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Abstract: This paper analyzes the power flow solution in bipolar direct current networks with
radial structures considering multiple monopolar and bipolar constant power loads. The electrical
configuration of the bipolar DC grid considers that the reference pole is non-grounded along the
feeder, which produces important neutral currents and voltage imbalances along the DC grid. The
power flow problem is formulated through the triangular-based representation of the grid topology,
which generates a recursive formulation that allows determining the voltage values in the demand
nodes through an iterative procedure. The linear convergence of the triangular-based power flow
method is tested through multiple load variations with respect to the nominal grid operative condition.
Numerical results in the 21- and the 85-bus grids reveal the relevant variations in the voltage profiles
and total grid power losses when the neutral cable is solidly grounded or not.

Keywords: power flow solution; bipolar DC networks; monopolar and bipolar constant power loads;
triangular-based formulation; convergence evaluation

1. Introduction

Recently, the direct current (DC) distribution network has gained attention in the
research and industrial communities since they do not require generation synchronization,
have better voltage profiles, present lower power and energy losses, and in these grids,
reactive power and frequency concepts are nonexistent [1,2]. Additionally, the accelerated
advances in power electronic converters make these grids attractive for integrating multiple
distributed energy resources such as photovoltaic generation, battery energy storage sys-
tems, and fuel cells, since these operate directly with DC technology, reducing the number
of converters required in comparison with classical alternating current (AC) networks [3-5].

Electrical distributions with DC technologies can be constructed with two possible
configurations: monopolar and bipolar [6,7]. The former is the most typical structure,
where a positive and a neutral pole are used to provide constant voltage to multiple loads
connected in the feeder [8]. The latter, i.e., bipolar, is composed of three cables that work
as positive, neutral, and negative poles, respectively [9,10]. The main characteristic of
the bipolar connection is that it allows the transfer of double the power to the loads in
comparison to the monopolar connection solely by including a new cable. Further, under a
perfectly balanced load case, the neutral cable can be eliminated, which reduces about 33%
of the total investment costs in conductors [11]. An additional advantage of the bipolar
connection is that for certain special loads, it is possible to duplicate the voltage profile
provided to the load by interconnection between the positive and negative poles [12].

To examine the DC distribution under steady-state conditions, even if this works with
monopolar or bipolar configurations with multiple constant power loads, it is mandatory
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to implement the power flow methodologies owing to the nonlinearities introduced by
the constant power terminals [13,14]. In the case of monopolar configurations in the
current literature, multiple approaches based on derivative-free and derivative-based
methods are found, such as backward/forward, successive approximations, triangular-
based, Newton—-Raphson, and Taylor-based power flow methods [15]. For bipolar DC
grids, few works have recently been developed for power flow and optimal power flow
analyses in these networks, some of which are discussed below. Authors of [9] proposed a
mixed-integer linear multi-objective optimization model for phase-swapping in the bipolar
DC grids; however, they do not consider the existence of constant power loads, which is an
oversimplification of the power flow model. Authors of [16] presented an optimal power
flow formulation for bipolar DC networks with multiple constant power loads, including
dispersed generators; additionally, they incorporated the effect of the neutral pole and
its resistance in their analysis. The objective of this work was to compute the locational
marginal prices of the network; however, to obtain these, the authors have linearized the
hyperbolic constraints regarding constant power loads, which implies that the power flow
problem was again simplified, as in the previous work. Authors of [17] illustrated an
admittance nodal formulation to solve the power flow problem in bipolar DC grids with
constant power terminals. A numerical evaluation into a three-bus system is made using
the PSCAD/EMTDC software; however, they do not present any analysis of the model
complexity or convergence test under load variations, only altering the constant power
terminals for controlled current sources and leaving the complications of the solution to
a power system analyzer tool. In reference [18], the authors studied the optimal power
flow problem in DC bipolar distribution networks considering high load unbalanced. The
authors proposed a linearized optimal power flow model to determine the effect of the
grid congestion on the local marginal prices per node. Numerical results in two example
test feeders show the effectiveness of the proposed approach; however, the authors do not
make any comparison with other alternative optimal power approaches. Authors of [10]
presented an optimal power flow formulation with multiple load unbalances by applying
the current injection method. Numerical results showed the effectiveness of the proposed
formulation by using a sensitivity analysis based on the Jacobian matrix to determine the
costs of the total grid unbalance. Their numerical achievements were verified with the help
of the PSCAD/EMTDC software.

