Feelings from the Heart Part II: Simulation and Validation of Static and Dynamic HRV Decrease-Trigger Algorithms to Detect Stress in Firefighters
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Material and Instrument
2.2.1. EMA
2.2.2. Objective Changes of Stress: From Routine Work at the Fire Station to More Stressful Emergency Operations
2.2.3. Physiological Ambulatory Monitoring of ECG and Movement
2.3. Data Preprocessing
2.4. Simulation of a Dynamic and a Static Algorithm for Detecting AddHRVr
2.4.1. Step 1: Simulation of Individual AddHRVr Triggers for Each Firefighter
2.4.2. Step 2: Simulation of the AddHRVr Triggers to Predict Objective Changes of Stressfulness
3. Results
3.1. Perceived Stress, Negative Affect, and HRV (RMSSD) during the Three Different Levels of Objective Stress (Routine Work vs. Routine Operations vs. Emergency Operations)
3.2. Simulation of Static and Dynamic AddHRV Algorithms
3.2.1. Step 1: AddHRVr Algorithm Simulation on an Individual Level
3.2.2. Step 2: Simulation of Algorithm Settings to Detect Objective Transitions of Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milstein, N.; Gordon, I. Validating measures of electrodermal activity and heart rate variability derived from the empatica E4 utilized in research settings that involve interactive dyadic states. Front. Behav. Neurosci. 2020, 14, 148. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, A.R.; Schwarz, G.; Pfurtscheller, K.; Thayer, J.F.; Jarczok, M.N.; Pfurtscheller, G. Heart rate variability (HRV): From brain death to resonance breathing at 6 breaths per minute. Clin. Neurophysiol. 2020, 131, 676–693. [Google Scholar] [CrossRef] [PubMed]
- Ebner-Priemer, U.W.; Koudela, S.; Mutz, G.; Kanning, M. Interactive multimodal ambulatory monitoring to investigate the association between physical activity and affect. Front. Psychol. 2012, 3, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosschot, J.F.; Verkuil, B.; Thayer, J.F. Generalized unsafety theory of stress: Unsafe environments and conditions, and the default stress response. Int. J. Environ. Res. Public Health 2018, 15, 464. [Google Scholar] [CrossRef] [Green Version]
- Schwerdtfeger, A.R.; Rominger, C. Feelings from the heart: Developing HRV decrease-trigger algorithms via multilevel hyperplane simulation to detect psychosocially meaningful episodes in everyday life. Psychophysiology 2021, 58, e13914. [Google Scholar] [CrossRef]
- Brown, S.B.R.E.; Brosschot, J.F.; Versluis, A.; Thayer, J.F.; Verkuil, B. New methods to optimally detect episodes of non-metabolic heart rate variability reduction as an indicator of psychological stress in everyday life. Int. J. Psychophysiol. 2018, 131, 30–36. [Google Scholar] [CrossRef]
- Verkuil, B.; Brosschot, J.F.; Tollenaar, M.S.; Lane, R.D.; Thayer, J.F. Prolonged non-metabolic heart rate variability reduction as a physiological marker of psychological stress in daily life. Ann. Behav. Med. 2016, 50, 704–714. [Google Scholar] [CrossRef] [Green Version]
- Meina, M.; Ratajczak, E.; Sadowska, M.; Rykaczewski, K.; Dreszer, J.; Bałaj, B.; Biedugnis, S.; Węgrzyński, W.; Krasuski, A. Heart rate variability and accelerometry as classification tools for monitoring perceived stress levels-A pilot study on firefighters. Sensors 2020, 20, 2834. [Google Scholar] [CrossRef]
- Myrtek, M.; Brügner, G. Perception of emotions in everyday life: Studies with patients and normals. Biol. Psychol. 1996, 42, 147–164. [Google Scholar] [CrossRef]
- Myrtek, M. Heart and Emotion: Ambulatory Monitoring Studies in Everyday Life, 1st ed.; Hogrefe Publishing: Göttingen, Germany, 2004; ISBN 9780889372863. [Google Scholar]
