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Abstract: Current studies are focused on the correlation between characteristic features extracted
from the laser speckle pattern of machined surfaces and 2D surface roughness parameters. Since
milled surfaces are 3D in nature, 3D surface roughness parameters will provide a more accurate
representation of the surface. Novelties of this work are: (1) an inexpensive laser pointer, which was
used for presentation and was used without any spatial filtering setup for producing the laser speckle
pattern; (2) a correlation study, which was conducted between characteristic features extracted from
the speckle pattern and 3D surface roughness; and (3) the influence of angle of illumination, lens
aperture size (f -number) and shutter speed on the correlation. A highest coefficient of determination
of 0.8955 was obtained for the correlation between the gray level co-occurrence matrix descriptor,
namely energy, and 3D surface roughness parameter, namely ten-point height S10z, at an illumination
angle of 45◦, f -number of 16 and shutter speed of 1/100 s.

Keywords: surface roughness; laser speckle; milled surface

1. Introduction

Surface roughness refers to finely spaced irregularities formed during the machining
process [1]. Parameters such as the fit, wear resistance, fatigue strength, contact stiffness,
vibration and noise of mechanical parts are related to surface roughness. These parameters
will affect the service life and reliability of a product [2]. Therefore, surface roughness
measurement is very important in manufacturing. Surface roughness is either measured
using a contact method or a non-contact method. The contact method that is widely used
in industry is the stylus probe. However, this method has several limitations, such as
a lengthy measurement time and the fact that stylus accuracy depends on its tip radius
and may not be able to accurately measure surfaces with crevices smaller than the stylus
tip [3]. The stylus tip could also cause scratches on the surface of soft materials. Currently,
available methods for determining 3D roughness parameters are mostly optical methods,
which are non-contact methods, such as white light interferometers [4,5], the focus variation
method [6] and confocal microscopy [7]. These methods have high requirements for the
environment and have limited size and roughness measurement ranges. Machine visions
have high measurement efficiency, the capacity to acquire large amounts of information,
high measurement accuracy and good flexibility [2].

Some of the techniques that have been used for correlating the characteristic features
with the surface roughness in the vision methods are statistical properties [8,9], wavelet
transform [10], Tsallis Threshold [11], Neural Network [3], Gray Level Co-occurrence Matrix
(GLCM) [12], Lacunarity [13] and spectral speckle correlation [14–17] and contrast [18,19].
Surface roughness parameters can be classified into profile roughness parameters and
areal roughness parameters. The profile roughness parameters are also known as two-
dimensional or 2D roughness parameters, and the areal roughness parameters are also
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known as three dimensional or 3D roughness parameters [8,20–22]. Current vision methods
extract features to correlate with 2D roughness parameters [9,12,19,23,24], but machined
surfaces are 3D in nature, and therefore, it is important to measure the 3D surface roughness
parameters [8]. Most of the previous research work uses He-Ne laser or diode laser
and spatial filters for cleaning the beam [9,19]. This setup is expensive. Laser pointers
(<1 mW) class 2, which are used for presentation, will be used in the current work, which
is inexpensive. Characteristic features extracted from the image of the laser speckle pattern
of machined surfaces are based on the intensity of the pixels in the image. By varying the
angle of illumination, interference between the scattered beams from the surface will vary,
and this will result in a variation in intensity of the pixels. By adjusting the f -number, the
amount of light that enters the camera can be controlled and, by increasing the f -number,
the speckle size increases accordingly. In a similar manner, by increasing the shutter
speed of the camera, the amount of light entering the camera can be controlled. Therefore,
the variation of the angle of illumination of the laser beam, f -number and shutter speed
affects the speckle pattern, and these, in turn, will affect the correlation of the characteristic
features with 3D surface roughness. Hence, there is a need to study the effect of the angle
of illumination of the laser beam, f -number and shutter speed on the correlation between
the characteristic features with 3D surface roughness parameters. In addition, the aperture
size and shutter speed of the camera play important roles in obtaining good contrast and
brightness in the laser speckle image [25].

To the best knowledge of the authors, there is no work published on the following:

• Use of inexpensive laser pointers for producing the laser speckle pattern.
• A correlation study of the characteristic features extracted from the image of the laser

speckle pattern of the milled surface and 3D surface roughness parameters, measured
with commercial 3D metrology system.