Owing to the existing gap in the current literature regarding numerical methodologies
in solving the power flow problem in bipolar DC grids with constant power terminals, this
research proposes the extension of the triangular-based power flow method expounded
initially in [16] for bipolar configurations, considering that the neutral pole can or cannot
be solidly grounded in all the nodes of the network. A recursive power flow formula is
derived, and it can be easily applied for systems with multiple monopolar loads and pure
bipolar loads even if high imbalances are present. The numerical results in the 21- and
the 85-bus systems portray the negative effect of non-grounding the neutral cable, since
important voltage values appear in the neutral pole added with important increments in
the total power losses. Moreover, to show the linear convergence properties of the proposed
power flow method, multiple load scenarios were considered.

This document is organized as follows: Section 2 presents the derivation of the recur-
sive power flow formula based on the upper-triangular matrix representation; Section 3 un-
veils the iterative procedure to solve the power flow problem in bipolar DC grids; Section 4
reveals the main characteristics of the 21-bus and the 85-bus grid system. Section 5 details
the numerical validations and their analyses and discussions. Finally, Section 6 describes
the main concluding remarks and some possible future works derived from this research.

2. Power Flow Formulation

A bipolar DC distribution network with multiple constant power loads can be analyzed
through a recursive formulation that allows the determining of the final voltage profile in
the positive p, neutral o, and negative n poles from an initial voltage value provided in
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the first iteration [19]. To illustrate the formulation of the triangular-based bipolar power
flow method, let us consider a small bipolar network composed of three nodes, depicted in
Figure 1 [12].
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Figure 1. Schematic representation of a bipolar DC grid.

Figure 1 shows that the nodes can be connected with multiple constant power termi-
nals. Note that in an arbitrary node k, it is possible to have loads connected between the
positive and neutral poles, i.e., Pk, pos loads between the negative and neutral poles, i.e.,
Pk,no, and also pure bipolar loads named py ;- It is worth mentioning that the index d is
used in referring to demand nodes.

Now, if the first Kirchhoff’s law is applied to each node, where the current through
the line [ is named jj po, = []'l/p, JLos jl,n]T and the demanded current at node k is defined
as ik pon = lidk,ps tdkor idkn] T, the following set of linear equations are formed:

jap 100 1 0 0]iany
jao 001 0 0 1 0f|ine
jau| _ {00 1 0 0 1| ligu )
b 000 10 0f|ig,
Jbo 0000 1 0f|ig
Jo,n 000 0 0 1 liggy

which can be easily compacted in a matricial structure with the form defined in Equation (2).

]l,pon = Tll,ponld,pon/ 2)
where ] yon € R3*1 is the vector that contains all the branch currents, ig,pon € R3(b-1)x1
is the vector that comprises all of the demanded currents (b being the total number of
nodes/buses the network), and Ty o, € R33! js defined as the triangular matrix that
relates branches with demand currents. Note that the triangular-based formulation defined
in (2) is only applicable to DC bipolar networks with radial structures and a unique voltage
controlled source (slack node).

Now, if the second Kirchhoff’s law is applied to each closed-loop trajectory from the
slack node to each demand node, then the following set of linear equations is obtained:

Vp 100 100 0 0 0][ea
Voo 01 0| 0100 0 0f|ew
V| _ [0 0 1] |7 0010 0 0f|ewn ®
Va3p 10 of|> 100 1 0 0fe,|
Va0 0 1 of L% 0100 1 0]]|ey
Vazm 00 1 0010 0 1] ey,

which can be compacted in its matricial form as follows:

T
Vd,pon = Ads Vs,pon - Tll,pon El,ponl (4)
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where Vj o, € R3(-1)x1 s the vector that contains all the voltage profiles in the positive,
neutral, and negatives poles for the demand nodes, V; yon € R3*1 s the vector with
the voltage outputs in the slack source (known voltage values), El,p(mRHXl is the vector
that consists of all the voltage drops in the grid branches, and Ay, € R3(0~1*3 is a tri-
diagonal matrix composed of identity diagonal matrices that relate each demand node with
the substation.

To relate branch current and branch voltage drops, Ohm’s law is applied to each
branch /, which produces the following set of linear equations:

€a,p tap 00 0 0 07 [jap
€a,0 0 70 0 0 0 0 jao
ean| _ |0 0 rgn 0 0 0 ||jan 5)
Eh/p 0 0 0 l’b,p 0 0 jb,p !
€h,0 0 0 0 0 Tbo 0 jh,o
€b,n 0 0 0 0 0 "o jb,n
which can be compacted as defined in Equation (6)
El,pon = Rll,pon]l,ponr (6)

where Ry pon € R3*3 js a diagonal matrix that contains all the resistive effects of the
grid branches.

