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Abstract: Accurate and reliable stride length estimation modules play a significant role in Pedestrian
Dead Reckoning (PDR) systems, but the accuracy of stride length calculation suffers from individual
differences. This paper presents a stride length prediction strategy for PDR systems that can be
adapted across individuals and broad walking velocity fields. It consists of a multi-gait division
algorithm, which can divide a full stride into push-off, swing, heel-strike, and stance based on multi-
axis IMU data. Additionally, based on the acquired gait phases, the correlation between multiple
features of distinct gait phases and the stride length is analyzed, and multi regression models are
merged to output the stride length value. In experimental tests, the gait segmentation algorithm
provided gait phases division with the F-score of 0.811, 0.748, 0.805, and 0.819 for stance, push-
off, swing, heel-strike, respectively, and IoU of 0.482, 0.69, 0.509 for push-off, swing, heel-strike,
respectively. The root means square error (RMSE) of our proposed stride length estimation was
151.933, and the relative error for total distance in varying walking speed tests was less than 2%. The
experimental results validated that our proposed gait phase segmentation algorithm can accurately
recognize gait phases for individuals with wide walking speed ranges. With no need for parameter
modification, the stride length method based on the fusion of multiple predictions from different gait
phases can provide better accuracy than the estimations based on the full stride.

Keywords: inertial measurement units; indoor localization; stride length estimation; stride segmenta-
tion; gait recognition

1. Introduction

Pedestrian localization is commonly used in maneuvers, fire drills, and mine rescues.
Unlike GPS, optical, audio, and other sensor data, inertial measurements are infrastructure-
independent, allowing them to be used for a terminal location in complex contexts [1,2].
As a result of the development of Micro-Electro-Mechanical Systems (MEMS), Inertial
Measurement Units (IMUs) have become lightweight, low power consumption, low cost,
and non-intrusive to users, which are suitable characteristics for clinical and residential
applications. Thus, IMU-based Pedestrian Dead Reckoning (PDR) has become popular and
received considerable attention [3–7].

Stride length estimation is one of the essential components of the PDR system [8–12].
There are mainly two classes of approaches: the first kind of methods are based on the
integration of the accelerations, and the other techniques utilize various models to predict
the stride length. The first kind of models can be further divided according to whether they
are based on physical or statistical models. The double integration of acceleration in the
forward direction is the most direct method for estimating stride length because it needs no
assumption or user customization. However, it is not easy to obtain the forward acceleration
from IMU measurements since each part of the body moves in different directions during
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walking [13]. Biomechanical models for step length estimating, like inverted pendulum
models, are defined mainly by simplifying and approximating the mechanical movements
of the human body. Nevertheless, due to the significant variability of pedestrians, these
models need to be calibrated for each user. Mechanical models are also impacted by the
non-negligible bias and noise of the IMU, which makes the distance error grow cubically
over time or distance [14]. To reduce the cumulative error, Zero-Velocity-Update (ZUPT)
was introduced to reset the integral computations for length when the foot was recognized
as remaining stationary on the ground [15–20]. However, it has been found that excessive
use of ZUPT can lead to a much smaller prediction result than actual walking distance.
The effectiveness of ZUPT depends on the accuracy of the recognition of the zero velocity
stages during foot movement. If it is too sensitive, the distance belonging to the two
ends of the stride cycle will be excluded, which will be counterproductive to the stride
length estimation.

To avoid the inertial drift in stride length caused by the sensors, multiple statistical
variables have been found that show a clear correlation with step length and can therefore
work as features or predictors in statistical models [21–24]. This type of method needs to
create an empirical regression model based on the movement features of the pedestrian’s
pelvis, feet, or legs and then fit the model parameters by utilizing the existing dataset
to estimate the step length for walking. Li’s model demonstrates a linear relationship
between step length and walking frequency [25]. Weinberg’s model utilizes the difference
between the maximum and the minimum in vertical acceleration data within a step [21].
Kim’s model is only based on the mean acceleration within a step [22]. Scarlett’s model
uses minimum, maximum and average acceleration to estimate step length [24]. Since
the variability of individuals’ walking habits stems from gender, height, age, and walking
speed, these empirical models require parameter customization for individual pedestrians.
With the wide application of wearable devices, a large amount of crowdsourced data
based on individual pedestrians will gradually be formed, which will bring opportunities
for data-driven approaches to improve accuracy and generalization [26]. In recent years,
neural networks have been developed for step length prediction [27,28]. They achieve
better prediction accuracy than empirical models with the cost of larger-scale datasets and
massive computation consumption. With limited training data, neural networks are prone
to be overfitted. The requirement for a large number of computational resources prevents
them from being used in wearable devices and embedded systems.

To summarize the preceding stride length estimation approaches, they all treat a single
stride as a whole processing item rather than dealing with more detailed decomposition
and analysis. Firstly, a segment of the signal corresponding to a stride must be detected.
Then selected features need to be calculated and input into a pre-trained model to predict
movement distance. In the field of kinesiology, IMU-based mobile gait analysis enables
a continuous and detailed insight into the motor performance of foot movements in mul-
tiple gait patterns under more natural and realistic conditions compared to laboratory
settings [29]. Gait characteristics are the reflection of the pedestrian’s physiological char-
acteristics and emotions on foot movement and are closely related to the stride length. A
typical phenomenon is that the fluctuation range of sensor data in the gait phase is related
to the walking speed, which is shown in Figure 1, and the walking speed greatly affects
stride length [30–35]. Inspired by this, we think it is possible to improve the accuracy
of stride length estimation based on gait analysis. By accurately dividing a stride into
several gait segments, stride length estimation can be transformed into a fusion of several
predictions from different gait analyses. The outline of the ideas in this section can be seen
in Figure 2.
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when the foot is pushing off the ground (c) In the foot swing stage, the left and right direction signals 
of the gyroscope at different speeds (d) The acceleration signal of the front and rear directions at 
different speeds during the heel-to-ground cushioning stage (e) The vertical acceleration signal at 
different walking speeds in the heel-to-ground cushioning stage. 

Figure 1. The magnitude of the sensor signal mutation at different walking speeds (a) The left and
right direction gyroscope signals at different speeds in the stage when the foot is pushing off the
ground (b) The acceleration signals of the front and rear directions at different speeds in the stage
when the foot is pushing off the ground (c) In the foot swing stage, the left and right direction signals
of the gyroscope at different speeds (d) The acceleration signal of the front and rear directions at
different speeds during the heel-to-ground cushioning stage (e) The vertical acceleration signal at
different walking speeds in the heel-to-ground cushioning stage.

The purpose of this paper consists of the following three parts. Firstly, we gave a
detailed description of signal variation in different gait phases based on biomechanics
and annotated gait phases provided by the Diverse Gait Data, which was proposed in our
previous work. Secondly, we propose to divide a normal walking stride into the stance
phase and three dynamic phases. Last but not least, we offer an example of the combination
of stride lengths from multiple gait phases to validate the utility of gait segmentation for
adaptive stride length estimation.
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Figure 2. The overall idea of this article.