- Appelhans, B.M.; Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 2006, 10, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef] [PubMed]
- Laborde, S.; Mosley, E.; Mertgen, A. Vagal tank theory: The three Rs of cardiac vagal control functioning-Resting, Reactivity, and Recovery. Front. Neurosci. 2018, 12, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goedhart, A.D.; van der Sluis, S.; Houtveen, J.H.; Willemsen, G.; de Geus, E.J.C. Comparison of time and frequency domain measures of RSA in ambulatory recordings. Psychophysiology 2007, 44, 203–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Task Force Guidelines. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Lackner, H.K.; Eglmaier, M.T.W.; Hackl-Wimmer, S.; Paechter, M.; Rominger, C.; Eichen, L.; Rettenbacher, K.; Walter-Laager, C.; Papousek, I. How to use heart rate variability: Quantification of vagal activity in toddlers and adults in long-term ECG. Sensors 2020, 20, 5959. [Google Scholar] [CrossRef]
- Friedman, B.H. An autonomic flexibility-neurovisceral integration model of anxiety and cardiac vagal tone. Biol. Psychol. 2007, 74, 185–199. [Google Scholar] [CrossRef]
- Gerteis, A.K.S.; Schwerdtfeger, A.R. When rumination counts: Perceived social support and heart rate variability in daily life. Psychophysiology 2016, 53, 1034–1043. [Google Scholar] [CrossRef]
- Carnevali, L.; Thayer, J.F.; Brosschot, J.F.; Ottaviani, C. Heart rate variability mediates the link between rumination and depressive symptoms: A longitudinal study. Int. J. Psychophysiol. 2018, 131, 131–138. [Google Scholar] [CrossRef]
- Schneider, M.; Schwerdtfeger, A.R. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: A meta-analysis. Psychol. Med. 2020, 50, 1937–1948. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, A.R.; Dick, K. Episodes of momentary resilience in daily life are associated with HRV reductions to stressful operations in firefighters: An ambulatory assessment approach using bayesian multilevel modeling. J. Posit. Psychol. 2019, 14, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Brown, S.B.R.E.; Brosschot, J.F.; Versluis, A.; Thayer, J.F.; Verkuil, B. Assessing new methods to optimally detect episodes of non-metabolic heart rate variability reduction as an indicator of psychological stress in everyday life: A thorough evaluation of six methods. Front. Neurosci. 2020, 14, 564123. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; ISBN 3-900051-07-0. [Google Scholar]
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly and Shiny; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2020; ISBN 0429447272. [Google Scholar]
- Feelings from the Heart Part II. Available online: https://webpsy2.uni-graz.at/ges1www/alarmSimulation/Feelings_from_the_Heart_Part_II/power_glmer_20_20_dy.html (accessed on 27 December 2021).
- Feelings from the Heart Part II. Available online: https://webpsy2.uni-graz.at/ges1www/alarmSimulation/Feelings_from_the_Heart_Part_II/power_glmer_20_20_st.html (accessed on 27 December 2021).
- Rodrigues, S.; Paiva, J.S.; Dias, D.; Cunha, J.P.S. Stress among on-duty firefighters: An ambulatory assessment study. PeerJ 2018, 6, e5967. [Google Scholar] [CrossRef] [Green Version]
- Feelings from the Heart Part II. Available online: https://webpsy2.uni-graz.at/ges1www/alarmSimulation/Feelings_from_the_Heart_Part_II/power_glmer_40_20_st.html (accessed on 27 December 2021).
- Feelings from the Heart Part II. Available online: https://webpsy2.uni-graz.at/ges1www/alarmSimulation/Feelings_from_the_Heart_Part_II/beta_ratio_glmer_40_20_st.html (accessed on 27 December 2021).
