Control Design for Uncertain Higher-Order Networked Nonlinear Systems via an Arbitrary Order Finite-Time Sliding Mode Control Law
Abstract
:1. Introduction
2. Problem Formulation
Definitions
3. Control Problem Design
4. Stability Analysis
5. Illustrative Example
5.1. Systems Description
5.2. Controller Design
5.3. The Simulation Results’ Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, W.; Beard, R.W. Distributed Consensus in Multi-Vehicle Cooperative Control; Springer: London, UK, 2008; Volume 27. [Google Scholar]
- Bliman, P.A.; Ferrari-Trecate, G. Average consensus problems in networks of agents with delayed communications. Automatica 2008, 44, 1985–1995. [Google Scholar] [CrossRef] [Green Version]
- Fax, J.A.; Murray, R.M. Information flow and cooperative control of vehicle formations. IFAC Proc. Vol. 2002, 35, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Cucker, F.; Smale, S. Emergent behavior in flocks. IEEE Trans. Autom. Control 2007, 52, 852–862. [Google Scholar] [CrossRef] [Green Version]
- Kar, S.; Moura, J.M.; Ramanan, K. Distributed parameter estimation in sensor networks: Nonlinear observation models and imperfect communication. IEEE Trans. Inf. Theory 2012, 58, 3575–3605. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Fu, M.; Zhang, H. Consensus control for high order continuous-time agents with communication delays. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 4458–4463. [Google Scholar]
- Dimarogonas, D.V.; Kyriakopoulos, K.J. On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Autom. Control 2007, 52, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Farritor, S.M.; Qadi, A.; Goddard, S. Localization and follow-the-leader control of a heterogeneous group of mobile robots. IEEE/ASME Trans. Mechatron. 2006, 11, 205–215. [Google Scholar] [CrossRef]
- Hou, Z.G.; Cheng, L.; Tan, M. Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2009, 39, 636–647. [Google Scholar]
- Bai, H.; Arcak, M.; Wen, J.T. Adaptive design for reference velocity recovery in motion coordination. Syst. Control Lett. 2008, 57, 602–610. [Google Scholar] [CrossRef]
- Khan, Q.; Akmeliawati, R. Robust cooperative tracking protocol design for networked higher order nonlinear systems via adaptive second order sliding mode. In Proceedings of the 2017 11th Asian Control Conference (ASCC), Gold Coast, Australia, 17–20 December 2017; pp. 2405–2410. [Google Scholar]
- Cheng, L.; Hou, Z.G.; Tan, M.; Lin, Y.; Zhang, W. Neural-network-based adaptive leader-following control for multiagent systems with uncertainties. IEEE Trans. Neural Netw. 2010, 21, 1351–1358. [Google Scholar] [CrossRef]
- Khoo, S.; Xie, L.; Man, Z. Robust finite-time consensus tracking algorithm for multirobot systems. IEEE/ASME Trans. Mechatron. 2009, 14, 219–228. [Google Scholar] [CrossRef]
- Das, A.; Lewis, F.L. Distributed adaptive control for synchronization of unknown nonlinear networked systems. Automatica 2010, 46, 2014–2021. [Google Scholar] [CrossRef]
- Das, A.; Lewis, F.L. Cooperative adaptive control for synchronization of second-order systems with unknown nonlinearities. Int. J. Robust Nonlinear Control 2011, 21, 1509–1524. [Google Scholar] [CrossRef]
- Yang, Z.J.; Takei, D. Robust event-triggered consensus tracking control of high-order uncertain nonlinear systems. Int. J. Robust Nonlinear Control 2022, 32, 2273–2299. [Google Scholar] [CrossRef]
- Yong, K.; Chen, M.; Wu, Q. Finite-Time Performance Recovery Strategy-based NCE Adaptive Neural Control for Networked Nonlinear Systems against DoS Attack. In Proceedings of the 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Victoria, BC, Canada, 10–12 May 2021; pp. 403–410. [Google Scholar]
- Basheer, A.; Rehan, M.; Tufail, M.; Razaq, M.A. A novel approach for adaptive H∞ leader-following consensus of higher-order locally Lipschitz multi-agent systems. Appl. Math. Comput. 2021, 395, 125749. [Google Scholar] [CrossRef]
- Cheng, H.; Xu, L.; Song, R.; Zhu, Y.; Fang, Y. Intelligent L2-L∞ Consensus of Multiagent Systems under Switching Topologies via Fuzzy Deep Q Learning. Comput. Intell. Neurosci. 2022, 2022, 4105546. [Google Scholar] [CrossRef]