Now, if Equation (2) is substituted in Equation (6) and its result is replaced in
Equation (4), consequently, the triangular-based power flow formula for bipolar DC net-
works is obtained as defined in (7).

T
Vd,pon = AdsVS,POVl - Tll,poanl,ponTll,pon Id,ponr (7)

For simplicity in the formulation, the resistance-like nodal matrix, Ryg,yon, as TE pon
Ry1,ponT11,pon, 1s defined to convert Equation (7) into (8).

Vd,pon = Ads Vs,pon - Rdd,ponId,pon- (8)

Note that Equation (8) is indeed a linear relation between demanded voltages and
currents; however, due to the presence of multiple constant power terminals, this equation
transformed into a general nonlinear non-convex equation. From Figure 1, it is possible to
define the current demanded in an arbitrary node k for each pole as follows [17]:

Pdk,po Pak,pn
p i 14

Igk,p = , )
P Udk,p — Udko  Udk,p — Udkn
e = Pak,po + Pdk,no (10)
,0 — 7
Udko — Udk,p  Udko — Udkn
. Pdk,no Pak,pn
Igkn = + (11)

Odkn — Udko  Vdkn — Udk,p.

To arrive at a compact formula for the calculation of the demand current at each
node, as defined in Equations (9)—(11), let us define the auxiliary variables that mea-
sure the voltage difference between poles as follows: Vg po = Vgkp — Vakor Vdkpn =
Vdk,p — Vdkn, AN Ugk no = Ugk,n — Vdk,o, Which can be grouped into a vector as Avgy pon =
[vdk,po, Uik, pns Udk,no]T- With these definitions, the demanded current in the k node can be
calculated as presented below:

Idk,pon = Hdiagil (Avdk,pon) pdk,pon/ (12)
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where
Lk,p 11 0 Pk, po
Lakpon = |lako | H= =1 0 =11, Pipon = |Pdk,pn
ik, 0 -1 1 Pak,no

It is worth mentioning that in finding all the demanded voltages with Equation (8),
it is necessary to use an iterative procedure since the demanded currents at each node k
defined in (12) are a function of the demanded voltages, which implies that in order to
know these voltages, it is necessary to have known them previously, which is only solvable
through a recursive implementation, as will be presented in the next section [19].

3. Iterative Solution

To solve the power flow problem in bipolar DC grids with multiple constant power
loads, the iterative procedure implemented is presented in Algorithm 1.

In Algorithm 1, the parameter { is the convergence error between two consecutive
voltages, which is defined as recommended in [19] as 1 x 1010, Note that once the power
flow problem is solved by implementing the Algorithm 1, the total grid power losses in all
the branches of the network can be determined as follows:

Ploss = ]l—,rpoanl,pon]l,pon/ (13)

Algorithm 1: Power flow solution using the triangular-based formulation for
multiple constant power loads.

Data: Select the bipolar DC network under analysis.
1 Transform the data in their per-unique equivalent;
2 Calculate the diagonal resistance matrix Ry yo4;
3 Calculate the upper-triangular matrix Ty, o,;
4 Calculate the resistance-like nodal matrix Ryg,pon;
5 Define the voltage input matrix Ags you;

6 Select the maximum iterations’ number tmax;
7 Chose the convergence error (;

8 Define the slack voltages: V5 yon = [1,0, —1]T ;
9 Make t = 0;
10 Define the initial voltage as Vél pon = Ads Vs pon
11 for t < tmax do
12 fork=2:ndo
13 L Calculated the demanded current Iék’ pon USing Equation (12);
14 Actualize the demanded voltages th;gn using Equation (7);
15 | if max{‘ V;,J;;;n — ‘V;,pon } < { then
16 fork=2:ndo
17 L Calculate the demanded current Iék, pon USing Equation (12);
18 Calculate and report the branch currents using Equation (2);
19 Report the nodal voltages as Vo, = [Vs,pon ; V;J}ggn} ;
20 break;
21 else
£ _ oyt .
2 L Make Vj ., = Vit
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4. Test Feeders

To evaluate the efficiency of the proposed triangular-based power flow approach for
bipolar DC grids with multiple constant power loads, two test feeders are employed. The
characteristic of each one of these test feeders is presented below.