- Feelings from the Heart Part II. Available online: https://webpsy2.uni-graz.at/ges1www/alarmSimulation/Feelings_from_the_Heart_Part_II/power_glmer_20_20_inv.html (accessed on 27 December 2021).
- Feelings from the Heart Part II. Available online: https://webpsy2.uni-graz.at/ges1www/alarmSimulation/Feelings_from_the_Heart_Part_II/beta_ratio_glmer_20_20_inv.html (accessed on 27 December 2021).
- Mannini, A.; Sabatini, A.M. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 2010, 10, 1154–1175. [Google Scholar] [CrossRef] [Green Version]
- Cipresso, P.; Colombo, D.; Riva, G. Computational psychometrics using psychophysiological measures for the assessment of acute mental stress. Sensors 2019, 19, 781. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-S.; Park, H.-J.; Kim, J.E.; Kim, H.J.; Chon, S.; Kim, S.; Jang, J.; Kim, J.-K.; Jang, S.; Gil, Y.; et al. Compressed deep learning to classify arrhythmia in an embedded wearable device. Sensors 2022, 22, 1776. [Google Scholar] [CrossRef]
- Jeon, E.; Oh, K.; Kwon, S.; Son, H.; Yun, Y.; Jung, E.-S.; Kim, M.S. A lightweight deep learning model for fast electrocardiographic beats classification with a wearable cardiac monitor: Development and validation study. JMIR Med. Inform. 2020, 8, e17037. [Google Scholar] [CrossRef]
- Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Ottaviani, C. Brain-heart interaction in perseverative cognition. Psychophysiology 2018, 55, e13082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmers, J.A.; Heathers, J.A.J.; Abbott, M.J.; Kemp, A.H.; Quintana, D.S. Worry is associated with robust reductions in heart rate variability: A transdiagnostic study of anxiety psychopathology. BMC Psychol. 2016, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.P.; Feeling, N.R.; Hill, L.K.; Spangler, D.P.; Koenig, J.; Thayer, J.F. Resting heart rate variability, facets of rumination and trait anxiety: Implications for the perseverative cognition hypothesis. Front. Hum. Neurosci. 2017, 11, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocsel, N.; Köteles, F.; Szemenyei, E.; Szabó, E.; Galambos, A.; Kökönyei, G. The association between perseverative cognition and resting heart rate variability: A focus on state ruminative thoughts. Biol. Psychol. 2019, 145, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, A.R.; Friedrich-Mai, P. Social interaction moderates the relationship between depressive mood and heart rate variability: Evidence from an ambulatory monitoring study. Health Psychol. 2009, 28, 501–509. [Google Scholar] [CrossRef]
- Dell’Acqua, C.; Dal Bò, E.; Messerotti Benvenuti, S.; Palomba, D. Reduced heart rate variability is associated with vulnerability to depression. J. Affect. Disord. Rep. 2020, 1, 100006. [Google Scholar] [CrossRef]
- Koch, C.; Wilhelm, M.; Salzmann, S.; Rief, W.; Euteneuer, F. A meta-analysis of heart rate variability in major depression. Psychol. Med. 2019, 49, 1948–1957. [Google Scholar] [CrossRef]
- Schwerdtfeger, A.R.; Gerteis, A.K.S. The manifold effects of positive affect on heart rate variability in everyday life: Distinguishing within-person and between-person associations. Health Psychol. 2014, 33, 1065–1073. [Google Scholar] [CrossRef]
