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Abstract: The authors proposed an arbitrary order finite-time sliding mode control (SMC) design
for a networked of uncertain higher-order nonlinear systems. A network of n + 1 nodes, connected
via a directed graph (with fixed topology), is considered. The nodes are considered to be uncertain
in nature. A consensus error-based canonical form of the error dynamics is developed and a new
arbitrary order distributed control protocol design strategy is proposed, which not only ensures the
sliding mode enforcement in finite time but also confirms the finite time error dynamics stability.
Rigorous stability analysis, in closed-loop, is presented, and a simulation example is given, which
demonstrates the results developed in this work.
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1. Introduction

In consensus, locally communicating agents reach an agreement which is mostly met
via distributed control strategies [1]. These agreements (consensus) finds very impressive
applications in formation control [2–4], sensor networks [5], smart grid applications [6], and
rendezvous control of non-holonomic agents [7,8]. In the context of consensus, cooperative
control has been one of the main areas of research, which is subdivided into two main classes
called the leaderless control (for instance; [9]), and the leader–follower control [10,11].
In the leader–follower systems, a distributed control strategy is generally designed for
the followers to follow the leader, which shares information through a properly defined
network topology. Thus far, the leader–follower problems and their solutions via various
methodologies, for electro-mechanical (or second-order) systems, is extensively addressed
in the existing literature (see, for example; [12–19]). Das and Lewis [14,15] developed
distributed laws of adaptive nature for the cooperative tracking of single and double
integrator systems in uncertain scenarios. Nonetheless, the requirement of knowing the
Laplacian matrix’s non-zero eigenvalue limits its applicability. Cooperative control of
higher-order uncertain networked systems was an expansion of [14,15] in Brunovsky form.

The authors, in [11], presented a second-order sliding mode control (SOSMC) technique
for the consensus of a network of higher-order nonlinear systems. Their presented results
were excellent. However, a distributed law was developed to compensate the bounded
uncertainties caused by inputs and states, which raises theoretical concerns. Furthermore,
asymptotic convergence does not ensure consensus accuracy. In [20], second-order linear
networked systems were designed to compensate matched and mismatched uncertain
disturbances. The researchers, in [13], studied a second-order linear network system under
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an unknown disturbance. Furthermore, second-order SMC based distributed laws were
proposed for uncertain second-order linear networked systems in [21] that resulted in
finite time error stabilisation. Their presented results were satisfactory; nevertheless, they
were confined to linear systems with matching uncertainty. Furthermore, this algorithm
demonstrated sensitivity to perturbations during the reaching phase.

An integral SMC law with an extended observer and neural networks was developed
to estimate and compensate the uncertain disturbance of matched type, respectively.
A distributed control approach based on integral sliding modes (ISM) and subject to fixed
topology and the directed graph was devised for uncertain nonlinear networked systems
under matched uncertainties [22]. This technique alleviates the reaching phase, resulting
in increased robustness. It was, nonetheless, confined to electromechanical systems. In
terms of applications, Ref. [23] proposed adaptive formation control algorithms for a class
of non-holonomic mobile robots. These approaches mainly focused on the stability of
a network of linear and nonlinear second-order agents even in bounded uncertainties.
However, their performance can be affected due to the existence of all system dynamics in
the sliding manifold.

To maintain the convergence of finite-time consensus mismatches at zero, a distributed
control system based on a terminal sliding mode control (TSMC) technique was devised.
However, the existence of the singularity in the surface may reduce its significance [24,25].
In [12], an uncertain network of first-order Multi Input Multi-Output (MIMO) systems
was focused where neural networks (NNs) were utilized for the uncertain dynamic
estimation. In order to alleviate the approximation error, a robustness signal was also
used. Nevertheless, it was ultimately bounded. The control researcher, in [26], investigated
uncertain MIMO second-order networked systems with a fixed topology and undirected
graph and developed a distributed TSMC, based on Chebyshev Neural Networks (CNNs),
to compensate the external disturbances and uncertain dynamics. An approach based on
NNs was designed to estimate the uncertain input channels and drift terms and compensate
the uncertainties. Nevertheless, this strategy was influential in the asymptotic stability of
tracking error dynamics to the limited neighborhood of the origin. Ref. [27] investigated
networked MIMO higher-order systems for synchronization applications. While applying
NNs, these MIMO agents were controlled through the unknown non-singular control gains.
The limits of the error dynamics may not have been easily decreased by modifying the
controller gains. The control gains must be properly selected to guarantee the asymptotic
convergence. Ref. [28]’s methodology was enhanced in [29] by including a neuro-adaptive
sliding mode strategy. However, this led to several limitations, such as the fact that the
boundedness of the approximated NNs’ weights cannot always be ensured using the
proposed tuning laws. Additionally, ensuring the boundedness of the control input is
quite challenging.