4.1. 21-Bus System

The 21-bus system was adapted from [19] to include loads connected to the positive
and negative poles with respect to the neutral as well as pure bipolar loads. The electrical
configuration of this grid is depicted in Figure 2.

For this test feeder, the slack bus works in the positive and negative poles with 1 kV.
All the electrical parameters regarding branches and loads are reported in Table 1. Notably,
in this research, we assume that all the poles, including the neutral, were constructed with
the same caliber.

dc
ac

slack (v)

Figure 2. Grid configuration of the 21-bus system.

Table 1. Data for the 21-bus system (all powers in kW).

Node f Node k Rj; (QO) Pk, po P no Py, pn
1 2 0.053 70 100 0
1 3 0.054 0 0 0
3 4 0.054 36 40 120
4 5 0.063 4 0 0
4 6 0.051 36 0 0
3 7 0.037 0 0 0
7 8 0.079 32 50 0
7 9 0.072 80 0 100
3 10 0.053 0 10 0
10 11 0.038 45 30 0
11 12 0.079 68 70 0
11 13 0.078 10 0 75
10 14 0.083 0 0 0
14 15 0.065 22 30 0
15 16 0.064 23 10 0
16 17 0.074 43 0 60
16 18 0.081 34 60 0
14 19 0.078 9 15 0
19 20 0.084 21 10 50

19 21 0.082 21 20 0
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4.2. 85-Bus System

The 85-bus system is a DC bipolar adaptation of the IEEE 85-bus system presented
in [20] to locate and size fixed-step capacitor banks. This system is operated with 11 kV per
pole, and it has radial configuration, i.e., 84 distribution lines. The electrical configuration

of this test feeder is depicted in Figure 3.

T

43
J 52 |53
. s —I: 48 Lo |50
—|: 38 —I: 40 |41 p2
17 24 —[ B4 [35 |36
—|: J 25 p6 [27 ps [29 [30 |31 [32 |33 56
| | 9 ho |11 |12} |14 |15 —| | |
O1|2 3|4| 5 |6 [7 |8 |5 - 444546|47|
|_ 20 |21 | 22
16 8119 78 |_85_
L 8081 |82
| 83|84
57 |58 59 |
60 | 6162
_| 77 75
|63 b+ |
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The complete parametric information for the 85-bus grid with bipolar structure is

presented in Table 2.

Table 2. Data for the 85-bus system (all powers in kW).

I
sz )

Figure 3. Grid topology of the IEEE 85-bus system for bipolar power flow applications.

1.

54

51

Node j Node k Rjx () Pir,po Pk no Pi,pu Node j Node k Rjk (V) Pk, po Pi,no Pik,pn
1 2 0.108 0 0 10.075 34 44 1.002 17.64 17.995 0
2 3 0.163 50 0 40.35 44 45 0911 50 17.64 17.995
3 4 0.217 28 28.565 0 45 46 0.911 25 17.64 17.995
4 5 0.108 100 50 0 46 47 0.546 7 7.14 10
5 6 0.435 17.64 17.995 25.18 35 48 0.637 0 10 0
6 7 0.272 0 8.625 0 48 49 0.182 0 0 25
7 8 1.197 17.64 17.995 30.29 49 50 0.364 18.14 0 18.505
8 9 0.108 17.8 350 40.46 50 51 0.455 28 28.565 0
9 10 0.598 0 100 0 48 52 1.366 30 0 15
10 11 0.544 28 28.565 0 52 53 0.455 17.64 35 17.995
11 12 0.544 0 40 45 53 54 0.546 28 30 28.565
12 13 0.598 45 40 225 52 55 0.546 38 0 48.565
13 14 0.272 17.64 17.995 35.13 49 56 0.546 7 40 32.14
14 15 0.326 17.64 17.995 20.175 9 57 0.273 48 35.065 10
2 16 0.728 17.64 67.5 33.49 57 58 0.819 0 50 0
3 17 0.455 56.1 57.15 50.25 58 59 0.182 18 28.565 25
5 18 0.820 28 28.565 200 58 60 0.546 28 43.565 0
18 19 0.637 28 28.565 10 60 61 0.728 18 28.565 30
19 20 0.455 17.64 17.995 150 61 62 1.002 12.5 29.065 0
20 21 0.819 17.64 70 152.5 60 63 0.182 7 7.14 5
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Table 2. Cont.

