Design, Fabrication and Analysis of Magnetorheological Soft Gripper
Abstract
:1. Introduction
2. Magnetoreohogical Materials
2.1. Preparation of Magnetorheological Elastomers
2.2. Permeability Estimation
2.3. Damping Properties
2.4. Magnetic Attraction Force Experiment
2.5. Tensile Strength Studies
3. Soft Magnetorheological Gripper
3.1. Construction
3.2. Experiments
- Gripper raised with closed fingers;
- Gripper fingers opened by turning on electromagnet;
- Gripper lowered to load level;
- Gripper fingers closed by turning off electromagnet;
- Gripper raised with mass;
- Gripper fingers opened to release mass.
3.2.1. Camera System
{ "doAF" : 0, "y" : 0, "x" : 0, "focus" : 0, "zoom" : 0, "imgNo" : 5, "imgName" : "test_" }where particular fields denote the following functionality:
- doAF—perform autofocus algorithm;
- x,y—set pan/tilt position;
- focus—set focus position;
- zoom—set zoom position;
- imgNo—set experiment number (included in image names in file server).
3.2.2. Gripper Visual Analysis Algorithm
- Closed gripper in the base position (Figure 12a);
- Opened gripper in the base position (Figure 12b);
- Opened gripper in the catching position (Figure 12c);
- Closed gripper in the catching position (Figure 12d);
- Closed gripper in the initial lifting position (Figure 12e);
- Closed gripper in the goal lifting position (Figure 12f).
3.2.3. Gripper Visual Analysis Algorithm Result Analysis
3.3. Gripping Objects with Varying Shape
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, K.J.; Tadokoro, S. Electroactive Polymers for Robotic Applications. In Artificial Muscles and Sensors; Springer: London, UK, 2007. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Wang, M.Y. Design Optimization of Soft Robots: A Review of the State of the Art. IEEE Robot. Autom. Mag. 2020, 27, 27–43. [Google Scholar] [CrossRef]
- Rosset, S.; Araromi, O.A.; Schlatter, S.; Shea, H.R. Fabrication Process of Silicone-based Dielectric Elastomer Actuators. JoVE 2016, 108, e53423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vicente, J.; Klingenberg, D.; Hidalgo-Alvarez, R. Magnetorheological fluids: A review. Soft Matter 2011, 7, 3701–3710. [Google Scholar] [CrossRef]
- Carlson, J.D.; Jolly, M.R. MR fluid, foam and elastomer devices. Mechatronics 2000, 10, 555–569. [Google Scholar] [CrossRef]
- Böse, H.; Gerlach, T.; Ehrlich, J. Magnetorheological elastomers—An underestimated class of soft actuator materials. J. Intell. Mater. Syst. Struct. 2021, 32, 1550–1564. [Google Scholar] [CrossRef]
- Yarali, E.; Farajzadeh, M.A.; Noroozi, R.; Dabbagh, A.; Khoshgoftar, M.J.; Mirzaali, M.J. Magnetorheological elastomer composites: Modeling and dynamic finite element analysis. Compos. Struct. 2020, 254, 112881. [Google Scholar] [CrossRef]
- Kashima, S.; Miyasaka, F.; Hirata, K. Novel soft actuator using magnetorheological elastomer. IEEE Trans. Magn. 2012, 48, 1649–1652. [Google Scholar] [CrossRef]
- Guan, X.; Dong, X.; Ou, J. Magnetostrictive effect of magnetorheological elastomer. J. Magn. Magn. Mater. 2008, 320, 158–163. [Google Scholar] [CrossRef]
- Bar-Cohen, Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges; SPIE Press: Bellingham, WA, USA, 2001. [Google Scholar]
- Carpi, F.; Anderson, I.; Bauer, S.; Frediani, G.; Gallone, G.; Gei, M.; Graaf, C.; Jean-Mistral, C.; Kaal, W.; Kofod, G.; et al. Standards for dielectric elastomer transducers. Smart Mater. Struct. 2015, 24, 105025. [Google Scholar] [CrossRef] [Green Version]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft Robotic Grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rateni, G.; Cianchetti, M.; Ciuti, G.; Menciassi, A.; Laschi, C. Design and development of a soft robotic gripper for manipulation in minimally invasive surgery: A proof of concept. Meccanica 2015, 50, 2855–2863. [Google Scholar] [CrossRef] [Green Version]
- Navas, E.; Fernández, R.; Sepúlveda, D.; Armada, M.; Gonzalez-de Santos, P. Soft Grippers for Automatic Crop Harvesting: A Review. Sensors 2021, 21, 2689. [Google Scholar] [CrossRef] [PubMed]
- Pagoli, A.; Chapelle, F.; Corrales-Ramon, J.A.; Mezouar, Y.; Lapusta, Y. Review of soft fluidic actuators: Classification and materials modeling analysis. Smart Mater. Struct. 2021, 31, 013001. [Google Scholar] [CrossRef]
- Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd, R.F.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C.J.; Whitesides, G.M. Pneumatic Networks for Soft Robotics that Actuate Rapidly. Adv. Funct. Mater. 2014, 24, 2163–2170. [Google Scholar] [CrossRef]