2. Materials and Methods
2.1. Data Foundation

The database of this part of the study is the Diverse Gait Dataset established in our pre-
vious work [26]. A total of 22 healthy volunteers (13 males, 9 females, age 32.5 ± 7.5 years)
participated in the study and were divided into different groups according to gender and
height information, as shown in Table 1. Each subject walked at three kinds of self-selected
speeds along an indoor corridor of 46 m. The dataset contains the stride and gait informa-
tion of different pedestrians walking at different speeds. The label information provides the
time range of each real stride cycle and real gait stage. The stride labels and gait labels were
generated based on the foot movement video while each subject was walking. Before the
label is generated, the foot motion data collected by IMU has been time synchronized with
the video information. The relative positions of the X,Y,Z-axis directions of the IMU module
and the navigation coordinate systems are as follows: when the foot remains relatively
static with the ground, the X-axis of the IMU is close to the left and right direction, and is
consistent with the coronal axis in the human motion anatomical coordinate system; the
Y-axis is close to the rear side of the pedestrian’s travel direction, and is consistent with the
sagittal axis in the human motion anatomical coordinate system; the Z-axis is close to the
ground and vertically upward, and corresponds to the vertical axis in the human motion
anatomical coordinate system.

2.2. Adaptive Stride Segmentation Technique

Previous studies have demonstrated that stride detection is a significant prerequisite
for PDR and is required to provide robust results [36,37]. In this paper, based on our
previous work, the SDATW method is utilized to implement adaptive stride segmentation
for different pedestrians in wide-speed domain scenarios. The SDATW algorithm has
the following features. Firstly, the algorithm uses different feature extraction functions
to obtain each sample point’s neighbor’s distribution coefficients and each element’s
neighbor within the stride template. The feature extraction functions include calculating
the signal amplitude distribution, the average gradient change of the signal, or the wavelet
decomposition coefficients of the signal in the neighborhood.
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Table 1. A total of 22 healthy volunteers (13 males, 9 females, age 32.5 ± 7.5 years) participated in the
study and were divided into different groups according to gender and height information.

Height Range (cm) Males Females Number of Strides (Speed Type) Number of Gait Phases

155~160 - 2

fast 142 stance 487
middle 159 pushoff 478

slow 171 swing 474
full speed range 472 heel-strike 474

160~165 2 3

fast 261 stance 1121
middle 337 pushoff 1100

slow 475 swing 1113
full speed range 1073 heel-strike 1110

165~170 2 2

fast 298 stance 1022
middle 324 pushoff 1013

slow 367 swing 1113
full speed range 989 heel-strike 998

170~176 4 1

fast 406 stance 1358
middle 440 pushoff 1353

slow 459 swing 1006
full speed range 1305 heel-strike 1378

176~180 2 1

fast 123 stance 408
middle 121 pushoff 399

slow 146 swing 400
full speed range 390 heel-strike 393

180~185 3 -

fast 150 stance 480
middle 114 pushoff 470

slow 197 swing 470
full speed range 461 heel-strike 465

By extracting the features of each sampling point, the influence of sensor noise can
be reduced, and the representative components within the local area of the signal can
be acquired. We could obtain a smooth cumulative distance function benefit from this
advantage. In addition, SDATW differs from traditional DTW in finding the optimal
alignments [38,39]. The conventional methods regenerate a sliding window for each
sample point and calculate the cumulative distance between the sliding window and
the template, which seems to be a heavy computational burden. SDATW only needs to
calculate the accumulated difference between two neighborhoods of the sample point and
the template’s element, whose size is much smaller than a sliding window. Compared with
the traditional DTW methods, it is less computationally intensive and, therefore, can work
with less requirement for computational resources. Last but least, the SDATW algorithm
obtains the best matching segment with the template while comparing the accumulated
distance corresponding to the starting and ending position of the data segment with
all competing points. In the process of finding the optimal alignment path, the path
with minimum accumulated distance and its corresponding beginning point are recorded
simultaneously. The subsequence in the continuous data stream that best matches the
standard stride template is dynamically obtained. The beginning points and the ending
points are recognized as the boundaries of the stride. The best match segment is found
by comparing its starting point and ending point with local competitors, so SDATW
is independent of thresholds compared with previous methods. When used for stride
detection in cross-individual and broad speed domain scenarios, SDATW does not require
parameter modification and has better robustness to changes in movement habits and
walking speed of different individuals. We refer the interested readers for a more detailed
calculation process [40]. The standard stride template is constructed based on 1407 strides
data interpolated or down-sampled to form a stride database matrix in which each line of
the sequence is fixed with the same length. And then, the template is obtained by calculating
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the average value in each column. These strides correspond to various pedestrian subjects
with different heights, different genders, and various walking speed fields. All these
data were randomly selected by 30 percent from the Diverse Gait Dataset collected in our
previous work.

As demonstrated in Figure 3a, a normal stride is marked as stride (1) (S1), and a
‘half-stride’ is marked as stride (2) (S2). The periodic length between the S1 and S2 seems
not apparent, but S2 is the last stride of a continuous walk while S1 is one of the normal
strides. During S2, the subject walked and covered just half of his regular stride length
and then landed the foot on the ground. It can be shown that the signal in S2 in Figure 3a
is generally smaller in magnitude compared to its last stride and just forms a feeble peak
followed by the curve close to zero value (annotated by a red arrow). This reflects the
movement process that the last part of S2 ended swiftly and then kept static with the ground,
so we call it the “half-stride”. The “half-strides” exist commonly in normal pedestrian
walking and are easily dismissed in odometers. Although the error is acceptable for step
counting, it impacts the accuracy of stride length estimation, so we need to ensure that
“half-stride” should be correctly identified. As shown in Figure 3b, even S2 is different
from the usual cases, the accumulated distance curve of SDATW remains smooth and
consistently monotonic and identifies the boundaries of the S2. The two subplots below
Figure 3a show detailed alignment pairs of the two segments corresponding to the strides
with the template, respectively. It can be visually noticed from the comparison of the two
subplots that the proportion of matched points between S2 and the stride template is smaller
than that between S1 and the template. In Figure 3c, three white curves run through the
accumulated distance matrix colormap and represent the warping paths that correspond to
best-matched subsequences in the sensor signal. We can find that the warping course of S2
runs close to the right boundary earlier than S1’s warping path, indicating that there is less
matching part with the stride template, which is consistent with subfigures in Figure 3a.

2.3. Stride Gait Division Method

Based on the results of stride segmentation, we were able to divide the IMU data of a
regular walking stride into four segments with motion semantics: {push-off, swing, heel-
strike, stance} within a plausible time segment. In the following, we will first present the
basis for the recognizing gait phases, followed by the data preprocessing procedure. We will
implement the gait segmentation method based on the acceleration in the anterior-posterior
direction and the vertical movement of the ground based on the prepared data.

