Persistent Periodic Uplink Scheduling Algorithm for Massive NB-IoT Devices
Abstract
:1. Introduction
2. Background and Related Works
2.1. About NB-IoT
- Narrowband physical random access channel (NPRACH).
- Narrowband physical uplink shared channel (NPUSCH).
- Demodulation reference signal (DMRS).
- Narrowband physical downlink shared channel (NPDSCH).
- Narrowband physical downlink control channel (NPDCCH).
- Narrowband reference signal (NRS).
- Narrowband primary synchronization signal (NPSS).
- Narrowband secondary synchronization signal (NSSS).
- Narrowband physical broadcast channel (NPBCH).
2.1.1. Frame Structure for NB-IoT
2.1.2. About Coverage Enhancement Level—CE Level
2.1.3. Power Saving Mechanism of NB-IoT
2.2. Uplink Scheduling for NB-IoT
2.3. Literature Review of Uplink Scheduling
2.4. Some Advances in NB-IoT
3. Proposed Uplink Scheduling Mechanism for NB-IoT
3.1. Scheduling Algorithm (PPUSA)
- Step 1: given T slots, the algorithm first marks each frame’s fifth and tenth subframes for bursty UE. As a result, there is an ordered set S of available slots for periodic UE that does not include slots occupied for bursty UE.
- Step 2: schedule the heavy-type UE into set S in order. The UE is scheduled into the next empty slot according to its report period. In other words, for the UE of this type, during its report period, the first available time slot is reserved for this UE’s periodic report transmission. It is known as greedy scheduling in real-time scheduling.
- Step 3: schedule the normal type UE into set S, as in step 2. Similar to step 2, the schedule is based on the UE’s report period, and if the desired slot has been already occupied, the next first available time slot is reserved.
- Step 4: schedule the light type UE in the same way as the above steps.
Algorithm 1 Persistent periodic uplink scheduling algorithm (PPUSA). |
Input:T, , , , , , , |
Output:S
|
Algorithm 2 Arrival of new UE. |
Input:T, , |
Output:S
|
3.2. Power Saving Mechanism (PSM)
3.3. System Overview
4. Simulation Environment and Results Analysis
4.1. Basic Parameters
4.2. Simulation Environment
4.3. Performance Metrics
- Average access delay.
- Number of serving NB-IoT UE and uplink resource utilization of the three CE levels.
- UE’s battery lifetime.
4.4. Simulation Results
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
IIoT | industrial Internet of Things |
NB-IoT | narrow band Internet of Things |
5G | fifth generation networks |
2G GSM | second generation global system of mobile communications |
PPUSA | persistent periodic uplink scheduling algorithm |
PSM | power saving mechanism |
PBOMP | periodic block orthogonal matching pursuit |
PBSBL | periodic block sparse Bayesian learning |
CE | coverage enhancement |
eDRX | extended discontinuous reception |
3GPP | third generation partnership project |
LPWAN | low power wide area networks |
4G LTE | fourth generation long term evolution networks |
OFDMA | orthogonal frequency division multiple access |
FDMA | frequency division multiple access |
SC-FDMA | single-carrier frequency division multiple access |
UE | user equipment |
UAD | user activity detection |
TA | timing advance |
RUs | resource units |
NPUSCH | narrowband physical uplink shared channel |
NPRACH | NB-IoT physical random access channel |
RSRP | reference signal received power |
SIB-NB | system information block-narrow band |
MIB-NB | master information block-narrow band |
DCI | downlink control information |
RNTI | radio network temporary information |
CRC | cyclic redundancy check |
SPS | semi-persistent scheduling |