At this stage, it was realized to develop a terminal sliding mode like a strategy that
must confirm finite time error dynamics convergence and show robustness to cross-coupling
of the agents and matched disturbances from the very beginning. Therefore, this paper
studies the cooperative tracking control of higher-order nonlinear systems subject to
uncertainties like parametric variations and matched bounded disturbances. The distributed
control laws are developed on novel sliding surfaces of the error dynamics. The designed
sliding manifold, which involves some discontinuous terms of the errors, seems analogous
to the proportional-integral type, which helps in the elimination of the critical reaching
phase. Consequently, robustness is guaranteed from the very start. Having established
sliding modes, the error dynamics seem analogous to terminal attractor like in [30] which
exhibits finite convergence. Thus, all the error dynamics converge in finite time, which
results in high precision. In addition, our proposed work solves the theoretical shortcoming
of [11] and the uncertain terms are now depending on the states information of the agents.
The rest of the paper is organised as follows: Section 2 is about the problem formulation and
mathematical preliminaries. In Sections 3 and 4, the detailed controller design procedure
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and the stability analysis are discussed, respectively. The illustrative example is mentioned
in Section 5. Finally, Section 6 concludes the article.

2. Problem Formulation
Definitions

In this study, a network of n + 1 nodes is considered which share information via a
directed graph (with fixed topology). These networked nodes include one leader and n
followers. The followers are assumed under the action of uncertainties. The following state
space equations represent the dynamical model of an ith follower:

ẋij =xij+1

ẋin = fi(xi) + gi(xi)ui + ∆i(xi, t)
(1)

where i = 1, 2, . . . , n, j = 1, 2, . . . , n− 1, xi = [xi1, xi2, . . . , xin]
T ∈ <n is the measurable state

vector, ∆i(xi, t) is the uncertainty, ui represents the control input which is to be applied
to the system, and fi and gi are the system distribution and drift functions, respectively.
For the sake of the detailed description, the following assumptions are made:

Assumption 1. It is assumed that gi(xi) ∀ xi ∈ <n is non singular, which will guarantee the
controllability of each network agent.

Assumption 2. The uncertainty ∆i(xi, t) is assumed to be norm bounded i.e.,

||∆i(xi, t)|| ≤ Ci (2)

where i = 1, 2, . . . , n, ||.||, and Ci represents Euclidean norm and a positive constant, respectively.

The leader is governed by the following state space model:

ẋ0r =x0r+1,

ẋ0n = f0(t, x0)
(3)

where r = 1, 2 . . . , n − 1, x0 = [x01, x02, . . . , x0n]
T ∈ <n is state vector of the leader and

f0(t, x0) is the continuous bounded function, which derive the leader. Suppose that
the origin is an equilibrium for f0(t, x0) i.e., f0(t, 0) = 0 and the nonlinear function
f0(t, x0) (leader driving force) is considered to be bounded and smooth. The vector set
V = {V0,V1, . . . ,Vn} represents the relationship between the leader and the follower nodes
while G = {V , E} is the related directed graph in which node i can transfer data with
node j, but node j cannot send back the information to node i. On the other hand, in an
undirected graph, both way communication takes place. The mathematical expression for
the adjacency matrix is given as follows:

Ai =


0 0 . . . 0

a10 a11 . . . a1n
a20 a21 . . . a2n
... . . .