- Ma, X.; Sun, F.; Li, H.; He, B. Neural-network-based integral sliding-mode tracking control of second-order multi-agent systems with unmatched disturbances and completely unknown dynamics. Int. J. Control. Autom. Syst. 2017, 15, 1925–1935. [Google Scholar] [CrossRef]
- Kamal, S.; Sachan, A.; Kumar, D.K.; Singh, D. Robust finite time cooperative control of second order agents: A multi-input multi-output higher order super-twisting based approach. ISA Trans. 2019, 86, 1–8. [Google Scholar] [CrossRef]
- Khan, Q.; Akmeliawati, R.; Khan, M.A. An integral sliding mode-based robust consensus control protocol design for electro-mechanical systems. Stud. Inform. Control 2018, 27, 147–154. [Google Scholar] [CrossRef]
- Wang, W.; Huang, J.; Wen, C.; Fan, H. Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots. Automatica 2014, 50, 1254–1263. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, Q.; Mehmood, A.; Kirmani, S.A.M.; Mechali, O. Neuro-adaptive fast integral terminal sliding mode control design with variable gain robust exact differentiator for under-actuated quadcopter UAV. ISA Trans. 2021, 120, 293–304. [Google Scholar] [CrossRef]
- Ullah, S.; Khan, Q.; Mehmood, A. Neuro-adaptive Fixed-time Non-singular Fast Terminal Sliding Mode Control Design for a Class of Under-actuated Nonlinear Systems. Int. J. Control 2022. [Google Scholar] [CrossRef]
- Zou, A.M.; Kumar, K.D.; Hou, Z.G. Distributed consensus control for multi-agent systems using terminal sliding mode and Chebyshev neural networks. Int. J. Robust Nonlinear Control 2013, 23, 334–357. [Google Scholar] [CrossRef]
- Sarand, H.G.; Karimi, B. Synchronisation of high-order MIMO nonlinear systems using distributed neuro-adaptive control. Int. J. Syst. Sci. 2016, 47, 2214–2224. [Google Scholar] [CrossRef]
- Zhang, H.; Lewis, F.L. Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica 2012, 48, 1432–1439. [Google Scholar] [CrossRef]
- El-Ferik, S.; Qureshi, A.; Lewis, F.L. Neuro-adaptive cooperative tracking control of unknown higher-order affine nonlinear systems. Automatica 2014, 50, 798–808. [Google Scholar] [CrossRef]
- Zuo, Z. non-singular fixed-time consensus tracking for second-order multi-agent networks. Automatica 2015, 54, 305–309. [Google Scholar] [CrossRef]
- Mishra, J.P.; Yu, X.; Jalili, M. Arbitrary-order continuous finite-time sliding mode controller for fixed-time convergence. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 1988–1992. [Google Scholar] [CrossRef]
- Fillipov, A. Differential equations with discontinuous right-hand sides. Am. Math. Soc. Trans. 1988, 62, 199–231. [Google Scholar]
- Edwards, C.; Spurgeon, S. Sliding Mode Control: Theory and Applications; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
0.5 | 0.2 | 0.02 | 0.22 | 0.12 | 0.32 | 0.12 | 0.02 |
0.3 | 0.32 | 0.42 | 0.22 | 0.12 | 0.12 | 0.21 | 0.22 |
0.01 | 0.22 | 0.22 | 0.32 | 0.22 | 0.32 | 0.12 | 0.42 |
0.5 | 0.02 | 0.42 | 0.22 | 0.2 | 0.52 | 0.42 | 0.52 |
15 | 21.2 | 15.2 | 15.2 | 25.2 | 8.2 | 15.2 | 6.2 |
10 | 20.2 | 25.2 | 81.2 | 14.2 | 4.2 | 25.2 | 23.2 |
5.4 | 25.2 | 15.2 | 35.2 | 45.2 | 18.2 | 15.2 | 25.2 |
5.6 | 2.2 | 15.2 | 5.2 | 25.2 | 8.2 | 22.2 | 6.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, M.; Khan, Q.; Ullah, S.; Syeda, T.M.; Algethami, A.A. Control Design for Uncertain Higher-Order Networked Nonlinear Systems via an Arbitrary Order Finite-Time Sliding Mode Control Law. Sensors 2022, 22, 2748. https://doi.org/10.3390/s22072748
Munir M, Khan Q, Ullah S, Syeda TM, Algethami AA. Control Design for Uncertain Higher-Order Networked Nonlinear Systems via an Arbitrary Order Finite-Time Sliding Mode Control Law. Sensors. 2022; 22(7):2748. https://doi.org/10.3390/s22072748
Chicago/Turabian StyleMunir, Maryam, Qudrat Khan, Safeer Ullah, Tayyaba Maryam Syeda, and Abdullah A. Algethami. 2022. "Control Design for Uncertain Higher-Order Networked Nonlinear Systems via an Arbitrary Order Finite-Time Sliding Mode Control Law" Sensors 22, no. 7: 2748. https://doi.org/10.3390/s22072748
APA StyleMunir, M., Khan, Q., Ullah, S., Syeda, T. M., & Algethami, A. A. (2022). Control Design for Uncertain Higher-Order Networked Nonlinear Systems via an Arbitrary Order Finite-Time Sliding Mode Control Law. Sensors, 22(7), 2748. https://doi.org/10.3390/s22072748