VoIP | voice over internet protocol |
NBPSS | narrow band primary synchronization signal |
NSSSS | narrow band secondary synchronization signal |
HetNet | heterogeneous network |
References
- Farias da Costa, V.C.; Oliveira, L.; de Souza, J. Internet of Everything (IoE) Taxonomies: A Survey and a Novel Knowledge-Based Taxonomy. Sensors 2021, 21, 568. [Google Scholar] [CrossRef] [PubMed]
- Bellini, E.; Bellini, P.; Cenni, D.; Nesi, P.; Pantaleo, G.; Paoli, I.; Paolucci, M. An IoE and Big Multimedia Data Approach for Urban Transport System Resilience Management in Smart Cities. Sensors 2021, 21, 435. [Google Scholar] [CrossRef] [PubMed]
- Routray, S.K.; Eisha, A.; Sharmila, K.P.; Sharma, L.; Aritri, D.G.; Pappa, M. Narrowband IoT Based Support Functions in Smart Cities. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems, Coimbatore, India, 25–27 March 2021; pp. 1459–1464. [Google Scholar]
- Anand, S.; Sudhir, K.R. Issues and Challenges in Healthcare Narrowband IoT. In Proceedings of the 2017 International Conference on Inventive Communication and Computational Technologies, Coimbatore, India, 10–11 March 2017; pp. 486–489. [Google Scholar]
- Routray, S.K.; Devarajan, G.; Abhishek, J.; Anindita, S. Narrowband IoT (NBIoT) Assisted Smart Grids. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems, Coimbatore, India, 25–27 March 2021; pp. 1454–1458. [Google Scholar]
- Routray, S.K.; Abhishek, J.; Laxmi, S.; Aritri, D.G.; Anindita, S. Internet of Things Based Precision Agriculture for Developing Countries. In Proceedings of the 2019 International Conference on Smart Systems and Inventive Technology, Tirunelveli, India, 27–29 November 2019; pp. 1064–1068. [Google Scholar]
- Olejniczak, A.; Błaszkiewicz, O.; Cwalina, K.K.; Rajchowski, P.; Sadowski, J. Software-Defined NB-IoT Uplink Framework—The Design, Implementation and Use Cases. Sensors 2021, 21, 8234. [Google Scholar] [CrossRef] [PubMed]
- Popli, S.; Jha, R.K.; Jain, S. A Survey on Energy Efficient Narrowband Internet of Things (NBIoT): Architecture, Application and Challenges. IEEE Access 2018, 7, 16739–16776. [Google Scholar] [CrossRef]
- Yu, Y.-J.; Wang, J.-K. Uplink Resource Allocation for Narrowband Internet of Things (NB-IoT) Cellular Networks. In Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018. [Google Scholar] [CrossRef]
- Huang, C.W.; Tseng, S.C.; Lin, P.; Kawamoto, Y. Radio Resource Scheduling for Narrow-Band Internet of Things Systems: A Performance Study. IEEE Netw. 2019, 33, 108–115. [Google Scholar] [CrossRef]
- Hidayati, A.; Reza, M.; Adriansyah, N.M.; Nashiruddin, M.I. Techno-Economic Analysis of Narrowband IoT (NB-IoT) Deployment for Smart Metering. In Proceedings of the 2019 Asia Pacific Conference on Research in Industrial and Systems Engineering (APCoRISE), Depok, Indonesia, 18–19 April 2019; pp. 1–6. [Google Scholar]
- Mwakwata, C.B.; Malik, H.; Mahtab Alam, M.; Le Moullec, Y.; Parand, S.; Mumtaz, S. Narrowband Internet of Things (NB-IoT): From physical (PHY) and media access control (MAC) layers perspectives. Sensors 2019, 19, 2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Techplayon Website. Available online: https://www.techplayon.com/narrow-band-iot-frame-structure/ (accessed on 25 March 2022).
- ETSI-3GPP-TS36.213. Third Generation Partnership Project—Technical Specification Group Radio Access Network Evolved Universal Terrestrial Radio Access. (E-UTRA) Physical Layer Procedures. Available online: https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/14.06.00_60/ts_136213v140600p.pdf (accessed on 4 April 2022).