• A study about the influence of the angle of illumination of a laser beam, f -number
and the shutter speed of a camera setting on the correlation of 3D surface roughness
parameters with the characteristic features extracted from the laser pattern image of
the milled surface.

2. Materials and Methods
2.1. Sample Preparation

Two samples, each with five surfaces, were milled using a CNC 5 axis milling machine
(DMU 40 monoBLOCK by Deckel Maho) with four flute endmill cutters of High-Speed Steel
(HSS) with Ø12 mm. These reference samples are known as sample 1 and sample 2. Figure 1
shows the isometric view of one of the samples. Figure 2 shows the two real samples.

Figure 1. Isometric view of the sample.
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Figure 2. (a) Sample 1 and (b) sample 2 with surface numbering.

Each sample had 5 surfaces, which were machined at different feed rates and spindle
speeds. Sample 1 surfaces were labeled as surface 1 to surface 5, whereas sample 2 surfaces
were labeled as surface 6 to 10, as shown in Figure 2. Sample 1 was machined at feed rates
of 120, 280, 440, 600 and 760 mm/min, at a spindle speed of 1000 rpm, and a depth of cut of
1 mm, whereas sample 2 was machined at feed rates of 120, 280, 440, 600 and 760 mm/min,
at a spindle speed of 2500 rpm, and a depth of cut of 1 mm. Using an Alicona Infinite Focus
Microscope by Bruker Alicona, which is a commercial 3D metrology system, the following
3D surface roughness parameters [26] were measured (cut-off wavelength of 141.58 µm
and scan region of 708.32 µm by 537.35 µm setting on Alicona Infinite Focus) from the
milled surfaces at 9 locations on each surface, and the average value is tabulated in Table 1:

1. Arithmetic Mean Height (Sa)
2. Root-Mean-Square Height (Sq)
3. Maximum Peak Height (Sp)
4. Maximum Valley Depth (Sv)
5. Maximum Height (Sz)
6. Ten Point Height (S10z)
7. Skewness (Ssk)
8. Kurtosis (Sku)
9. Root Mean Square Gradient (Sdq)
10. Developed Interfacial area ratio (Sdr)

Table 1. 3D surface roughness parameter for each milled surface.

Surface
No.

Spindle
Speed
(rpm)

Feed
Rate

(mm/min)

Depth
of Cut
(mm)

Sa
(µm)

Sq
(µm)

Sp
(µm)

Sv
(µm)

Sz
(µm)

S10z
(µm) Ssk Sku Sdq

Sdr
(%)

1 1000 120 1 0.931 1.117 4.070 3.889 7.959 6.187 −0.044 2.415 0.161 1.305
2 1000 280 1 1.046 1.322 8.081 7.774 15.855 9.217 0.281 3.398 0.177 1.553
3 1000 440 1 1.325 1.675 9.809 6.795 16.605 10.826 0.146 3.442 0.191 1.790
4 1000 600 1 1.162 1.567 11.639 13.136 24.775 14.423 0.275 6.054 0.242 2.636
5 1000 760 1 1.254 1.816 10.948 8.678 19.626 16.608 0.360 6.142 0.318 4.565
6 2500 120 1 0.748 0.902 5.681 6.960 12.641 5.122 0.335 2.473 0.185 1.722
7 2500 280 1 0.968 1.156 5.437 8.607 14.045 6.387 −0.177 6.528 0.185 1.749
8 2500 440 1 0.974 1.225 7.169 6.327 13.496 7.440 −0.124 4.374 0.196 1.830
9 2500 600 1 1.058 1.326 8.617 9.490 18.106 8.325 0.000 3.152 0.192 1.888
10 2500 760 1 1.113 1.417 9.640 6.377 16.016 10.246 0.257 3.715 0.193 1.811
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2.2. Experimental Setup

Figure 3a shows the experimental setup. A laser beam from a commercial laser pointer
(LX1 by Legamaster with a 5 mm diameter red laser dot, wavelength between 630 to
680 nm and a maximum output of less than 1 mW) was directed onto the sample at the
desired angle, as shown in Figure 3a,b. The scattered beam underwent interference and
formed a laser speckle pattern. Using a Sony Camera DSLR-A230 (image resolution of
3872 × 2592 pixels), fitted with an 18–55 mm smooth autofocus motor (SAM) Sony lens
and close up +8 lens, a laser speckle pattern image of size 3872 × 2592 pixels was captured,
as shown in Figure 4. The lens was set to manual focusing and a 55 mm focal length. To
ensure no external lighting was available at the experiment setup, the experiment setup
was covered with a black cloth.