. . .
...

an0 an1 . . . ann


Subgraph Ḡ = {V̄ , Ē} can be obtained by dropping the first row and first column of

the above adjacency matrix; thus, one has
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Āi =


a11 a12 . . . a1n
a21 a22 . . . a2n

. . . . . .
. . .

...
an1 an2 . . . ann


The Laplacian matrix for the followers topology is defined to be L̄ = D̄− Ā ∈ <n×n,

where D = diag[d̄1, d̄2, . . . , d̄n] with d̄i = ∑n
j=1 aij. In addition, note that aij = 0 if (Vj,Vi) 6∈

E and aij = 0 otherwise. The matrix B̄ = diag[b1, b2, . . . , bn] shows the connection between
the followers and the leader with bi = 0 if the follower is not connected to the leader and
bi = 1 in case of the connection to the leader. A is time-invariant throughout the paper.
Since we are considering a directed graph, matrix A is not necessarily to be symmetric.
In contrast, in the case of the undirected graph, the symmetry is necessary for A. L̄ + B̄
must be non-singular for the distributed control of all the networked agents. Similarly, D̄
remains non-singular.

The main objective of the current work is that the follower states must have consensus
with the leader states (in other words, the followers must follow the leader). In order to
complete the task, the consensus error between the leader and the ith follower must be
forced to zero. Therefore, the consensus error is defined as follows:

eik =
n

∑
j=1,j 6=i

aij(xik − xjk) + bi(xik − x0k) (4)

where k = 1, 2, .., n. Based on the consensus error Equation (4), the consensus error
dynamics can be expressed as follows:

ėi1 = ei2

ėi2 = ei3

...

ėin =

(
n

∑
j=1,j 6=i

aij + bi

)(
fi(x) + gi(x)ui

)
−

n

∑
j=1,j 6=i

aij

(
f j(x) + gj(x)uj

)
− bi f0(x, t) + hi(x, t)

(5)

with

hi(x, t) =

(
n

∑
j=1,j 6=i

aij + bi

)
∆i(x, t)−

n

∑
j=1,j 6=i

aij∆j(x, t)

representing the uncertainty terms in lumped form. In this equation, it is clearly shown
that the uncertainties depends only on the system states.

Remark 1. The compact form of (5) can also be written in the following form:

Σ̇1 =Σ2

Σ̇2 =Σ3

...

Σ̇n =
(

L̄ + B̄
)(

f (x) + g(x)u + ∆(x, t)− 1̄ f0(t, x)
)

(6)

where
Σ1 = [e11, e21, e31, . . . , en1],

Σ2 = [e12, e22, e32, . . . , en2],
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...

Σn = [e1n, e2n, e3n, . . . , enn],

and f (x) = [ f1(x1), f2(x2), . . . , fn(xn)]T , g(x) = diag[g1(x1), g2(x2), . . . , gn(xn)],
1̄ = [11 . . . 1]T , u = [u1, u2, . . . , un]T and ∆(t, x) = [∆1(t, x1), ∆2(t, x2), . . . , ∆n(t, xn)]T .

Now, the problem at hand becomes an error regulation problem which will, in other
words, provide a consensus among the leader and n followers. The task can be accomplished
by a robust nonlinear sliding mode strategy which will nullify the effects of uncertain terms
and will ensure finite time error dynamics convergence. In the following section, a novel
finite-time sliding mode strategy is presented.

3. Control Problem Design

The main task here is to drive the error dynamics (5) states to the equilibrium in
the presence of disturbances. To achieve this goal, a novel sliding surface based sliding
mode control protocol is presented. The proposed sliding surface helps in the finite time
convergence of the consensus error dynamics (5) to equilibrium and also establishes finite
time sliding mode. The newly proposed sliding surface, for follower i, can be defined
as follows:

si = (ein +
n−1

∑
j=1

aijeij) +
∫ t

0

n

∑
j=1

(
bij|eij|αij sign(eij) + cij|eij|βij sign(eij)

)
dτ (7)