- Jain, R.; Datta, S.; Majumder, S. Design and control of an IPMC artificial muscle finger for micro gripper using EMG signal. Mechatronics 2013, 23, 381–394. [Google Scholar] [CrossRef]
- Acome, E.; Mitchell, S.K.; Morrissey, T.G.; Emmett, M.B.; Benjamin, C.; King, M.; Radakovitz, M.; Keplinger, C. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 2018, 359, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Eshaghi, M.; Ghasemi, M.; Khorshidi, K. Design, manufacturing and applications of small-scale magnetic soft robots. Extrem. Mech. Lett. 2021, 44, 101268. [Google Scholar] [CrossRef]
- Erb, R.M.; Martin, J.J.; Soheilian, R.; Pan, C.; Barber, J.R. Actuating Soft Matter with Magnetic Torque. Adv. Funct. Mater. 2016, 26, 3859–3880. [Google Scholar] [CrossRef]
- Do, T.N.; Phan, H.; Nguyen, T.Q.; Visell, Y. Miniature Soft Electromagnetic Actuators for Robotic Applications. Adv. Funct. Mater. 2018, 28, 1800244. [Google Scholar] [CrossRef]
- Ullrich, F.; Dheman, K.S.; Schuerle, S.; Nelson, B.J. Magnetically actuated and guided milli-gripper for medical applications. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1751–1756. [Google Scholar] [CrossRef]
- Pettersson, A.; Davis, S.; Gray, J.; Dodd, T.; Ohlsson, T. Design of a magnetorheological robot gripper for handling of delicate food products with varying shapes. J. Food Eng. 2010, 98, 332–338. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.S.; Choi, K.; Nam, J.D.; Choi, H.J. Magnetorheological Elastomers: Fabrication, Characteristics, and Applications. Materials 2020, 13, 4597. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, L.; Li, W.; Wen, S.; Jiang, L.; Jerrams, S.; Ma, J.; Chen, S. The fabrication and properties of magnetorheological elastomers employing bio-inspired dopamine modified carbonyl iron particles. Smart Mater. Struct. 2020, 29, 055005. [Google Scholar] [CrossRef]
- Arducam PTZ Camera. Available online: https://www.arducam.com/product/arducam-8mp-pan-tilt-zoom-ptz-camera-with-base-for-raspberry-pi-4-3b-3-2/ (accessed on 3 February 2022).
- Romero-Ramirez, F.; Muñoz-Salinas, R.; Medina-Carnicer, R. Speeded up Detection of Squared Fiducial Markers. Image Vis. Comput. 2018, 76, 38–47. [Google Scholar] [CrossRef]
Name | Value |
---|---|
beam length | 60 mm |
beam width | 15 mm |
beam thickness | 2 mm |
winding length L | 40 mm |
winding radius | 2 mm |
winding thickness z | 0.6 mm |
winding width | 36 mm |
Name | Length (L) | Thickness (z) |
---|---|---|
nominal | 40 mm | 0.6 mm |
longer | 42 mm | 0.6 mm |
shorter | 38 mm | 0.6 mm |
thinner | 40 mm | 0.5 mm |
thicker | 40 mm | 0.7 mm |
Coil | Fe Content (%) | L (μH) | ||
---|---|---|---|---|
A | - | 22.78 | 1.0 | 1.0 |
B | - | 25.10 | 1.0 | 1.0 |
A | 30 | 23.52 | 3.2 | 1.12 |
B | 30 | 26.10 | 4.0 | 1.16 |
A | 50 | 25.05 | 10.0 | 1.47 |
B | 50 | 27.58 | 9.9 | 1.46 |
A | 70 | 28.73 | 26.1 | 2.31 |
B | 70 | 31.50 | 25.5 | 2.28 |
Sample | Fe Content (%) | Settling Time (s) | (1/s) | (rad/s) |
---|---|---|---|---|
1 | 30 | 11.2 | 0.29 | 28.5 |
2 | 30 | 11.2 | 0.29 | 27.6 |
1 | 50 | 8.9 | 0.45 | 30.4 |
2 | 50 | 8.0 | 0.48 | 31.6 |
1 | 70 | 6.5 | 0.63 | 33.9 |
2 | 70 | 6.6 | 0.56 | 30.2 |
Fe Content (%) | (MPa) | (MPa) | (%) |
---|---|---|---|
0 | |||
30 | |||
50 | |||
70 |
Dimensions | Wood Ball | Game Pawn | Popmpon | Pencil Sharpener |
---|---|---|---|---|
Weight () | 2.79 | 0.8 | 0.18 | 2.06 |
Diameter (mm) | 20 | 25.5 | 16 | 26 |
Height (mm) | - | 6.5 | - | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernat, J.; Gajewski, P.; Kapela, R.; Marcinkowska, A.; Superczyńska, P. Design, Fabrication and Analysis of Magnetorheological Soft Gripper. Sensors 2022, 22, 2757. https://doi.org/10.3390/s22072757
Bernat J, Gajewski P, Kapela R, Marcinkowska A, Superczyńska P. Design, Fabrication and Analysis of Magnetorheological Soft Gripper. Sensors. 2022; 22(7):2757. https://doi.org/10.3390/s22072757
Chicago/Turabian StyleBernat, Jakub, Piotr Gajewski, Rafał Kapela, Agnieszka Marcinkowska, and Paulina Superczyńska. 2022. "Design, Fabrication and Analysis of Magnetorheological Soft Gripper" Sensors 22, no. 7: 2757. https://doi.org/10.3390/s22072757
APA StyleBernat, J., Gajewski, P., Kapela, R., Marcinkowska, A., & Superczyńska, P. (2022). Design, Fabrication and Analysis of Magnetorheological Soft Gripper. Sensors, 22(7), 2757. https://doi.org/10.3390/s22072757