Figure 3. (a) Experimental setup and (b) close-up view of sample illuminated by laser beam.

Figure 4. Laser speckle pattern.

The laser speckle patterns obtained from all ten milled surfaces were captured at
various combinations of f -number and shutter speed settings of the camera. In this work,
the illumination angles of the laser pointer used were 30◦, 45◦ and 60◦, the f -numbers used
were 8, 16, 22 and 32, and the shutter speeds used were 1/50, 1/100, 1/200 and 1/400 s.

2.3. Characteristic Features Extraction

The speckle patterns of all the ten surfaces were read into the MATLAB 2020b
workspace, and a MATLAB program was developed for determining the centroid of
each speckle pattern. Then, the speckle pattern was cropped to a size of 101 × 101 pixels
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with the centroid as the center of the cropped image, as shown in Figure 5a–j. A cropping
size of 101× 101 was chosen to ensure that the cropping region was within the speckle
pattern region.

Figure 5. (a–j) are the cropped laser speckle pattern images for each surface at illumination angle of
45◦, f number of 16 and shutter speed of 1/100 s.

The yellow color in the image, as shown in Figure 5, indicates a high-intensity region,
and this high-intensity region is due to a specular highlight or reflected light caused by
a tool mark [27]. The specular highlight will be along the center of the surface. Chatter
marks due to vibration will cause an uneven depth of the tool mark, which will result in a
higher intensity.

Each image was then converted to grayscale, as shown in Figure 6. The grayscale image
was not subjected to any filtering process in order to avoid loss of data caused by filtering.
Characteristic features based on histograms, such as mean, standard deviation, energy,
entropy and texture-based features, such as normalized roughness, and those based on gray
level co-occurrence matrices (GLCM), such as maximum probability, correlation, contrast,
energy, homogeneity and entropy, were extracted from the grayscale images. In order to
differentiate the energy and entropy descriptors that are obtained from histograms and gray
level co-occurrence matrices (GLCM), energy and entropy descriptors based on GLCM shall
be addressed as energy (GLCM) and entropy (GLCM). The grayscale images were converted
to binary, as shown in Figure 7. From the binary images, white-to-black pixel ratios were
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obtained as characteristic features. The extracted characteristic features were plotted against
the 3D surface roughness, and the coefficients of determination were evaluated.

Figure 6. (a–j) are the grayscale images of the laser speckle pattern images for each surface at
illumination angle of 45◦, f number of 16 and shutter speed of 1/100 s.

Equations (1)–(12) [28] were used to extract the characteristic features from the image
as follows:

1. Histogram-based (statistical) features

◦ Mean

Mean of gray value of the image m obtained from the original image f (x,y) of size
M × N given by Equation (1).

m =
1

MN

M−1

∑
x=0

N−1

∑
y=0

f (x, y) (1)

where f (x,y) is the gray value of pixel at coordinates (x,y)
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◦ Standard deviation

Standard deviation σ of an image is given by Equation (2).

σ =

√√√√L−1

∑
j=0

(
rj −m

)2 p
(
rj
)

(2)

where:
rj is the jth gray level.
L is the total possible gray level value.
p(rj) is the probability of occurrences of rj.
m is the mean of gray values of the image.

◦ Energy

The energy descriptor, which is also known as uniformity, measures how pixel values
are distributed along the gray level range and can be calculated for grayscale images
using Equation (3).

energy =
L−1

∑
j=0

[
p
(
rj
)]2 (3)

where:
rj is the jth gray level.
L is total possible gray level value.
p(rj) is the probability of occurrences of rj.

◦ Entropy

The entropy descriptor provides information about the complexity of the image, as
given by Equation (4).

entropy = −
L−1

∑
j=0

p
(
rj
)
log2

[
p
(
rj
)]

(4)

where:
rj is the jth gray level.
L is total possible gray level value.
p(rj) is the probability of occurrences of rj.