2.3.1. The Understanding of Gait Modes

Understanding foot movement data is the basis and foundation for the analysis of gait
segmentation and gait characterization. Although this does not involve subtle algorithms
or models, we believe that understanding motion data in this section is essential for the
clarity and accuracy of our proposed gait segmentation method.

The database for this part of the study is the Diverse Gait Dataset, which contains
IMU recordings and time information of strides and gait phases from different pedestrians
in various walking speed states, where the labels provide the boundaries of the complete
stride on the time axis, as well as the temporal boundaries of each gait phase. The sampling
frequency of the video recording is a minimum of 60 Hz and a maximum of 240 Hz, in
which the motion of the foot during a complete stride cycle is presented.

With reference to video recordings, we can visually divide a full stride into three dy-
namic phases with distinctive features and one stationary phase, as shown in Figure 4 [40].
When the toe leaves the ground contact, it is considered the push-off. If the heel starts
to contact the ground, it indicates the beginning of the heel-stride. When the heel starts
phase’s end to leave the ground, that can be comprehended as the end of the stance. For
two adjacent gait phases in the sequence, the endpoint of the previous phase can also be
considered as the starting point of the next phase.
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Figure 3. The effect of stride segmentation method based on SDATW algorithm. (a) After applying
the SDATW on gyroscope coronal-axis data, the stride borders are available, which are represented
as red vertical lines. And the stride segments just look like the template. Two subfigures demon-
strate detailed alignment pairs of the two segments corresponding to the stride template; (b) The
accumulated distance curve used in SDATW methods maintain the smoothness and monotonicity
in normal strides and the “half-stride” situations; (c) Three white lines represent the warping paths
which correspond to best-matched subsequences in the query sequence. Dark red ribbons between
two warping paths indicate the borders of detected stride segments. The red lines and the dark green
lines are used to show related information of a normal stride and a half stride, respectively.
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Figure 4. The movement of a whole stride can be divided into four gait phases. (a) displays that
the heel just leaves the ground at the end of stance phase; (b) displays that the toe is going to leave
the ground at the end of push-off phase; (c) displays that the heel touches the ground at the end of
swing phase.

The stationary phase, in which the foot remains relatively static with respect to the
ground, does not contain any dynamic information and is therefore not analyzed. Then
the three dynamical gait phases are combined with the video information to analyze the
corresponding acceleration data and gyroscope data. This part is the basis of our direct
segmentation of the sensor data into different dynamic phases without video information.

The accelerometer records the force of the support surface to which the inertial device
is subjected. When the foot is at rest relative to the ground, the module is balanced by
gravity and the support force of the land. The accelerometer Y-axis shown in the figure is
close to the vertical direction of the ground, with a numerical magnitude of approximately
the acceleration of gravity, and the value of the X-axis is close to 0.

The push-off phase is coming behind the stance phase. During this phase, the height
of the heel gradually increases as the ankle begins to rotate, and the bottom of the foot
gradually leaves the ground. In general, since the mobility of the ankle and toe joints varies
from person to person and the angle and speed of rotation of the foot around the Z-axis at
different walking speeds, the push-off phase data contains information on walking speed
individual walking habits of the pedestrian. However, during normal walking, the foot
movement in the push-off phase has this trend. While the XOY plane of the IMU module is
rotating around the Z-axis and the angle with the ground gradually increases, the X-axis
gradually turns and tends to the vertical direction of the ground. The Y-axis gradually
turns and tends towards the forward direction. Band 1 in Figure 5 shows the process of
X-axis and Y-axis signal changes. During this stage, the X-axis value of zero in the static
phase gradually decreases to approximately equal to the negative gravitational acceleration
because the positive direction of the X-axis is almost perpendicular to the ground and
pointing downward. In contrast, the support force of the land is upward at this time,
precisely opposite to the positive direction of the X-axis. The value of the Y-axis gradually
decreases from close to the gravitational acceleration in the static phase to zero.

At the end of the push-off phase, only the toe is in contact with the ground, and the
angle between the foot and the ground reaches the maximum value of the entire process.
The force accumulated in the whole foot is about to explode at the toe and produce a
sudden change of force. When the toe leaves the ground, it moves upward in an oblique
direction. During this short process, the change of the signal in terms of X-axis acceleration
is noticeable, which is expressed as a monotonous and sharp ascending segment, so the
effect of the force generated at this time is in the X-axis and Y-axis, opposite to the first half
of band1, which also leads to the fact that between band 1 and band 2, the X-axis and Y-axis
acceleration data produce their respective peaks and valleys.
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Figure 5. Gait segmentation label display. (a) Annotated gait phases in sagittal acceleration data;
(b) Annotated gait phases in vertical acceleration data.

In the swing phase, the foot swings in the air until the heel makes contact with the
ground. At the same time, the foot still rotates around the X-axis; unlike push-off, the
height of the toe gradually rises, the XOY plane of the IMU module revolves around the
Z-axis, and the Y-axis starts from the angle of vertical ground upward gradually rotates to
the forward direction. It then continues to move diagonally upward toward the ground.
Then the foot will gradually approach the ground. In the final stage of the swing, the foot
does not glide on the floor but produces a significant impact at the moment of contact
between the heel and the ground. The friction generated by this considerable interaction
force makes the heel immediately finish swinging state.

Observing the synchronized acceleration data, we can achieve a more detailed descrip-
tion. At the beginning of the swing, the force with the ground disappears immediately
because the interaction force disappears immediately when the foot leaves the ground. This
is reflected at the beginning of band 2 in Figure 5. The X-axis acceleration decreases sharply,
and the Y-axis acceleration quickly returns to a level close to gravitational acceleration. At
the end of the swing phase, the heel first approaches and hits the ground, thus generating
an interaction force much larger than the gravitational acceleration. We can see in Figure 5b
that the Y-axis acceleration starts to decrease in the middle of band 2. Then the acceleration
at the end of band 2 quickly rises to a peak, which corresponds to the downward motion of
the heel approaching the ground first and the reaction force of the ground after the impact.
In Figure 5a, the sample point in X-axis acceleration is not at the peak at the end of band 2.
This is because the toe is still maintaining the motion inertia. Still, since the heel is already
locked to the ground, the toe can only make a rotational motion, in which the forward
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acceleration exists but has shown a tendency to decay. This process causes a second abrupt
change in the force of the foot in completing the stride motion. This abrupt change causes a
distinct peak in the Y-axis data, and the peak in the X-axis is similar in time to the peak in
the Y-axis data.