Nodej Node k R]'k (Q) Pdk,pv Pdk,ng Pdk,pn Nodej Node k R]*k (Q) Pdk,pu Pdk,nv Pdk,pn
21 22 1.548 17.64 17.995 30 63 64 0.728 0 0 50
19 23 0.182 28 75 28.565 64 65 0.182 12.5 25 37.5
7 24 0.910 0 17.64 17.995 65 66 0.182 40 48.565 33
8 25 0.455 17.64 17.995 50 64 67 0.455 0 0 0
25 26 0.364 0 28 28.565 67 68 0.910 0 0 0
26 27 0.546 110 75 175 68 69 1.092 13 18.565 25
27 28 0.273 28 125 28.565 69 70 0.455 0 20 0
28 29 0.546 0 50 75 70 71 0.546 17.64 38.275 17.995
29 30 0.546 17.64 0 17.995 67 72 0.182 28 13.565 0
30 31 0.273 17.64 17.995 0 68 73 1.184 30 0 0
31 32 0.182 0 175 0 73 74 0.273 28 50 28.565
32 33 0.182 7 7.14 12.5 73 75 1.002 17.64 6.23 17.995
33 34 0.819 0 0 0 70 76 0.546 38 48.565 0
34 35 0.637 0 0 50 65 77 0.091 7 17.14 25
35 36 0.182 17.64 0 17.995 10 78 0.637 28 6 28.565
26 37 0.364 28 30 28.565 67 79 0.546 17.64 42.995 0
27 38 1.002 28 28.565 25 12 80 0.728 28 28.565 30
29 39 0.546 0 28 28.565 80 81 0.364 45 0 75
32 40 0.455 17.64 0 17.995 81 82 0.091 28 53.75 0
40 41 1.002 10 0 0 81 83 1.092 12.64 32.995 62.5
41 42 0.273 17.64 25 17.995 83 84 1.002 62 722 0
41 43 0.455 17.64 17.995 0 13 85 0.819 10 10 10

5. Numerical Validations

The numerical implementation of the proposed triangular-based bipolar power flow
method was executed in the MATLAB programming environment using the researcher’s
own scripts. For this implementation, 20210 was used on a PC with an AMD Ryzen 7 3700
2.3 GHz processor and 16.0 GB RAM, running on a 64-bit version of Microsoft Windows 10
Single language.

5.1. Results in the 21-Bus System

To demonstrate the effectiveness of the proposed method on addressing the power
flow solution in bipolar DC grids with multiple constant power loads, we consider two
simulation cases regarding the neutral pole: (i) this pole is solidly grounded at each one of
the nodes of the network; and (ii) this pole is only solidly grounded at the substation bus.

Table 3 exhibits the voltage in the positive and negative poles when both cases are simulated.

Table 3. Voltage for both simulation cases in the 21-bus system.

Node +Pole (V) 0 Pole (V) —Pole (V)
Grounded neutral

1 1000 0 —1000
2 996.2761 0 —994.6716
3 960.0683 0 —968.4100
4 952.3714 0 —962.7830
5 952.1067 0 —962.7830
6 950.4396 0 —962.7830
7 953.7448 0 —964.5412
8 951.0867 0 —960.4284
9 943.8619 0 —960.7609
10 937.4888 0 —948.4698
11 930.9220 0 —942.8952
12 925.1152 0 —936.9933
13 926.9467 0 —939.7613
14 916.4715 0 —930.2940
15 905.4444 0 —921.0085
16 896.1420 0 —913.9505
17 890.1027 0 —911.4861
18 893.0582 0 —908.6017
19 909.9528 0 —924.3558
20 905.7061 0 —921.1448
21 908.0565 0 —922.5781
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Table 3. Cont.

Node +Pole (V) 0 Pole (V) —Pole (V)
Non-grounded neutral

1 1000 0 —1000
2 996.2821 —1.6193 —994.6628
3 959.5205 9.2157 —968.7363
4 951.7636 11.3722 —963.1358
5 951.4955 11.6403 —963.1358
6 949.8030 13.3327 —963.1358
7 953.1183 11.7700 —964.8884
8 950.4291 10.3922 —960.8213
9 943.1110 17.9963 —961.1073
10 936.5746 12.4855 —949.0602
11 929.9259 13.6204 —943.5464
12 924.0247 13.7095 —937.7342
13 925.9357 14.4762 —940.4119
14 915.1628 15.9904 —931.1532
15 903.9040 18.1140 —922.0181
16 894.4081 20.6576 —915.0657
17 888.2594 24.3408 —912.6002
18 891.2522 18.5786 —909.8309
19 908.5513 16.7359 —925.2872
20 904.2616 17.8323 —922.0939
21 906.6158 16.9276 —923.5434