2. Texture features

◦ Normalised descriptor of roughness R

Normalised descriptor of roughness R is as given in Equation (5).

R = 1− 1

1 + σ2

(L−1)2

(5)

where:
σ2 is variance.
L is total possible gray level value

3. Gray level co-occurrence matrix (GLCM)
The histogram-based texture descriptors do not provide any information about the
spatial relationship among pixels. This information can be obtained using the gray
level co-occurrence matrix (GLCM). The matrix holds the information about the
number of times pixels with intensities ri and rj occur in the image f (x,y) in the
position specified by the displacement vector d = (dx,dy) and orientation θ. In this
work, the default values of the displacement vector and orientation, as in the MATLAB
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software, that is d = (0,1) and orientation of 0◦, were used. The matrix is normalized
as given in Equation (6).

Ng (i, j) =
g(i, j)

∑i ∑j g(i, j)
(6)

where:
Ng(i,j) is the normalized gray level co-occurrence matrix.
g(i,j) is the element of the gray level co-occurrence matrix.
The following texture-based features are computed using a normalized GLCM, Ng(i,j).

◦ Maximum Probability as given by Equation (7).

Maximum probability = max Ng(i, j) (7)

◦ Correlation as given by Equation (8).

Correlation =
∑i ∑j(i− µi)

(
j− µj

)
Ng(i, j)

σiσj
(8)

where:
µi is the mean of the row sums of Ng(i,j).
µj is the mean of column sums of Ng(i,j).
σi is the standard deviation of row sums of Ng(i,j).
σj is the standard deviation of column sums of Ng(i,j).

◦ Contrast as given by Equation (9).

Contrast = ∑
i

∑
j
(i− j)2Ng(i, j) (9)

◦ Energy as given by Equation (10).

Energy = ∑
i

∑
j

N2
g(i, j) (10)

◦ Homogeneity as given by Equation (11).

Homogeneity = ∑
i

∑
j

Ng(i, j)
1 + |i− j| (11)

◦ Entropy as given by Equation (12).

Entropy = −∑
i

∑
j

Ng(i, j)log2Ng(i, j) (12)

4. From the binary image, the following characteristic features were extracted:

◦ Total white pixels to total black pixels ratio (W/B)
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Figure 7. (a–j) are the binary images of the laser speckle pattern images for each surface at illumination
angle of 45◦, f number of 16 and shutter speed of 1/100 s.

3. Results and Discussion

Figures 8–12 are the plots between the characteristic features and 3D surface roughness
with a coefficient of determination equal or above 0.7 for an illumination angle of 30◦ and
45◦. Goh and Ratnam [8] used a linear fit for the correlations between characteristic features
and 3D surface roughness parameters, and in this work the linear fit was used in the plot.
Tables 2 and 3 tabulates the coefficient of determination as mentioned in the plots.

The speckle pattern formed should not be very dark or too bright, as this will result in
a poor correlation. Compared with illumination angles of 30◦, illumination angles of 45◦

have more characteristic features, with a correlation of more than 0.7. This result is in line
with other studies, which have reported that 2D surface roughness measurements were
better at an incidence angle of 45◦ [29]. In addition to that, most of the GLCM characteristic
features have a good correlation with the 3D surface roughness compared with the other
characteristic features used in these works. Camera settings with an f -number of 16, a
shutter speed of 1/100, an f -number of 22 and a shutter speed of 1/200 at an illumination
angle of 45◦ have many characteristic features with good correlation with 3D surface
roughness. A highest correlation of 0.8955 was obtained between energy (GLCM) and
S10z at an illumination angle of 45◦, f -number 22 and shutter speed 1/100. There is no
coefficient of determination of more than 0.7 in the case of illumination at an angle of 60◦.
At an illumination angle of 45◦, better correlation between the characteristic features and
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3D surface parameters compared to at illumination angles of 30◦ and 60◦ could be due
to more scattered laser beams from the various secondary sources, which are at various
peaks and valleys on the surface that represents the surface roughness, which undergoes
interference normal to surface for an illumination angle of 45◦. The camera is placed normal
to the surface.