In expanded form, this surface can be defined as follows:

si = ein + ai1ei1 + ai2ei2 + . . . + ai(n−1)ei(n−1)

+
∫ t

0
(bi1|ei1|αi1 sign(ei1) + . . . + bin|ein|αin sign(ein)

+ci1|ei1|βi1 sign(ei1) + . . . + cin|ein|βin sign(ein)
)

dτ

(8)

Remark 2. In the above Equation (8), the terms αi and βi are chosen as follows [31]:

αi−1 =
αiαi+1

2αi+1 − αi
, βi =

βiβi+1

2βi+1 − βi

where αn+1 = 1, αn = α and βn+1 = 1, βn = β, α, β ∈ <. In addition, αi ∈ (0, 1) and
βi ∈ (1, 1+ ∈) where ∈> 0.

By taking the derivative of the above equation, one may obtain the following expression:

ṡi = ėin + ai1 ėi1 + ai2 ėi2 + . . . + ai(n−1) ėi(n−1)

+ (bi1|ei1|αi1 sign(ei1) + . . . + bin|ein|αin sign(ein)

+ci1|ei1|βi1 sign(ei1) + . . . + cin|ein|βin sign(ein)
) (9)

Substituting the values from (5) in (9), it becomes as follows:
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ṡi = (
n

∑
j=1,j 6=i

aij + bi)( fi(x) + gi(x)ui)

−
n

∑
j=1,j 6=i

aij( f j(x) + gj(x)uj)− bi f0(x, t) + hi(x, t)

+ ai1ei2 + ai2ei3 + . . . + ai(n−1)ein

+ bi1|ei1|αi1 sign(ei1) + . . . + bin|ein|αin sign(ein)

+ ci1|ei1|βi1 sign(ei1) + . . . + cin|ein|βin sign(ein)

(10)

Now, our objective is to calculate the equivalent control law [29], to ensure the
Filippove sense solutions [32] in sliding modes. Posing ṡi = 0 and calculating for ui,
while, assuming hi(x, t) = 0, one may obtain

ui(eq) =
(
(

n

∑
j=1,j 6=i

aij + bi)gi

)−1
×
(
−(

n

∑
j=1,j 6=i

aij + bi) fi

+
n

∑
j=1,j 6=i

aij( f j + gjuj) + bi f0(x, t)

− ai1ei2 − ai2ei3 − . . .− ai(n−1)ein

− bi1|ei1|αi1 sign(ei1)− . . .− bin|ein|αin sign(ein)

−ci1|ei1|βi1 sign(ei1)− . . .− cin|ein|βin sign(ein)
)

(11)

This control component governs the system trajectories exactly on the sliding surface
si = 0 [1]. To ensure the robustness against uncertainties of a matched kind, the overall
control law is considered as an algebraic sum of the aforementioned equivalent control
component and a discontinuous control component i.e.,

ui = ui(eq) + ui(dis) (12)

where
ui(dis) = −Kisign(si) (13)

with Ki being the switching gain. Thus, the final distributed control protocol can be
obtained by putting (11) and (13) in (12). The control law defined in (12) ensures the
convergence of system states to zero in finite time. The following stability analysis presents
the detailed presentation of sliding mode enforcement and the finite-time convergence of
the system states.

4. Stability Analysis

Now, at this stage, it is necessary to present the stability of the proposed control
protocol in a close loop under the effect of the uncertainty. Therefore, the following theorem
is stated.

Theorem 1. The finite sliding mode can be enforced along the nonlinear sliding surface (8) by the
control protocol (12). If the switching gain is chosen as follows

Ki ≥ |hi(x, t)|+ η,

the trajectories of (5) also converge in finite time to the equilibrium.