The numerical data provided in Table 3 permit noting the following: (i) in the first
simulation case when the neutral is solidly grounded, the positive pole presents some
nodes with voltage regulations more than 10%, presenting a minimum voltage at node 17
with a magnitude of 890.1027 V, which implies that the grid regulation is about 10.99%.
Conversely, for the negative pole, the worst regulation voltage appears at node 18 with a
value of 9.14%. The voltage unbalance between the positive and negative poles is caused
by the load disequilibrium, since the positive pole has about 554 kW of constant power
consumption while the negative pole has only 445 kW of the same. (ii) In the second
case, when the neutral pole is not connected to the electrical ground at each node, it is
possible to observe that nodes 15 to 18 have voltages higher than 18 V, which can cause the
misoperation of some devices in the adjacent areas, especially when sensitive to voltage
variations on the reference point. Additionally, the non-grounded neutral pole can worsen
the voltage profile in some nodes of the network, as seen for the positive voltage profile at
node 17, where the voltage has decreased 1.8433 V with respect to the first simulation case.

The main issue when the neutral pole is not solidly grounded in all the nodes corre-
sponds to the total grid power losses since these are increased with respect to the solidly
grounded case. For example, in the 21-bus system for the first simulation case, the total
power losses are 91.2701 kW, while for the second, this number increased to 95.4237 kW.
These values indicate that there is about 4.1536 kW that is transformed into heat owing to
the currents flowing through the neutral cable.

As evidence of the convergence properties of the studied triangular-based bipolar
power flow method, we plot the logarithm value of the convergence error, i.e., log(e)

v | )Vt

d,pon d,pon
simulation scenario) considering that the load varies from 60% to 180% of their nominal
values listed in Table 1. The convergence rate is depicted in Figure 4. Note that the 100%

corresponds to the benchmark case of the network where the load takes its nominal value.

(where € = max{ ‘ ‘ }), for the worst operative case (i.e., non-grounded
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Figure 4. Convergence rate of the studied method for load variations in the 21-bus system.

The numerical performance of the triangular-based method for bipolar DC grids in
the 21-bus system depicted in Figure 4 detail the following: (i) the load variations directly
impact the total number of iterations to reach the desired convergence. For example, when
the load is 60% of the nominal value, 10 iterations are required, whereas in the benchmark
case, 13 iterations are used, and when the load is 1.8 times the nominal value, 26 iterations
are employed to solve the power flow problem. (ii) For all the load increments, it is observed
that the convergence rate of the triangular-based bipolar power flow is linear, implying
that under normal operating conditions, this method can ensure convergence to the power
flow solution. However, this is only possible if the system is operated far from the voltage
collapse point.

5.2. Results in the 85-Bus Grid

After the implementation of the proposed triangular-based method for bipolar DC
grids in the 85-bus system under the nominal operating conditions, we found that (i) when
the neutral wire is solidly grounded in all the nodes of the grid, then the total power losses
is 452.2981 kW, i.e., 6.76% of the total power consumption, while when the neutral wire
is non-grounded, the total power increases to 489.5759 kW, i.e., 7.32% of the net power
consumption; (ii) the total number of iterations was about 10 for the solidly-grounded case
and 13 for the non-grounded case.

On the other hand, in Figure 5 are presented the voltage profiles in the 85-bus sys-
tem for the positive and negative poles considering solidly-grounded and non-grounded
operation cases.

Voltage profiles in Figure 5 show that (i) for the solidly-grounded operative costs, the
minimum voltage in the positive pole is 0.9189 pu at node 54, and for the negative pole
it is 0.8950 pu at the same node; and (ii) in the non-grounded scenario, these values are
0.9204 pu for the positive pole, and 0.8925 pu for the negative pole.

Note that when positive and negative voltage profiles are compared (see Figure 5), it
is observed that the positive pole has similar behavior to the negative pole, which is very
similar to the reflection of the voltage profile with respect to the axis of nodes; even if the
system is perfectly balanced, v, must be equal to the absolute value of v,.
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Figure 5. Voltage behavior for the 85-bus grid considering solidly-grounded and non-grounded
neutral wire.