Out of the 21 plots shown in Figures 8–12, it is found that 29% of the correlation above
0.7 involves correlation (GLCM), 14% are entropy (GLCM), energy and contrast (GLCM),
9.5% are energy (GLCM) and W/B and 5% are energy and homogeneity (GLCM). In a
similar manner, 19% correlation above 0.7 involves Sa, Sq, Sp and Sz, 14% involves S10z and
4.8% Sdq and Sdr.

Figure 8. (a,b) are correlation plots between the characteristic features and roughness parameter with
camera setting of f -number of 8, shutter speed 1/200 s and illumination angle of 30◦.

Figure 9. (a,b) are correlation plots between characteristic features and roughness parameter with
camera setting of f -number of 8 and shutter speed 1/50 s and illumination angle of 45◦.
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Figure 10. Cont.
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Figure 10. (a–h) are correlation plots between characteristic features and roughness parameter with
camera setting of f -number of 16 and shutter speed 1/100 s and illumination angle of 45◦.

Figure 11. (a,b) are correlation plots between characteristic features and roughness parameter with
camera setting of f -number of 22, shutter speed 1/100 s and illumination angle of 45◦.

Compared with an illumination angle of 30◦, an illumination angle of 45◦ gives more
characteristic features with a correlation more than 0.7. In addition, some characteristic
features include correlations of more than 0.8 in the case of an illumination angle of 45◦ and
no characteristic features, and a correlation of more than 0.8 in the case of an illumination
angle of 30◦. There is no correlation of more than 0.7 in the case of an illumination angle
of 60◦. On average, a shutter speed of 1/200 s produces better correlation (even if below
0.5) compared with other shutter speeds in the case of an illumination angle of 30◦. In the
case of illumination angles of 45 and 60◦, on average, shutter speeds of 1/100 s and 1/200 s
produce better correlation even if the correlation is below 0.5.
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Figure 12. Cont.
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Figure 12. (a–g) are correlation plots between characteristic features and roughness parameter with
camera setting of f -number of 22, shutter speed 1/200 s and illumination angle of 45◦.

Table 2. Tabulation of coefficient of determination value of more than 0.7 for illumination angle
of 30◦.

Correlation R2 Camera Setting

Correlation (GLCM) vs. Sa 0.7354
f -number 8 shutter speed 1/200 s

Correlation (GLCM) vs. Sq 0.7438

Table 3. Tabulation of coefficient of determination value of more than 0.7 for Illumination angle
of 45◦.

Correlation R2 Camera Setting

Entropy (GLCM) vs. Sa 0.8208
f -number 8 shutter speed 1/50 s

Entropy (GLCM) vs. Sq 0.7352

Energy vs. Sp 0.7347

f -number 16 shutter speed 1/100 s

Energy (GLCM) vs. Sp 0.7202

Energy vs. Sz 0.7015

Entropy vs. Sz 0.7354

Entropy (GLCM) vs. Sz 0.7565

Homogeneity (GLCM) vs. Sz 0.7704

Energy vs. S10z 0.8916

Energy (GLCM) vs. S10z 0.8955

W/B vs. Sdq 0.8151
f -number 22 shutter speed 1/100 s

W/B vs. Sdr 0.8294

Contrast (GLCM) vs. Sa 0.749

f -number 22 shutter speed 1/200 s

Correlation (GLCM) vs. Sa 0.806

Contrast (GLCM) vs. Sq 0.7358

Correlation (GLCM) vs. Sq 0.8148

Contrast (GLCM) vs. Sp 0.7368

Correlation (GLCM) vs. Sp 0.8403

Correlation (GLCM) vs. S10z 0.7316
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4. Conclusions

From the study, we can conclude that:

• An inexpensive laser pointer can be used for producing a laser speckle pattern.
• Good correlations between the characteristic features and 3D surface roughness

were obtained.
• It was found that the angle of illumination, f -number and shutter speed combination

affect the coefficient of determinations.

5. Recommendation for Future Work

• In this work, the authors limited their study using GLCM to displacement d = 1 and
orientation θ = 0

◦
. Future correlation studies should be carried out using GLCM for

different combinations of displacement and orientation.
• A study should also be conducted on how the wavelength of a laser and the distance

of the camera from the sample affect the correlation.
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