The heel-strike phase is a short deceleration cushion phase for the foot. This process
is reproduced from the typical characteristics of pedestrian walking: the foot rotates
downward on the axis of the heel, with the toe at the end of the foot, reflecting the most
evident speed change. During this phase, the toe is subjected to a significant deceleration.
Therefore, it can be seen in band 3 of Figure 5a that the X-axis acceleration is decreasing
rapidly from the beginning of the heel-strike. In band 3 of Figure 5b, the Y-axis acceleration
also decreases. This is because the impact force with the ground is transferred to the arch
and the leg; the ground reaction force is reduced and gradually converges to the ground
support force on foot. In the later stage of the heel-strike, the forefoot touches the ground.
It makes a “slap on the ground” movement, which results in the foot receiving an upward
ground reaction force in the vertical direction and a side effect in the forward direction,
where the foot again receives a ground reaction force. We find a sub-peak point in the
subjects’ walking data sequence in the second half of band 3 in Figure 5b. Afterward,
since the Y- and Z-axis data decrease with the same trend to a relatively constant value,
this means that the IMU module that follows the foot movement also enters a temporary
stationary phase.

Based on the above description of the foot motion, we interpret the correspondence
between the gait boundaries and the acceleration peaks or valleys in the anterior-posterior and
vertical directions. Therefore, in this paper, we propose a gait segmentation method based on
signal time-domain analysis and use this method to realize and validate our interpretation.

2.3.2. Recognizing Gait Boundaries Using Peak-Valley-Pairs

Based on the understanding of foot motion in different gait phases in this paper, we
will analyze the peak and valley values of acceleration at two gait boundaries, which
correspond to two abrupt changes in the foot-ground interaction forces in a complete stride
cycle. Among the sensor data, the acceleration data record the change in the force between
the foot and the ground, so it is more suitable for delineating the gait pattern. The foot’s
motion reflects periodic forces acting mainly in the anterior-posterior and vertical directions
when pedestrians walk. At the same time, it is susceptible to individual differences in the
coronal axis (X), so we choose to implement gait classification based on sagittal (Y) and
vertical axis (Z) acceleration data. Since the peaks and valleys we want to analyze are
between the stance phases, we choose to detect the stance gait phase within a period of the
stride cycle first and then divide the remaining three dynamic phases.

The most apparent difference between the stance phase and the other three dynamic
phases is that in this phase, the foot remains relatively stationary with the ground, so
the amplitude of the acceleration data is much smaller than in the other phases. In order
to more clearly reflect the difference between the amplitude of the acceleration data in
the stance phase and the other part, we first filtered out the high-frequency noise in the
signal using a mean filter with a fixed sliding window. Then we deflate the signal by first
squaring the original signal and then multiplying it by its original sign. This increases
the amplitude of the acceleration signal in dynamical phases and makes the signal of the
stance phase closer to zero, so we can easily identify the signal segment corresponding
to stance phases. By calculating the volatility for the pre-processed signal and then using
a thresholding method, we can detect the static phase in the stride cycle. In this paper,
variance and interquartile range (IQR) are used to measure the volatility of the acceleration
along the vertical axis and sagittal axis, and the data segments in the stride cycle where the
variance and quadrature difference are less than their respective thresholds are judged as
static phases.

By understanding the signal in Section 2.3.1, we know that during forward walking,
the foot is swinging forward by inertia during the swing phase, which means that there is
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no additional force on the foot during the swing phase. Our hypothesis is also corroborated
by the observation of the acceleration differential signal. As shown in the Figure 5, the
acceleration differential signals in both X and Y axes show a “static” characteristic in the
swing phase, while several peaks and valleys appear in the push-off and heel-strike phases,
which reflect the variation of the foot force on the ground.

This gives us a periodic distribution of peak and trough points on the time axis:
between the two stance gaits (the former stance phase comes from the previous stride,
the later stance phase belongs to the current stride), the abrupt changes in foot-ground
interaction forces are concentrated in two clusters, while between the clusters they are in a
relatively stable segment of the relative foot forces, with very few sharp peaks or valleys.
Based on this observation, we use the k-means clustering algorithm (k = 2) to divide the
peak and valley points of vertical-axis and sagittal-axis acceleration signals into two classes,
and the clustering results, the left cluster corresponds to the peak and valley values in
the push-off phase, and the right cluster corresponds to the peak and valley values in the
heel-strike phase. The clustering results allow us to determine the boundary points of the
two gait phases, push-off/swing and swing/heel-strike, in a smaller and more certain time
range. If we can further determine these two boundary points, then the 3 dynamic phases
of a complete stride cycle are cut apart. The pseudo-code of the Algorithm 1 is as follows.

Algorithm 1: Peak-points clustering pseudo code

Input: [n_ last_stance_end, n_current_stance_beginning, ary_peaks]
Output: [left_peaks, right_peaks}
Initialize: center_0 = n_ last_stance_end, center_1 = n_current_stance_beginning, center_0_old =
inf, center_1_old = inf, iter_num = 0;
1 while iter_num < 50 do
2 iter_num++;
3 for point in ary_peaks do
4 if ||point_index− center_0| | 2 < ||point_index− center_1||2
5 left_peaks = [left_peaks; point_index ];
6 else
7 right_peaks = [right_peaks; point_index ];
8 end
9 center_0_old = center_0, center_1_old = center_1;
10 center_0 = mean(left_peaks), center_1 = mean(right_peaks);
11 if ||center_0− center_0_old | | 2 < ε and ||center_1− center_1_old | | 2 < ε

12 break;
13 else
14 continue;
15 end
16 return [left_peaks, right_peaks]

Based on our understanding of acceleration data and the available gait labeling infor-
mation, we find that acceleration data near the boundary of the dynamic gait varies very
dramatically compared to the surrounding data, which is usually manifested by the signal
rapidly crossing the zero axis negatively from a towering peak and decaying to a trough, or
vice versa. This variation makes these peaks and trough points very different from other
peaks or troughs in their neighborhood, and they all necessarily cross the zero axis with
the distance between the peak and trough much greater than the amplitude of the other
peaks or troughs. In addition, during normal walking, the foot moves continuously and
smoothly during a stride cycle rather than mixed with actions such as secondary starts, so
there is often only one pair of these prominent peaks and valleys. Even though we were
able to find the valley closest to it in time for each peak, the difference between the peak
and the valley was more significant the closer we got to the gait boundary. Based on this
observation, we designed the “major peak-valley-pair” as the object of querying the gait
boundary. The closest valley in time is found backward as a “peak-valley pair” for each
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peak. To find the “major peak-valley pair,” we add several conditions: (1) the peak and
the valley must contain 0 crossing between them; (2) the magnitude between the peak and
the valley is always the largest; (3) if there is a “peak-valley pair,” the conditions (1) and
(2) are satisfied, the distance between the two points is greater than 1/2 of the distance
of the “major peak-valley pair,” and the difference in position between the peak and the
“prominent valley” is less than five samples, then the two pairs of “peak-valley pairs” are
combined into a new “major peak-valley pair.” Condition (3) is based on our practical
experience, making the “major peak-valley pair” more stable when encountering noisy
acceleration sequences.