- Boisguene, R.; Tseng, S.C.; Huang, C.W.; Lin, P. A Survey on NB-IoT Downlink Scheduling: Issues and Potential Solutions. In Proceedings of the 2017 Thirteenth International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 547–551. [Google Scholar]
- Chen, X.; Li, Z.; Chen, Y.; Wang, X. Performance Analysis and Uplink Scheduling for QoS-Aware NB-IoT Networks in Mobile Computing. IEEE Access 2019, 7, 44404–44415. [Google Scholar] [CrossRef]
- Liu, P.Y.; Wu, K.R.; Liang, J.M.; Chen, J.J.; Tseng, Y.C. Energy-Efficient Uplink Scheduling for Ultra-Reliable Communications in NB-IoT Networks. In Proceedings of the 2018 IEEE Twenty-Ninth Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1–5. [Google Scholar]
- Jiang, D.; Wang, H.; Malkamaki, E.; Tuomaala, E. Principle and Performance of Semi-Persistent Scheduling for VoIP in LTE system. In Proceedings of the 2007 International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, 21–25 September 2007; pp. 2861–2864. [Google Scholar]
- Chuang, T.; Tsai, M.; Chuang, C. Group-Based Uplink Scheduling for Machine-Type Communications in LTE-Advanced Networks. In Proceedings of the IEEE Twenty-Ninth International Conference on Advanced Information Networking and Applications Workshops, Gwangiu, Korea, 24–27 March 2015; pp. 652–657. [Google Scholar]
- Chakrapani, A. Efficient Resource Scheduling for eMTC/NB-IoT Communications in LTE REL 13. In Proceedings of the IEEE Conference on Standards for Communications and Networking (CSCN), Helsinki, Finland, 18–20 September 2017; pp. 66–71. [Google Scholar]
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De, P.; Silva, F.; Tufvesson, A.; Benjebbour; Wunder, G. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment and Practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Azari, A.; Miao, G.; Stefanovic, C.; Popovski, P. Latency-Energy Tradeoff Based on Channel Scheduling and Repetitions in NB-IoT Systems. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018. [Google Scholar]
- Yu, C.; Yu, L.; Wu, Y.; He, Y.; Lu, Q. Uplink Scheduling and Link Adaptation for Narrowband Internet of Things Systems. IEEE Access 2018, 5, 1724–1734. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, N.; Kang, G. Multiple Resource Units Allocation and Scheduling with QoS Guarantees for NB-IoT Systems. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC-Workshops), Beijing, China, 16–18 August 2018; pp. 243–248. [Google Scholar]
- Wang, Y.; Zhu, X.; Lim, E.G.; Wei, Z.; Jiang, Y. Grant-Free Communications with Adaptive Period for IIoT: Sparsity and Correlation based Joint Channel Estimation and Signal Detection. IEEE Internet Things J. 2021, 9, 4624–4638. [Google Scholar] [CrossRef]
- ETSI TR 103 055 V1.1.1. Electromagnetic Compatibility and Radio Spectrum Matters (ERM), System Reference Document (SRdoc): Spectrum Requirements for Short Range Device, Metropolitan Mesh Machine Networks (M3N) and Smart Metering (SM) Applications. Available online: https://www.etsi.org/deliver/etsi_tr/103000_103099/103055/01.01.01_60/tr_103055v010101p.pdf (accessed on 4 April 2022).
- Chunghwa-Telecom-Website. Available online: https://www.cht.com.tw/home/campaign/M-IoT/index.html (accessed on 24 March 2022).
- Holte, R.; Mok, A.; Rosier, L.; Tulchinsky, I.; Varvel, D. The Pinwheel: A Real-Time Scheduling Problem. In Proceedings of the Twenty-Second Annual Hawaii International Conference on Systems Sciences Software Track, Kailua-Kona, HI, USA, 3–6 January 1989; Volume 2, pp. 693–702. [Google Scholar]
- ETSI-3GPP TS36.214. Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Layer Measurements. Available online: htps://www.etsi.org/deliver/etsi_ts/136200_136299/136214/14.02.00_60/ts_136214v140200p.pdf (accessed on 20 January 2021).