5.3. Complementary Analysis
The following results were also obtained for both test feeders:

v' In the solidly grounded scenario after 1000 consecutive evaluations of the power flow
methodology, the average processing times for the 21- and 85-bus grids were 0.6498 ms
and 6.4858 ms, respectively. In the non-grounded case, these times were 0.7318 and
6.7226 ms. Note that the increments in these times are expected since the number of
iterations increases in the non-grounded neutral wire simulation scenario.

v" Comparative simulations with the classical backward /forward power flow method
adapted for bipolar DC grids demonstrated that both methodologies reach the same
voltage profiles and power losses calculations. However, the main advantage of the
triangular-based power flow method is the processing time required, since for both
tests feeders were 20 % faster than the backward/forward power flow method, which
confirmed the results presented by authors of [15] in the case of monopolar DC grid
equivalents.

6. Conclusions and Future Works

The power flow problem in bipolar DC grids with multiple constant power loads
was addressed in this research through the application of the triangular-based power flow
formulation. The proposed formulation is applicable in radial configurations, considering
the possibility that the neutral cable is or is not grounded in all the nodes of the system. The
numerical results in the 21-bus system demonstrate that when the neutral pole is solidly
grounded, the maximum voltage regulation bound under normal operative conditions
was about 10.99% and total grid power losses about 91.2701 kW; conversely, for the non-
grounded simulation case, the voltage regulation of the network was 11.17% and total
grid losses increased to 95.4237 kW. Numerical evaluations where the total load was
incremented from 60% to 180% of the nominal value illustrated that the convergence of
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the triangular-based power flow method is linear, and the effect of the load increments is
transferred to the number of iterations.

In the case of the 85-bus grid, the minimum voltage profile occurs in the negative
pole for the solidly-grounded and non-grounded operative scenarios with magnitudes of
0.8950 pu and 0.8925 pu, respectively; while in the case of the power losses, the solidly-
grounded case has a total power loss of 452.2981 kW, which increased to 489.5759 kW in
the non-grounded scenario.

For future research, it will be possible to execute the following works: (i) propose a
recursive power solver for bipolar DC grids by linearizing the demanded currents around
the initial voltage values and then updating this point until the desired convergence error
is reached; (ii) determine via metaheuristic or convex optimization the optimal subset of
nodes where the neutral cable must be solidly grounded to reduce the total grid power
losses; and (iii) design an experimental scenario where the power flow methodologies for
DC bipolar networks can be validated.

Author Contributions: Conceptualization, methodology, software, and writing—review and edit-
ing, O.D.M.,, AM.-Q. and J.C.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the Centro de Investigacién y Desarrollo Cientifico de la
Universidad Distrital Francisco José de Caldas under grant 1643-12-2020 associated with the project:
“Desarrollo de una metodologia de optimizacién para la gestién 6ptima de recursos energéticos
distribuidos en redes de distribucién de energfa eléctrica”.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mackay, L.; Blij, N.H.v.d.; Ramirez-Elizondo, L.; Bauer, P. Toward the universal DC distribution system. Electr. Power Components
Syst. 2017, 45, 1032-1042. [CrossRef]

2. Montoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs With CPLs via an SDP Model. IEEE
Trans. Circuits Syst. II Express Briefs 2019, 66, 642-646. [CrossRef]

3.  Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access 2015,
3, 890-925. [CrossRef]

4.  Siraj, K;; Khan, H.A. DC distribution for residential power networks—A framework to analyze the impact of voltage levels on
energy efficiency. Energy Rep. 2020, 6, 944-951. [CrossRef]

5. Li, B, Wang, W,; Liu, Y,; Li, B.; Wen, W. Research on power flow calculation method of true bipolar VSC-HVDC grids with
different operation modes and control strategies. Int. J. Electr. Power Energy Syst. 2021, 126, 106558. [CrossRef]

6. Zhu, H.; Zhu, M,; Zhang, ].; Cai, X.; Dai, N. Topology and operation mechanism of monopolarto-bipolar DC-DC converter
interface for DC grid. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference
(IPEMC-ECCE Asia), Hefei, China, 22-26 May 2016. [CrossRef]

7. Guo, C.; Wang, Y.; Liao, J. Coordinated Control of Voltage Balancers for the Regulation of Unbalanced Voltage in a Multi-Node
Bipolar DC Distribution Network. Electronics 2022, 11, 166. [CrossRef]

8. Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149-153.
[CrossRef]