Parameter | Estimate (SE) | df | t | p |
---|---|---|---|---|
Model 1: Perceived Stress | ||||
Intercept | 1.32 (0.06) | 531 | 21.17 | <0.001 |
routine operations (vs. work at the fire station) | 0.54 (0.07) | 531 | 7.60 | <0.001 |
emergency operations (vs. work at the fire station) | 1.04 (0.08) | 531 | 12.79 | <0.001 |
Model 2: Negative affect | ||||
Intercept | 1.31 (0.05) | 531 | 23.90 | <0.001 |
routine operations (vs. work at the fire station) | 0.20 (0.05) | 531 | 4.11 | <0.001 |
emergency operations (vs. work at the fire station) | 0.46 (0.06) | 531 | 8.31 | <0.001 |
Model 3: HRV (RMSSD) | ||||
Intercept | 45.17 (2.87) | 524 | 15.73 | <0.001 |
routine operations (vs. work at the fire station) | −3.85 (1.55) | 524 | −2.49 | 0.013 |
emergency operations (vs. work at the fire station) | −5.01 (1.79) | 524 | −2.81 | 0.005 |
AEE (kcal)/103 | −5.18 (0.67) | 524 | −7.71 | <0.001 |
M | SD | Max | Min | |
---|---|---|---|---|
RMSSD (ms) | 45.20 | 20.63 | 96.18 | 18.40 |
AEE (kcal) | 1026.48 | 184.41 | 1428.89 | 680.78 |
Intercept | 51.05 | 24.04 | 106.21 | 19.37 |
Slope (per 1000 kcal) | −5.96 | 4.46 | −0.42 | −17.10 |
r | −0.36 | 0.10 | −0.06 | −0.54 |
Order | Window Threshold | Power | Effect Estimate a | CI Low (2.5%) | CI High (97.5%) | Total Triggers | Triggered Increases/Decreases |
---|---|---|---|---|---|---|---|
1 | 10/7 | 0.680 | 99.18% | 12.81 | 287.02 | 578 | 46.24/25.06 |
2 | 7/1 | 0.662 | 73.40% | 9.60 | 171.37 | 1706 | 140.21/111.90 |
3 | 11/5 | 0.622 | 68.03% | 1.17 | 196.60 | 915 | 76.18/51.08 |
4 | 5/1 | 0.606 | 68.27% | 14.41 | 154.56 | 1643 | 136.10/108.92 |
Order | Window Threshold | Power | Effect Estimate a | CI Low (2.5%) | CI High (97.5%) | Total Triggers | Triggered Increases/Decreases |
---|---|---|---|---|---|---|---|
1 | 30/13 | 0.624 | −43.52% | −66.47 | −7.40 | 736 | 35.27/50.30 |
2 | 19/12 | 0.620 | −54.58% | −78.28 | −6.30 | 474 | 14.81/27.18 |
3 | 27/7 | 0.608 | −37.55% | −57.59 | −7.63 | 1222 | 82.82/96.82 |
4 | 28/3 | 0.594 | −42.26% | −62.22 | −8.95 | 1775 | 128.99/136.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rominger, C.; Schwerdtfeger, A.R. Feelings from the Heart Part II: Simulation and Validation of Static and Dynamic HRV Decrease-Trigger Algorithms to Detect Stress in Firefighters. Sensors 2022, 22, 2925. https://doi.org/10.3390/s22082925
Rominger C, Schwerdtfeger AR. Feelings from the Heart Part II: Simulation and Validation of Static and Dynamic HRV Decrease-Trigger Algorithms to Detect Stress in Firefighters. Sensors. 2022; 22(8):2925. https://doi.org/10.3390/s22082925
Chicago/Turabian StyleRominger, Christian, and Andreas R. Schwerdtfeger. 2022. "Feelings from the Heart Part II: Simulation and Validation of Static and Dynamic HRV Decrease-Trigger Algorithms to Detect Stress in Firefighters" Sensors 22, no. 8: 2925. https://doi.org/10.3390/s22082925
APA StyleRominger, C., & Schwerdtfeger, A. R. (2022). Feelings from the Heart Part II: Simulation and Validation of Static and Dynamic HRV Decrease-Trigger Algorithms to Detect Stress in Firefighters. Sensors, 22(8), 2925. https://doi.org/10.3390/s22082925