- Lauridsen, M.; Krigslund, R.; Rohr, M.; Madueno, G. An Empirical NB-IoT Power Consumption Model for Battery Lifetime Estimation. In Proceedings of the IEEE Eighty-Seventh Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar]
- Soussi, M.; Zand, P.; Pasveer, F.; Dolmans, G. Evaluating the Performance of eMTC and NB-IoT for Smart City Applications. In Proceedings of the IEEE International Conference on Communications, Kansas City, MO, USA, 20–24 May 2018; pp. 1–7. [Google Scholar]
- Sultania, A.; Zand, K.P.; Blondia, C.; Famaey, J. Energy Modeling and Evaluation of NB-IoT with PSM and eDRX. In Proceedings of the IEEE Globecom Workshops (GC-Workshops), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–7. [Google Scholar]
- Martinez, B.; Adelantado, F.; Bartoli, A.; Vilajosana, X. Exploring the Performance Boundaries of NB-IoT. IEEE Internet Things J. 2019, 6, 5702–5712. [Google Scholar] [CrossRef] [Green Version]
- Andres Maldonado, P.; Lauridsen, M.; Ameigeiras, P.; Lopez Soler, J.M. Analytical Modeling and Experimental Validation of NB-IoT Device Energy Consumption. IEEE Internet Things J. 2019, 6, 5691–5701. [Google Scholar] [CrossRef] [Green Version]
- Antipolis, S.G. Evolved Universal Terrestrial Radio Access (E-UTRA); Protocol Specification Version 15.2.2; Radio Resource Control (RRC): 2018. Available online: https://www.etsi.org/deliver/etsi_ts/136300_136399/136331/15.03.00_60/ts_136331v150300p.pdf (accessed on 4 April 2022).
- 3GPP TR 45.820. Technical Specification Group GSM/EDGE Radio Access, Cellular System Support for Ultra-Low Complexity and Low Throughput Internet of Things (CIoT), Release 13. 2015. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2719 (accessed on 4 April 2022).
- ETSI TS 136 211 V16.2.0. LTE, Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Channels and Modulation, ETSI TS 36.211, V16.2.0, Release 16. 2020. Available online: https://www.etsi.org/deliver/etsi_ts/136200_136299/136211/16.02.00_60/ts_136211v160200p.pdf (accessed on 4 April 2022).
- Malik, H.; Sarmiento, J.L.R.; Alam, M.M.; Imran, M.A. Narrowband-Internet of Things: Performance Evaluation in 5G Heterogeneous Wireless Networks. In Proceedings of the IEEE Twenty Fourth International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus, 11–13 September 2019; pp. 1–6. [Google Scholar]
- An Overview of Narrowband Internet of Things. 2020. Available online: https://www.fibocom.com/en/Blog/info_itemid_2103.html (accessed on 25 March 2022).
- Ali, E.; Katina, K. Small-Scale 5G Testbeds for Network Slicing Deployment: A Systematic Review. Wirel. Commun. Mob. Comput. 2021, 2021, 6655216. [Google Scholar] [CrossRef]
Parameters | Technical Features |
---|---|
Frequency | Licensed LTE frequency |
Bandwidth | 180 kHz |
Modulation | QPSK |
Multiple access | DL: OFDMA; UL: SC-FDMA |
Maximum data rate | DL: 250 kbps; UL: 200 kbps |
Maximum link budget | 164 dBm |
Bidirectional | Yes/half duplex FDD |
Maximum payload length | 1600 bytes |
Maximum messages per day | Unlimited |
Authentication and encryption | Yes (LTE encryption) |
Handover | No Handover in dedicated mode |
Related Works | Single Tone or Multi-Tone | Scheduling a Massive Number of UE | Support for Periodic Transmission and Bursty Transmission | CE Level | Power Saving Mechanism |
---|---|---|---|---|---|
[20,21] | Not Supported | NO | NO | NO | NO |
[22] | Not Mentioned | NO | NO | YES | NO |
[23] | Single | NO | NO | YES | NO |
[15] | Single | YES | NO | YES | NO |
[16] | Single | NO | NO | NO | YES |
[17] | Multi | YES | YES | NO | NO |
[10] | Multi | YES | NO | YES | NO |
[24] | Multi | YES | YES | YES | NO |
