcane CNC prediction. Ranjan et al. [68] explored the spectral characteristic of CNC
in crops, with characteristic wavelengths mainly in the range of 430 nm, 460 nm, 640 nm,
910 nm, 1510 nm, 1940 nm, 2060 nm, 2180 nm, 2300 nm, and 2350 nm. In this study, the
multispectral camera had a spectral range of about 450 nm–850 nm, which contained only
the visible sensitive bands. This proves the rationality that the VI selected in this study
is mainly concentrated in the visible range. As is generally known, different N inputs
could lead to different leaf pigment concentrations, leaf internal structures, and canopy
structures [64,69,70]. The visible bands are closely related to leaf pigments and canopy
structures and, as such, offer a great potential for N prediction.

Furthermore, this research also discovered that the irrigation levels could be effectively
classified based on the reflectance at red and blue, combined with the SRPI, NPCI and,
NGBDI, which were the spectral features in the visible bands. Indeed, the NIR bands are
generally more sensitive to plant water content. However, the most sensitive bands which
sit between 1480 and 1500 nm are out of the range of the multispectral camera used in
this study [69,70]. Insufficient water input could obviously affect plant metabolism, which
indirectly affects the leaf pigment concentrations. Therefore, the irrigation level recognition
model can achieve better classification accuracy by only using the three visible bands.

This study has achieved good results for CNC prediction and irrigation level classi-
fication based on multispectral remote sensing. Although research on crop monitoring
based on UAV multispectral imagery have been widely carried out for more 10 years, but it
is rarely applied in wide field management. Several bottlenecks need to be addressed at
present. Sozzi et al. [4] compared the advantages and disadvantages of satellite-, plane-, and
UAV-based multispectral imagery in variable rate N application in terms of cost, economic
benefit, optical quality, and usage scenarios. It was pointed out that although satellite-
and plane-based imagery have low optical quality and low resolution, they can provide
applicable variable N rate suggestions, and bring economic benefits for large-scaled farms
due to their relatively low cost. The UAV platform does have limits in acquisition cost
and flight coverage at present. However, as the development of UAV technology and
the increase requirement of UAVs, the cost can be significantly reduced and the battery
performance can be enhanced in the future. With the emergence of automated UAV base
stations and the reduction of image processing costs, the large-scale application of UAVs is
just around the corner. By then, UAV remote sensing technology can be widely accepted in
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farm-scale crop monitoring with its flexible and autonomous acquisition style, high-quality
image data, and low-cost validity.

5. Conclusions

High resolution multispectral images of a sugarcane field were collected by UAV, and
its ability to predict CNC and irrigation levels was evaluated. The main conclusions were
as follows:

1. Ten VIs were used to determine sensitive spectral features for CNC and irrigation
level prediction. The SRPI, NPCI, and NGBDI composed of the visible bands were
sensitive to the sugarcane CNC as well as the irrigation level, and had a notable
contribution to the accuracy improvement of the CNC prediction model.

2. Different modeling algorithms based on different spectral features were compared
in predicting sugarcane CNC. The PLS model had a clearly superior performance
than the BPNN and ELM models. It was also crucial to select proper features among
the band reflectance and VIs. The PLS model, based on the five-band reflectance
combined with SRPI, NPCI, and NGBDI, had the highest Rv of 0.79, and the lowest
RMSEv of 0.11.

3. Based on the correlation coefficients with irrigation levels, the red band, blue band,
SRPI, NPCI, and NGBDI were adopted as the variables to classify irrigation levels
based on SVM and BPNN, respectively. SVM reached an obviously superior perfor-
mance compared to BPNN, with its overall classification accuracy of 80.6%.

High resolution multispectral images have been demonstrated as effective for CNC
prediction and water irrigation level recognition. More adequate experiment could be con-
ducted to collect more samples at different growth stages in sugarcane field. Time- or period-
dependent prediction models could be studied to give users more accurate information.
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