When finding the swing/heel-strike gait boundary, we determine the position of
the peak point of the “major peak-valley pair” on the sagittal acceleration and vertical
acceleration in the time axis as the gait boundary, and take the average value as the final
result; when finding the push-off/swing gait boundary, we determine the position of the
peak point of the “major peak-valley pair” on the sagittal axis and the valley point of the
“major peak-valley pair” on the vertical axis as the gait boundary and take the average
value as the final result. In finding the push-off/swing gait boundary, we determine the
position of the peak point of the “major peak-valley pair” on the sagittal -axis and the
position of the valuation point of the “major peak-valley pair” on the vertical axis in the
time axis as the gait boundary, and take the average value as the final result.

Furthermore, we also consider the derivatives of the sagittal acceleration and vertical
acceleration data as a reference for determining the gait boundaries since the peak points
of the valley points in the signal correspond to its derivative sequence’s zero-crossing
points. The positive crossings correspond to the valley points, and the negative crossings
correspond to the peak points. Therefore, under ideal circumstances, the positive zero-
axis crossing point in the derivative sequence of the original signal should share the
same timestamp as the valley point used to determine the gait boundary, which can be
demonstrated by comparing Figure 6(a2,a4). Moreover, the timestamp of the negative
zeros-axis crossing point in the derivative sequence should be equal to that of the peak
point used for the gait boundary decision.

Therefore, we also provide an augmented version of the gait segmentation algorithm.
In finding the swing/heel-strike gait boundary, we consider the timestamps of the two
zero-axis negative crossing points in the derivative sequence of the sagittal and vertical
axes, which are nearest to the “major peak-valley pair”, as another two references. For the
decision of push-off/swing gait boundaries, we select the negative zero-axis crossing point
with the least time difference to the “major peak-valley pair” in the sagittal acceleration
signal, and the positive zero-axis crossing point with the least time difference to the “major
peak-valley pair” in vertical acceleration signal as two more bases for determination. Before
calculating the mean value to estimate the gait boundary, we also performed an outlier
detection on the four reference items. The process of outlier detection can be simply stated
as follows: we use a “leave-one-out” approach to fit an approximately normal distribution
to the remaining points in the set and obtain the expected value and standard deviation. If
the Euclidean distance between the left-out point and the expected value is greater than
three times the standard deviation, the point should be eliminated as an outlier. Then
the value of the remaining valid reference will be averaged to find the estimate of gait
boundary location.
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Figure 6. The detection of boundaries between push-off phases and swing phases are shown in
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as reference information; (a3,b3) show the utility of zero-crossings in sagittal acceleration data as
reference information; (a4,b4) show the utility of zero-crossings in vertical acceleration data as
reference information to recognize the gait boundaries.

2.4. Adaptive Stride Length Estimation
2.4.1. Dataset for Training Stride Length Estimation Models

The training of regression models for stride length estimation requires datasets that
can provide accurate distance measurements. We selected a high precision reference dataset
for pedestrian navigation proposed by researchers from the German Aerospace Center
(DLR) [28] in this part of the work. The dataset is applicable to analyzing a broad range
of indoor positioning approaches. The reference information was collected by employing
a high-precision optical reference system that could pinpoint the marker mounted on the
pedestrian’s shoe within a millimeter at a rate of about 100 Hz. The foot movement data
was recorded using a foot-mounted IMU with a sampling frequency of 100 Hz. The dataset
consists of recordings while several pedestrians were walking, running, and backward
walking. Since running gait and backward walking gait are out of the scope of this paper,
we selected eleven of sixteen files with a total of 231 waking strides. Then the proposed
gait segmentation method was applied to obtain push-off, swing and heel-strike phases,
each kind of gait segment has the same volume as the strides. We will describe the process
of manufacturing the models and training based on gait phases in the following sections.

2.4.2. Data Preprocessing and Feature Selection

Based on the experiences models proposed by Weinberg [21], Kim [22], Scarlette [41],
and Ladetto [23], we extracted the features from vertical acceleration data, sagittal accelera-
tion data, and the mode values of the three-axis acceleration, respectively. We put them
together to form the feature set for training models. There are twelve features, which
include the extreme value, the average, the signal range, the signal variance, and the
frequency corresponding to the gait segment. We list them in Table 2, where amax and
amin represent the maximum and minimum of the acceleration sequence, |a| represents the
absolute value of each sample, f represents the frequency, and v represents the variance of
a sequence of acceleration data.

Table 2. Empirical models proposed for stride length estimation.

Model Formulas
(‘Step Length’ Has Been Simplified as ‘SL’)

Weinberg SL = K× 4
√

amax − amin (1)
Kim SL = K× 3

√
∑N

i=1|ai |
N

(2)

Ladetto SL = α× f + β× v + γ (3)
Scarlett SL = K× ∑N

i=1|ai |−amin
amax−amin

(4)

In this literature, we also use standardization, which is necessary for the accuracy and
generalization of regression models. It refers to the process of normalizing every sample
in a series of data such that the mean of all values is 0 and the standard deviation is 1.
Hence, it helps to relieve the impact of outlier points on stride length estimation results.
The calculation is shown in the following formula:

accnorm,i =
acci − acc

S
, i = 1, 2, . . . , n (5)

where acc is the mean value of accelerometer series, and S is the unbiased estimator of the
standard deviation:

S =
1

n− 1

n

∑
i=1

(acci − acc)2 (6)
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Based on our understanding of foot motion within different gait phases, we argue that
the correlation between each feature and stride length varies across gait phases. Therefore,
to prevent model overfitting, we need to reduce the dimensionality of the feature sets for
training. In this part of the work, we utilize the Random Forest Regressor [42,43] function
in scikit-learn to measure the importance of each feature to the stride length estimation,
and the feature importance measurements in the whole stride cycle and three different gait
phases are shown in Figure 7 [44,45].
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It can be seen from the figure that the features are ordered by their importance values
within each gait phase, and an importance threshold was set to select the features whose
importance is larger than the value. During the push-off phase shown in Figure 7(a2), the
number of selected features based on acceleration modulus, vertical axis acceleration, and
sagittal acceleration is balanced because, during the push-off stage, the foot is angled to
the ground and subjected to the forces in both vertical and sagittal axes. During the swing
phase, the selected features based on sagittal axis acceleration mainly form the chosen
feature set. The importance value of Kim’s element from sagittal acceleration is much larger
than that of the features from the vertical axis. Because there is hardly any interaction
between the foot and the ground when the foot is swinging in the air, the forces are evident
in the anterior-posterior direction of walking. Within the heel-strike phase, the features
based on vertical axis acceleration are the most numerous and occupy the most significant
importance measurements because of the violent impact generated when the foot comes in
contact with the ground. According to our analysis of foot motion, the process of the swing
phases contributes the most significant part of the stride length. However, we can learn by
comparing the feature ordering in full stride with that of the swing phase that the ordering
is significantly different, although the main features are roughly the same. In summary,
the feature ranking for the full stride and the three different gait phases shows that each
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gait phase contains its own way to affect the stride length so that we can train completely
different stride estimation models for each phase.