PPUSA | Multi | YES | YES | YES | YES |
Type | Data Type | Characteristic |
---|---|---|
Periodic Type | Periodic Data | No requirement for delay and low need for reliability |
Bursty Type | Emergency Data | High requirements for delay and reliability of data transmissions |
Parameter | Description |
---|---|
T | Simulation time (number of slots) |
Number of heavy type UE | |
Number of normal type UE | |
Number of light type UE | |
Report Period for heavy type UE | |
Report Period for normal type UE | |
Report Period for light type UE | |
Report Period for newly arrived UE | |
Number of RUs allocated to the UE | |
Number of RUs allocated to newly-arrived UE | |
id() | ID given to a specific UE |
S | The Set of all the UE after scheduling |
Carried Data (bit per RU) | |||||
---|---|---|---|---|---|
Efficiency | 0.2344 | 0.377 | 0.6016 | 0.877 | 1.1758 |
1 tone (8 ms) | 26.2528 | 42.224 | 67.3792 | 98.224 | 131.6896 |
3 tone (4 ms) | 39.3792 | 63.336 | 101.0688 | 147.336 | 197.5344 |
6 tone (2 ms) | 39.3792 | 63.336 | 101.0688 | 147.336 | 197.5344 |
12 tone (1 ms) | 39.3792 | 63.336 | 101.0688 | 147.336 | 197.5344 |
Total Number of UE | 10,000 | 14,000 | 18,000 | 22,000 | 26,000 | 30,000 |
Number of UE Sending bursty messages | 1% to 10% | |||||
Number of required RUs | 1 or 2 |
Type | Use Case | Transmission Rate | Required RUs at CE0 | Required RUs at CE1 | Required RUs at CE2 |
---|---|---|---|---|---|
Light | Water metering | 200 bytes/day | 11 RUs | 16 RUs | 26 RUs |
Watering | 100 bytes/12 h | 6 RUs | 8 RUs | 13 RUs | |
Normal | Waste management | 50 bytes/1 h | 3 RUs | 4 RUs | 7 RUs |
Parking management | 100 bytes/1 h | 6 RUs | 8 RUs | 13 RUs | |
Heavy | Self-service Bike renting | 50 bytes/15 min | 3 RUs | 4 RUs | 7 RUs |
Gas metering | 100 bytes/15 min | 6 RUs | 8 RUs | 13 RUs |
Parameter | CE0 | CE1 | CE2 | |
---|---|---|---|---|
Power Control | Pmax | 23 dBm | 23 dBm | 23 dBm |
RSRP | −110 dBm/15 kHz | −120 dBm/15 kHz | −130 dBm/15 kHz | |
1 | 1 | 1 | ||
−67 dBm | −77 dBm | −87 dBm | ||
0 dBm | 0 dBm | 0 dBm |
Use Case | Report Cycle | CE0 | CE1 | CE2 |
---|---|---|---|---|
Water metering | 24 h | 8.93 years | 6.48 years | 4.25 years |
Watering | 12 h | 8.33 years | 6.48 years | 4.25 years |
Waste management | 1 h | 1.65 years | 1.25 years | 264 days |
Parking management | 1 h | 307 days | 232 days | 144 days |
Self-service bike renting | 15 min | 155 days | 117 days | 69 days |
Gas metering | 15 min | 78 days | 59 days | 37 days |
Use Case | PPUSA | [24] |
---|---|---|
Water metering | 8.93 years | 4.93 years |
Watering | 8.33 years | 4.56 years |
Waste management | 1.65 years | 307 days |
Parking management | 307 days | 154 days |
Self-service bike renting | 155 days | 78 days |
Gas Metering | 78 days | 40 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.-Y.; Hwang, R.-H.; Vyas, A.; Lin, C.-Y.; Huang, C.-R. Persistent Periodic Uplink Scheduling Algorithm for Massive NB-IoT Devices. Sensors 2022, 22, 2875. https://doi.org/10.3390/s22082875
Wu T-Y, Hwang R-H, Vyas A, Lin C-Y, Huang C-R. Persistent Periodic Uplink Scheduling Algorithm for Massive NB-IoT Devices. Sensors. 2022; 22(8):2875. https://doi.org/10.3390/s22082875
Chicago/Turabian StyleWu, Tin-Yu, Ren-Hung Hwang, Abhishek Vyas, Chia-Yiu Lin, and Chi-Ruei Huang. 2022. "Persistent Periodic Uplink Scheduling Algorithm for Massive NB-IoT Devices" Sensors 22, no. 8: 2875. https://doi.org/10.3390/s22082875
APA StyleWu, T. -Y., Hwang, R. -H., Vyas, A., Lin, C. -Y., & Huang, C. -R. (2022). Persistent Periodic Uplink Scheduling Algorithm for Massive NB-IoT Devices. Sensors, 22(8), 2875. https://doi.org/10.3390/s22082875