Proof. A Lyapunov function of the following form is considered to prove the theorem:

vi(si) =
1
2

s2
i (14)
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The time derivative of (14) along (10) becomes

v̇i(si) = si ṡi

v̇i(si) =si

(( n

∑
j=1,j 6=i

aij + bi

)
( fi(x) + gi(x)ui) −

n

∑
j=1,j 6=i

aij( fi(x) + gi(x)ui)

− bi f0(x, t) + hi(x, t) + ai1ei2 + ai2ei3 + . . . + ai(n−1)ein

+ bi1|ei1|αi1 sign(ei1) + . . . + bin|ein|αin sign(ein)

+ ci1|ei1|βi1 sign(ei1) + . . . + cin|ein|βin sign(ein)
)

(15)

Incorporating (12) in (15) (with components in (11) and (13)), it reduces to

v̇i(si) = si(hi(x, t)− Kisign(si))

v̇i(si) = sihi(x, t)− siKisign(si) (16)

Using the identity sisign(si) = |si|, (16) becomes

v̇i(si) = sihi(x, t)− Ki|si|

v̇i(si) ≤ |si||hi(x, t)| − Ki|si|

v̇i(si) ≤ −|si|(Ki − |hi(x, t)|) (17)

The sliding mode along (8) can be ensured, if one chooses

Ki − |hi(x, t)| ≥ ηi > 0 (18)

Ki ≥ |hi(x, t)|+ ηi

where ηi refers to small positive constants. Thus, using (18), (17) becomes

v̇i = −ηi|si|

v̇i ≤ −
√

2ηivi
1/2 (19)

The time ts taken for the trajectory of the proposed system to reach the sliding surface
can be found by integrating (19) as

ts ≤
1

2η̄i
ln
(

η̄iv
1
2 si(0)

)
: where η̄i =

√
2ηi

This equation certifies the finite time convergence of sliding mode along (8) [33]. The
establishment of sliding mode along (8) means that the system trajectories now evolve on
the manifold si = 0. Thus, one may have

ein + ai1ei1 + ai2ei2 + . . . + ai(n−1)ei(n−1)

+
∫ t

0
(bi1|ei1|αi1 sign(ei1) + . . . + bin|ein|αin sign(ein)

+ci1|ei1|βi1 sign(ei1) + . . . + cin|ein|βin sign(ein)
)

dτ = 0

(20)

Equation (20) can also be written as
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ėin + bin|ein|αin sign(ein) + cin|ein|βin sign(ein)

+ (ai(n−1) ėi(n−1) + bi(n−1)|ei(n−1)|
αi(n−1) sign(ei(n−1))

+ ci(n−1)|ei(n−1)|
βi(n−1) sign(ei(n−1)) + . . . + ai1 ėi1

+ bi1|ei1|αi1 sign(ei1) + ci1|ei1|βi1 sign(ei1) = 0

(21)

Equation (21) holds only if

ėin + bin|ein|αin sign(ein) + cin|ein|βin sign(ein) = 0

ėi(n−1) +
bi(n−1)

ai(n−1)
|ei(n−1)|

αi(n−1) sign(ei(n−1))

+
ci(n−1)

ai(n−1)
|ei(n)|

βi(n−1) sign(ei(n−1)) = 0

...

ėi1 +
bi1
ai1
|ei1|αi1 sign(ei1) +

ci1
ai1
|ei1|βi1 sign(ei1) = 0 (22)

These equations in (22) are finite time stable terminal attractors [30], which confirm
that eij → 0 in finite time and stays at zero for all subsequent times. This proves the
theorem.

5. Illustrative Example

This design strategy presented above is validated in this section via the simulation
study of a numerical example. The example is conducted according to the topology shown
in Figure 1, which consists of one leader and four followers. The leader and the followers,
considered here, are governed by third-order uncertain systems. In addition, the agents
are operated under uncertainties of the matched kind. The descriptions of the considered
systems are presented in the following study.

Figure 1. Topology of the system network of one leader and four followers.