2.4.3. Stride Length Estimation Models

Different sets of features have been prepared for different gait stages based on the
feature selection. In this part, we trained two regression models: SVM regression model
with RBF as the kernel function [46], and an ensemble method in which SVM-RBF is
considered as the base model in the AdaBoost algorithm [47]. We then merge the three
predicted stride length values stemming from three gait stages and find the stride length
estimations for the stride cycle. We will evaluate the performance of the stride length
estimation models in Section 3.3.

2.5. Metrics for Gait Phases Division and Step Length Estimation

The error in gait phase division arises from unrecognized gait phases and pseudo-gaits.
The algorithm proposed in this literature relies on extracting the main peak points and
valley points in the data stream based on the threshold. However, the noise in the sensor
signal and the uncertainty of the pedestrians’ foot movements while walking can make the
threshold sensitive to redundant spot points, which results in the peak and valley pairs
and leads to pseudo-gait phases or the missing of real gait segments. We use True Positive
(TP) to represent true gaits that should be identified, False Negative (FN) to represent the
true gait phases that should have been recognized, and False Positive (FP) to represent
the pseudo gaits that do not correspond to any actual gait label. Precision describes the
percentage of true gait phases identified by the gait segmentation algorithm among all
outputs and is shown in Equation (7) [32]. Recall, as shown in Equation (8), calculates
the percentage of how many items from all labeled gait phases are recognized by the gait
segmentation algorithm [33]. In this paper, we use the F-score, as shown in Equation (9),
which is the harmonic mean of precision and recall [34]. The highest possible value of the
F-score is 1.0, indicating perfect precision and recall. That means the gait phase division
method not only recognized all true gait phases with no missing but also provided no
pseudo gait phases in the outputs. The lowest value of the F-score is 0 since both accuracy
and recall are 0. This means that there is no real gait phase in the output of the gait
segmentation algorithm, and all outputs are pseudo gait phases.

precision =
true positives

true positives + f alse positives
(7)

recall =
true positive

true positives + f asle negagives
(8)

F–score = 2× precision× recall
precision + recall

(9)

In addition, we consider that a proper gait segmentation method should not only
find out all real gait phases and avoid pseudo-gait phases but also need to ensure that
the detected gait phases are as close as possible to the time range of the real gait. F-score
only indicates whether the signal segment from the output corresponds to the real gait
phase, but it does not measure similarity between the data segment corresponding to the
output and that corresponding to the real gait from the dataset. Here we use Intersection
over Union (IoU) as the other metric for the gait phase segmentation algorithm. IoU is a
term used to describe the extent of overlap of two boxes in object detection problems in the
computer vision area [48]. The detection method aims to keep improving its performance
until the predicted area as a bounded box perfectly overlaps with an annotated target area
in another box. To formally apply IoU to evaluate a gait phase detector, we need the time
range of detected gait and that corresponding to the real gait signal segment. As long as
we have these two sets of bounded time segments, we can apply IoU in our circumstances.
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Let us assume that the time range of segment A is represented by [tp0, tp1, . . . , tpm], the
time range of segment B is presented by

[
tq0, tq1, . . . , tqn

]
, where m and n are the lengths

of the segment A and the segment B, respectively. In addition, that the elements of the
time range are time stamps of sampled data or the index value in the whole signal data
stream. If there exists the segment

[
tpa, . . . tpb

]
, a ≥ 0, b ≤ m, a < b in the time range of

segment A and the segment
[
tqc, . . . , tqd

]
, c ≥ 0, d ≤ m, c < d in the time range of segment

B, whose lengths are equal and share all elements between each other, i.e., the timestamps
or index values, then we call

[
tpa, . . . tpb

]
and

[
tqc, . . . , tqd

]
as the intersection of segment

A and segment B. For the union of the two segments, we take the smaller value of tp0 and
tq0 as the beginning and the larger value of tpm and tqn as the endpoint. Then the IoU is
applied to measure the similarity between the detected gait segment, and the annotated
gait segment is calculated as Equations (10)–(13):

IoU =
length_o f _intersection

length_o f _union
(10)

length_o f _intersection = tpb − tpa (11)

length_o f _union = tmax − tmin (12)

tmax = max
(
tqn, tpm

)
, tmin = min

(
tq0, tp0

)
(13)

For the results of stride length estimation, errors are the differences between the
predicted values and the actual values of each stride. They are calculated as follows:

RMSE =

√
∑n

i=1
(
yi − yp

)2

n
(14)

where yi represents the value provided by reference information, yp represents the predicted
value and n stands for the number of strides [49]. We also use relative error rate (RE) to
describe how accurate the accumulated estimated distance is compared to the true distance
of a sequence of continuous walking data. In most application scenarios, it is impractical
to obtain the true value of each stride while a pedestrian is walking. Still, the distance of
a section of the marked path could be available by means of a portable laser rangefinder.
Thus, we can utilize the relative error rate to measure the difference between the true
distance and the cumulative distance obtained from the predicted values of the stride
estimation algorithm. The formula is shown as follows:

RE =
|distance−∑n

i=1 yi|
distance

× 100% (15)

where distance represents the true distance value of a section of marked path, the sum of yi
represents the accumulated stride length results.

3. Experiments and Results

The evaluation of our proposed gait segmentation method was performed in three
steps. Firstly, the adaptive stride segmentation algorithm based on SDATW is implemented
on the Diverse Gait Dataset. Secondly, we evaluated the gait segmentation method based on
sagittal (Y) and vertical axis (Z) acceleration data and tested it on the Diverse Gait Dataset.
An augmented version of the gait segmentation method was performed, which was based
on sagittal (Y) axis acceleration, vertical axis (Z) acceleration data, and their gradients,
respectively; we also implemented the same test for the augmented gait segmentation
algorithm and compared the F-score and IoU between two kinds of our gait segmentation
algorithms. The results of our methodology were compared to two existing gait events
detection algorithms based on well-established gait analysis and are suitable for foot
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movement data. In the third subsection, the performance of the proposed adaptive stride
length estimation method is given. These three parts of the test are included in the system
flow chart in Figure 8. The test results of each part use their own metric to measure the
algorithm performance.
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3.1. Performance of Stride Segmentation Algorithm Based on SDATW

To validate the utility of SDATW for stride detection, we tested the performance of
the SDATW algorithm on the Diverse Gait Data. We compared it with the well-established
zero-velocity detection algorithm for foot-mounted sensors and msDTW, which is chosen
as a representative of the conventional DTW algorithm. We learned from Barth’s work [8]
that F-score is the harmonic combination of precision and recall, and it takes into account
missing strides and pseudo-strides equally. A qualified stride segmentation should perform
with F-measure as close to 1 as possible. According to gait analysis in [50], walking speed
dominates in influencing gait parameters over gender, age, body height, and weight.
Therefore, we consider walking speed type as the critical component in the test scenario
to verify the stability of our stride segmentation method. The F-score of SDATW and the
other two ways are shown in Table 3. For each group of the speed-type test, we mixed foot
movement data from all subjects, which brought the diversity of gender and height. In
the group test named ‘all’, the strides cover three walking speed types by different male
and female pedestrians with a height range of [165 cm, 190 cm], so it is close to the actual
application scenarios where the stride detection methods work with no prior knowledge,
and the walking speed is not limited. SDATW provides a better stride identification metric
than the other two algorithms in three distinct speed groups and full-speed range tests.
Therefore, using SDATW as the stride detection method in this literature can provide
an accurate and trustworthy basis for stride length estimation in cross-individual and
wide-speed domain scenarios.
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Table 3. Stride detection results for msDTW, zero-velocity based method, and SDATW in F-measure
values. Best results for each speed group are highlighted in bold numbers.