9.  Chew, B.S.H,; Xu, Y.; Wu, Q. Voltage balancing for bipolar DC distribution grids: A power flow based binary integer multi-
objective optimization approach. IEEE Trans. Power Syst. 2018, 34, 28-39. [CrossRef]

10. Lee, J.O.; Kim, Y.S.; Moon, S.I. Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC
Microgrids. IEEE Trans. Smart Grid 2021, 12, 1918-1928. [CrossRef]

11. Rivera, S.; Lizana, R.; Kouro, S.; Dragicevi¢, T.; Wu, B. Bipolar dc power conversion: State-of-the-art and emerging technologies.
IEEE ]. Emerg. Sel. Top. Power Electron. 2020, 9, 1192-1204. [CrossRef]

12. Litrdn, S.P; Duran, E.; Semido, J.; Barroso, R.S. Single-Switch Bipolar Output DC-DC Converter for Photovoltaic Application.

Electronics 2020, 9, 1171. [CrossRef]


http://doi.org/10.1080/15325008.2017.1318977
http://dx.doi.org/10.1109/TCSII.2018.2866447
http://dx.doi.org/10.1109/ACCESS.2015.2443119
http://dx.doi.org/10.1016/j.egyr.2020.04.018
http://dx.doi.org/10.1016/j.ijepes.2020.106558
http://dx.doi.org/10.1109/ipemc.2016.7512892
http://dx.doi.org/10.3390/electronics11010166
http://dx.doi.org/10.1016/j.epsr.2017.05.031
http://dx.doi.org/10.1109/TPWRS.2018.2866817
http://dx.doi.org/10.1109/TSG.2020.3046733
http://dx.doi.org/10.1109/JESTPE.2020.2980994
http://dx.doi.org/10.3390/electronics9071171

Sensors 2022, 22,2914 13 of 13

13.

14.

15.

16.

17.

18.

19.

20.

Javid, Z.; Karaagac, U.; Kocar, I.; Chan, K.W. Laplacian Matrix-Based Power Flow Formulation for LVDC Grids with Radial and
Meshed Configurations. Energies 2021, 14, 1866. [CrossRef]

Simpson-Porco, ].W.; Dorfler, F.; Bullo, F. On Resistive Networks of Constant-Power Devices. IEEE Trans. Circuits Syst. II Express
Briefs 2015, 62, 811-815. [CrossRef]

Montoya, O.D.; Gil-Gonzélez, W.; Garces, A. Numerical methods for power flow analysis in DC networks: State of the art,
methods and challenges. Int. J. Electr. Power Energy Syst. 2020, 123, 106299. [CrossRef]

Montoya, O.D.; Grisales-Norena, L.E; Gil-Gonzalez, W. Triangular Matrix Formulation for Power Flow Analysis in Radial DC
Resistive Grids With CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1094-1098. [CrossRef]

Kim, J.; Cho, J.; Kim, H.; Cho, Y.; Lee, H. Power Flow Calculation Method of DC Distribution Network for Actual Power System.
KEPCO |. Electr. Power Energy 2020, 6, 419-425. [CrossRef]

Mackay, L.; Guarnotta, R.; Dimou, A.; Morales-Espana, G.; Ramirez-Elizondo, L.; Bauer, P. Optimal Power Flow for Unbalanced
Bipolar DC Distribution Grids. IEEE Access 2018, 6, 5199-5207. [CrossRef]

Garces, A. On the Convergence of Newton's Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018,
33, 5770-5777. [CrossRef]

Tamilselvan, V.; Jayabarathi, T.; Raghunathan, T.; Yang, X.S. Optimal capacitor placement in radial distribution systems using
flower pollination algorithm. Alex. Eng. . 2018, 57, 2775-2786. [CrossRef]


http://dx.doi.org/10.3390/en14071866
http://dx.doi.org/10.1109/TCSII.2015.2433537
http://dx.doi.org/10.1016/j.ijepes.2020.106299
http://dx.doi.org/10.1109/TCSII.2019.2927290
http://dx.doi.org/10.18770/KEPCO.2020.06.04.419
http://dx.doi.org/10.1109/ACCESS.2018.2789522
http://dx.doi.org/10.1109/TPWRS.2018.2820430
http://dx.doi.org/10.1016/j.aej.2018.01.004

	Introduction
	Power Flow Formulation
	Iterative Solution
	Test Feeders
	21-Bus System
	85-Bus System

	Numerical Validations
	Results in the 21-Bus System
	Results in the 85-Bus Grid
	Complementary Analysis

	Conclusions and Future Works
	References