5.1. Systems Description

The dynamics of the leader are

ẋ01 =x02

ẋ02 =x03

ẋ03 =− x02 − 2x03 + 1 + 3 sin(2t) + 2 cos(2t)

(23)
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The governing equations of the followers are written as follows:

ẋ13 = x12 sin(x11) + cos2(x13) + (0.1 + x2
12)u1 + ξ1

ẋ23 = −x21x22 + 0.01x21 − 0.01x2
21 + (1 + sin2(x21))u2 + ξ2

ẋ33 = x32 + sin(x33) + (1 + cos2(x32))u3 + ξ3

ẋ43 = −3(x41 + x42 − 1)2(x41 + x42 + x43 − 1)− x42

− x43 + 0.5 sin(2t) + cos(2t) + (1 + 0.5x2
42)u4 + ξ4

(24)

where the term ξi represents the matched uncertainties in the follower dynamics. That is,
ξ1 is matched uncertainty in follower 1 and so on.

Since the graph is directed, so the Laplacian and adjacency matrices are written
as follows:

A =


0 0 0 0 0
0 0 1 1 1
0 0 0 1 0
1 0 1 0 0
1 0 0 0 0

 L̄ =


3 −1 −1 −1
0 1 −1 0
0 −1 1 0
0 0 0 0


and

B̄ = diag[0, 0, 1, 1]

The main task here is that the followers should follow the leader trajectory. For achieving
this task, one needs to design a controller by following the steps mentioned in the previous section.

5.2. Controller Design

Since four followers and one leader are considered, the consensus errors, which will
be steered to zero, are therefore defined as follows:

eij =
4

∑
j=1

aij(xi1 − xj1) + bi(xi1 − x01); i = 1, 2, 3, 4

The related sliding manifolds are defined as follows:

si = ei4 + ai3ei3 + ai2ei2 + ai1ei1+∫ t

0
bi1|ei1|αi1 sign(ei1) + . . . + bi4|ei4|αi4 sign(ei4)

+ ci1|ei1|βi1 sign(ei1) + . . . + ci4|ei4|βi4 sign(ei4)dτ

(25)

where i = 1, 2, 3, 4.
The expression for controllers are given below

u1 =
(
(

4

∑
j=1,j 6=i

a1j + b1)gi

)−1
×
(
−(

4

∑
j=1,j 6=i

a1j + b1) f1 +
4

∑
j=1,j 6=i

a1j( f1 + g1u1)

+ b1 f0(x, t)− a11e12 − a12e13 − . . .− a13e14

− b11|e11|α11 sign(e11)− . . .− b14|e14|α14 sign(e14)

−c11|e11|β11 sign(e11)− . . .− c14|e14|β14 sign(e1n)
)

− u1(dis)

(26)
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u2 =
(
(

4

∑
j=1,j 6=i

a2j + b2)g2

)−1
×
(
−(

4

∑
j=1,j 6=i

a2j + b2) f2+
4

∑
j=1,j 6=i

a2j( f2 + g2u2)

+ b2 f0(x, t)− a21e22 − a22e23 − . . .− a23e24−
b21|e21|α21 sign(e21)− . . .− b24|e24|α24 sign(e24)−

c21|e21|β21 sign(e21)− . . .− c24|e24|β24 sign(e24)
)

− u2(dis)

(27)

u3 =
(
(

4

∑
j=1,j 6=i

a3j + b3)g3

)−1
×
(
−(

4

∑
j=1,j 6=i

a3j + b3) f3 +
4

∑
j=1,j 6=i

a3j( f3 + g3u3)

+ b3 f0(x, t)− a31e32 − a32e33 − . . .− a33e34−
b31|e31|α31 sign(e31)− . . .− b34|e34|α34 sign(e34)−

c31|e31|β31 sign(e31)− . . .− c34|e34|β34 sign(e34)
)

− u3(dis)

(28)

u4 =

(
(

4

∑
j=1,j 6=i

a4j + b4)g4

)−1

×
(
−(

4

∑
j=1,j 6=i

a4j + b4) f4 +
4

∑
j=1,j 6=i

a4j( f4 + g4u4)

+ b4 f0(x, t)− a41e42 − a42e43 − . . .− a43e44−
b41|e41|α41 sign(e41)− . . .− b44|e44|α44 sign(e44)−

c41|e41|β41 sign(e41)− . . .− c44|e44|β44 sign(e44)
)

− u4(dis)

(29)

These distributed control algorithms are used in the closed-loop, and the consensus
with the leader trajectories is met, which will be discussed below.