Group Name
(Walking Speed)

Group Volume
(Strides) msDTW Zero-Velocity

Based Method SDATW

fast 1380 0.813 0.8128 0.9337
mid 1495 0.818 0.8756 0.928
slow 1815 0.829 0.8849 0.9328

all 4690 0.822 0.8592 0.9304

3.2. Separate Performance of Gait Segmentation Algorithms Using Different Reference Schemes

The goal of this portion of the experiment is to implement and validate two versions of
pedestrian walking gait segmentation algorithms under cross-individual and broad speed
domain circumstances. Therefore, when preparing the experimental data, we presume
that the algorithm should not have access to certain prior information aids, such as the
physiological features of the pedestrians. We consider walking speed type as the critical
component in the test scenario to verify the stability of our gait event detection method. For
each group of the speed-type test, various pedestrian’s foot movement data are included,
which brought the diversity of genders and height differences. We test the gait segmentation
algorithm using vertical and sagittal axis acceleration data. We also obtained results for the
other version of implementation using vertical and sagittal axis acceleration data and their
derivative sequences under the same test groups.

After counting the errors of predicted gait stages, we obtained the F-score shown
in Figure 9, which demonstrated the accuracy comparison based on the single reference
information, fused results based on two references, and fused results based on four ref-
erences for detecting gait boundaries. The single reference schemes include sagittal-axis
acceleration-based references, vertical-axis acceleration-based references, sagittal-axis ac-
celeration differential-based references, and vertical-axis acceleration differential-based
references. It is shown in Figure 9 that among the four kinds of single reference information,
the connection based on vertical-axis acceleration can provide more accurate swing gait
phases in different walking speed scenarios, and the results based on sagittal acceleration
and vertical acceleration are comparable in terms of estimation accuracy of other gait
phases. The references based on the derivative of vertical and sagittal acceleration generally
performed weaker than their original data in terms of accuracy, except for the push-off gait
in the fast speed group only. Then we compare the results using two references with those
of a single reference. It could be found that no significant improvement is obtained because
the fusion results using two references are averaged values, which makes the prediction
results vulnerable to the influence of the worse reference. Further, by comparing the results
from using four references to the other schemes, we can find that its F-score is better than
that of using two references and all single references, both in three different speed test
groups and for the different gait phases.

Furthermore, Figure 10 shows the IoU corresponding to the results of using different
reference schemes, demonstrating how much similarity the predicted gait segments and
the real gait phases share in terms of the time range. We can find that in the gait segments
that are true positives, using the vertical acceleration’s reference information gives a more
consistent time range with the real gait phases than using the reference information gener-
ated from sagittal acceleration. For the gait segments predicted by using the differentiation
of sagittal and vertical acceleration as single references, their IoU values were essentially
comparable to that of the results supported by vertical accelerations; especially, the fast
push-off predictions showed a better time range similarity with real gait push-off phases.
This result indicates that proper application of differential acceleration signal can hopefully
improve the temporal agreement between the predicted gait segments and their corre-
sponding accurate gait phases. The four-reference-fusion-scheme showed better temporal
similarity than the two-reference-fusion-scheme. The outputs based on the four-reference-
fusion-scheme were comparable to the best results among the single references in each
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test group for recognizing push-off and heel-strike phases and showed the best temporal
agreement for the recognizing swing gait phases.
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score corresponding to three gait phases in walking with fast speed, middle speed and slow speed 

Figure 9. Use F-score as metric to measure the performance of gait segmentation methods for
recognizing push-off phases, swing phases and heel-strike phases. Subfigures (a1–a3) shows the
F-score corresponding to three gait phases in walking with fast speed, middle speed and slow speed
respectively. The first four items in legend box indicate using only one reference information to detect
gait phases boundaries. The ‘2 references fused’ item indicates calculating the average value between
‘sagittal-acc’ and ‘vertical-acc’ as gait boundaries. The ‘4 references fused’ item means the detected
boundaries are based on the fusion of all kinds of references.
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Figure 10. Use IoU as a metric to measure the performance of gait segmentation methods for
recognizing push-off phases, swing phases, and heel-strike phases. Subfigures (a1–a3) show the
F-score corresponding to three gait phases in walking with fast speed, middle speed, and slow
speed, respectively.

Finally, we tested the gait segmentation algorithms with different reference configura-
tions on full speed range walking data, and the results are shown in Tables 4 and 5. The
algorithm based on the four references achieved the best F-score on push-off and heel-strike
phases and is comparable to the best F-score on swing phases based on vertical acceleration
reference information. The best IoU in Table 5 is obtained for the swing phases and is
comparable to the best IoUs for the push-off and heel strike phases.
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Table 4. Gait segmentation results for different methods in F-score values. Best results for each speed
group are highlighted in bold numbers.

Gait Segmentation
Method Stance Push-Off Swing Heel-Strike

FAU 0.754 ± 0.022 0.786 ± 0.048 0.84 ± 0.029 0.761 ± 0.047

WAVELET 0.897 ± 0.018 0.729 ± 0.132 0.735 ± 0.128 0.717 ± 0.134

PEAK-VALLEY PAIR
(proposed) 0.811 ± 0.018 0.748 ± 0.056 0.805 ± 0.037 0.819 ± 0.02

Table 5. Gait segmentation results for different methods in IoU values. Best results for each speed
group are highlighted in bold numbers.

Gait Segmentation
Method Stance Push-Off Swing Heel-Strike

FAU 0.601 ± 0.014 0.457 ± 0.03 0.679 ± 0.026 0.345 ± 0.012

WAVELET 0.706 ± 0.019 0.445 ± 0.078 0.686 ± 0.075 0.341 ± 0.031

PEAK-VALLEY PAIR
(proposed) 0.638 ± 0.012 0.487 ± 0.017 0.697 ± 0.076 0.514 ± 0.01

In summary, we obtained the following two conclusions. Firstly, to implement gait
segmentation in complex scenarios across individuals and broad velocity domains, the
accuracy of gait segmentation cannot be guaranteed using only single-axis acceleration
data. Moreover, the derivative of the acceleration data is more susceptible to the signal
noise than the original acceleration signal. Secondly, if the process of fusing different
reference information is simply calculating the average value, it might probably fail to
improve the performance. Checking multiple reference items is necessary, e.g., eliminat-
ing possible outliers and fusing the selected references can lead to more accurate gait
segmentation results.