5.3. The Simulation Results’ Discussion

The network of the four followers agents and one leader, which we are sharing
information through the network topology shown in Figure 1 are simulated under the
action of the distributed control protocols designed above. The leader and followers
were initialized from different initial conditions, and the controller’s gains were chosen
according to the values reported in Table 1. The simulations are performed in the MATLAB
environment while using an S-function. The numerical solver is used with a fixed step
Euler Method with a step size of 0.01 s.

All the followers were operated under the influence of time-varying sinusoidal disturbances
to show the robustness of the proposed distributed control protocols. The consensus in positions,
velocities, and accelerations among the followers and leader is displayed in Figures 2–4,
respectively. The corresponding position errors convergence, velocities error convergence,
and accelerations’ errors convergence are shown in Figures 5–7, respectively. It is obvious that
the consensus armong the states of leader and followers is quite fascinating even in the presence
of disturbances.
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Table 1. Parameters of the controllers used in the simulation.

α11 α12 α13 α14 α21 α22 α23 α24

0.5 0.2 0.02 0.22 0.12 0.32 0.12 0.02

α31 α32 α33 α34 α41 α42 α43 α44

0.3 0.32 0.42 0.22 0.12 0.12 0.21 0.22

β11 β12 β13 β14 β21 β22 β23 β24

0.01 0.22 0.22 0.32 0.22 0.32 0.12 0.42

β31 β32 β33 β34 β41 β42 β43 β44

0.5 0.02 0.42 0.22 0.2 0.52 0.42 0.52

b11 b12 b13 b14 b21 b22 b23 b24

15 21.2 15.2 15.2 25.2 8.2 15.2 6.2

b31 b32 b33 b34 b41 b42 b43 b44

10 20.2 25.2 81.2 14.2 4.2 25.2 23.2

c11 c12 c13 c14 c21 c22 c23 c24

5.4 25.2 15.2 35.2 45.2 18.2 15.2 25.2

c31 c32 c33 c34 c41 c42 c43 c44

5.6 2.2 15.2 5.2 25.2 8.2 22.2 6.2
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Figure 2. Position consensus of the four followers with leader position trajectory.
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Figure 3. Velocity consensus of the four followers with leader velocity trajectory.

Figure 8 shows the control effort history of each control input. Under the proposed
control algorithm, one may obtain almost noise-free control, which reduces chattering
(because the noises also cause chattering). The relevant sliding manifolds, which ensure
that sliding mode from the very start (as shown in Figure 9) converges to zero in finite time,
which ensures the robustness of the designed controller. Having looked at the simulation
results, it is evident that the newly designed control protocols offer excellent benefits in
terms of robust consensus established from the beginning, which is an appealing attribute
of the proposed design. Hence, it is important to conclude that this protocol design is
suitable for the consensus of higher-order systems operating under uncertain conditions.
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Figure 4. Acceleration consensus of the four followers with leader acceleration trajectory.
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Figure 5. Position errors’ convergence.
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Figure 6. Velocity errors’ convergence.
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Figure 7. Acceleration errors’ convergence.
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Figure 8. Control inputs’ history.
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Figure 9. The sliding manifolds convergence from the very start time.

6. Conclusions

In this paper, a network of higher-order nonlinear uncertain agents was considered.
The network topology was fixed and was based on a directed graph. The main task was
to meet consensus among the leader and n followers. For this purpose, consensus error
dynamics were developed, and a novel sliding surface, analogous to proportional-integral
type, was considered. The designed control protocol was capable enough to establish
sliding mode along the designed sliding surface from the very beginning. In sliding mode,
the error dynamics evolved with full states, which were governed by terminal attractors [27].
This confirmed the finite-time consensus errors convergence to equilibrium. This finite
time convergence generally results in high precision. In addition, robustness was enhanced
from the very beginning because of the reaching phase elimination. Rigorous mathematical
stability analysis is presented, and the simulation results are presented to illustrate the
benefits of the newly designed distributed control protocols. The results confirmed that the
newly designed law is an interesting candidate for higher-order uncertain systems.
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