3.3. Performance Comparison with Existing Methods for Gati Segmentation Based on Foot
Movement Data

Based on the comparison results, we think the gait segmentation algorithm based
on four reference information can provide accurate gait classification results in cross-
individual and broad velocity domain scenarios. Thus, we consider it could serve as gait
phases prediction module for subsequent step length estimation schemes.

3.4. Performance of Adaptive Stride Length Estimation Algorithms

We test the fusion-estimated step estimation model on a test set and compare it with
the same type of model using the whole stride data as the source of features.

According to the error measurements in Table 6, we can find that the model using
fusion estimation is comparable to the model using the complete stride data because the
walking patterns contained in the DLR public dataset are simple and monotonous due to
the constraints of the acquisition environment. Therefore, we tested the trained model in
a changing speed walking scenario. It should be noted that the pre-trained model on the
DLR dataset was not parameterized. Although our test scenario does not provide real-time
location information, we selected a straight path and measured the distance between the
beginning point and the endpoint using a laser rangefinder. One subject was asked to walk
at a self-selected speed and alternate the speed based on personal choice.
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Table 6. Stride length estimation errors by using multi-gait features and full stride features.

Estimation Model RMSE
Distance Distance Estimation Error

Reference (m) Estimated (m) Absolute (m) Relative (%)

Whole Stride
SVR 159.199

527.464

520.218 7.246 1.37
SVR-Adaboost 173.922 500.011 27.453 5.2

Gait Predictions Fusion
SVR 137.917 520.137 7.327 1.39

SVR-Adaboost 151.933 517.453 10.011 1.9

After comparison in Table 7, it can be found that the fused estimation step length
model based on gait phases exhibits smaller RMSE and cumulative distance relative error
rates in the pedestrian variable speed walking scenario. This indicates that the gait-stage
fusion-based step estimation method can demonstrate better adaptability to walking speed
variation than the complete pace-based step estimation method. In addition, the proposed
method in this paper still shows better accuracy without parameter customization, which
shows that the gait-stage fusion-based step estimation method can meet the requirements
of cross-individuals in practical applications.

Table 7. Gait segmentation results for different methods in F-score values. Best results for each speed
group are highlighted in bold numbers.

Estimation Model
Distance Distance Estimation Error

Reference (m) Estimated (m) Absolute (m) Relative (%)

Whole Stride
SVR

501.2

473.882 27.318 5.45
SVR-Adaboost 456.749 44.451 8.87

Gait Predictions Fusion
SVR 524.671 23.471 4.68

SVR-Adaboost 509.825 8.625 1.72

4. Discussion

For both sagittal and vertical acceleration data, we apply the “major peak-valley pairs”
to the pre-processed signals, as well as to their respective differential signals, because the
differential acceleration represents the trend and rapidity of force changes on the foot, and
the “major peak-valley pairs” phenomenon is also present in the differential acceleration
signals at gait boundaries and other temporal locations. The pair phenomenon is also
present in the acceleration differential signal. This means that the foot is subjected to the
greatest forces during the short period of time at the boundary of the gait phase, while
at the same time, the external forces also appear to change very dramatically in a very
short period of time. Hence introducing more bases for judgment makes it easier for us to
eliminate possible pseudo-gait boundaries. Furthermore, for calculating the mean value
of the gait boundary based on the acceleration and its differential signal, we find that the
results are much closer to the real value. Our experimental results also show that this is
indeed beneficial for finding accurate gait boundaries from a practical application point
of view.

When different pedestrians walk at different speeds, the acceleration of the walking
speed causes the duration of the stance phase to be significantly shorter and the fluctuation
of the acceleration during the stance phase to increase. This even makes the fluctuation am-
plitude of the acceleration during the stance phase comparable to the fluctuation amplitude
of the acceleration signal during the swing phase while the pedestrian is walking at a slow
speed. One kind of this phenomenon is shown in Figure 11. We use the average of three
moving, sliding windows with different scales and their sizes are three, six, and twelve,
respectively. In the fast-walking scenario, the acceleration data marked as the stance phase
can be seen with fluctuation intervals comparable to the fluctuation of acceleration within
the swing phase of slow walking. This is an unfavorable situation for the gait segmentation
algorithm because the foot is in a state of inactive force during both the stance phase
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and the swing phase, which leaves the sagittal-axis acceleration signal, the vertical-axis
acceleration signal trending in a flat/soft state. During fast walking, we observed that
the foot motion data of some subjects in the Diverse Gait Dataset also showed a certain
trend during the stance phase. This is the reason why the stance phase and swing phase
may be easily misidentified. We consider this a difficult problem for gait segmentation in
cross-individual and wide velocity domain conditions. Thus we are exploring an adaptive
thresholding method based on signal fluctuation analysis, or new features for identification
and verification of easily confused stance and swing, which is one of our future works.
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Figure 11. In fast and slow walking, the acceleration within the stance phase and the swing phase
have comparable magnitude and similar fluctuation trends, which is the source of the stance phase
identification error. The methods relying on thresholds will fail in such cases. (a1) Sagittal acceleration
and its moving average lines in stance phase during fast walking; (a2) Vertical acceleration and its
moving average lines in stance phase during fast walking; (b1) Sagittal acceleration and its moving
average lines in swing phase during slow walking; (b2) Vertical acceleration and its moving average
lines in swing phase during slow walking.

The fusion procedure for stride length estimation in this paper simply calculates the
mean value, which is a very naive fusion method, resulting in the final step fusion results
are likely to be impacted by the predicted values with large errors. Therefore, in our
future work, we will explore more fusion schemes to improve the accuracy of fused step
estimation based on gait information.

5. Conclusions

Based on the four gait labels provided by the Diverse Gait Dataset, we firstly provide
a description of foot movement processes in different phases of a stride cycle from the
acceleration signal perspective. We find that the switching of foot motion in different gait
phases produces significant and abrupt changes in forces in the anterior-posterior direction
and in the vertical direction with respect to the ground, which forms the basis of the
research in this paper. Based on our understanding of the acceleration signal in gait phases,
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we propose a gait segmentation algorithm based on peak-valley pairs of acceleration data.
Furthermore, in order to evaluate the performance of the gait segmentation method in a
more detailed way, we introduce the IoU metric in the field of target detection to evaluate
the coincidence of the segmented gait phases with the real gait labels in the time range. To
simulate the tests in cross-individual and wide velocity domain scenarios, the proposed
algorithm was evaluated on the Diverse Gait Dataset and achieved F-scores of: 0.748, 0.805,
0.819, and an IoU of: 0.487, 0.697, 0.514 for push-off, swing and heel-strike gait phases,
respectively, which are better than the current well-established methods. By using the gait
segmentation algorithm directly on IMU data without any label information, we find the
sub-sequences of acceleration data and construct different feature sets for each gait phase,
respectively. Test results show that the adaptive stride length estimation method, which is
based on gait predictions fusion, show better performance at varying walking speed and
can fulfill stable accuracy on different pedestrians.
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