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Abstract: Current literature lacks a comparative analysis of different motion capture systems for
tracking upper limb (UL) movement as individuals perform standard tasks. To better understand the
performance of various motion capture systems in quantifying UL movement in the prosthesis user
population, this study compares joint angles derived from three systems that vary in cost and motion
capture mechanisms: a marker-based system (Vicon), an inertial measurement unit system (Xsens),
and a markerless system (Kinect). Ten healthy participants (5F/5M; 29.6 ± 7.1 years) were trained
with a TouchBionic i-Limb Ultra myoelectric terminal device mounted on a bypass prosthetic device.
Participants were simultaneously recorded with all systems as they performed standardized tasks.
Root mean square error and bias values for degrees of freedom in the right elbow, shoulder, neck,
and torso were calculated. The IMU system yielded more accurate kinematics for shoulder, neck, and
torso angles while the markerless system performed better for the elbow angles. By evaluating the
ability of each system to capture kinematic changes of simulated upper limb prosthesis users during
a variety of standardized tasks, this study provides insight into the advantages and limitations of
using different motion capture technologies for upper limb functional assessment.

Keywords: upper-limb; myoelectric; prosthesis; inertial measurement unit; Kinect; motion capture

1. Introduction

Motion analysis is a useful method to quantitatively and objectively assess human
motion by providing kinematic information (e.g., joint angles, body trajectories, hand
velocity, etc.) during task performance. A large proportion of studies investigating human
motion use 3D optoelectric motion capture systems. These systems track the position of
markers placed on anatomical landmarks of the body to relate the position and orienta-
tion of body segments. These systems are advantageous given their high resolution and
accuracy, as well as their long history of use in research [1–8] compared to more recently
developed mechanisms of motion capture [9–14]. While useful in many clinical popula-
tions, assessment of motion in the upper limb prosthesis user population is beneficial as
the output of such analyses can aid in rehabilitation by providing more specific details
about how a standard task is performed, as well as providing insights into the influence of
upper limb prosthesis devices on motion. This is relevant given the upper limb prosthesis
user population is known to employ compensatory movements during the performance
of everyday tasks to work around lost degrees of freedom (DOF). Given recent techni-
cal developments in upper limb prosthesis devices with greater numbers of controllable
DOFs [15–17], many research groups have investigated user movement with these de-
vices using 3D optoelectric motion capture systems [16–21]. However, the adoption of 3D
optoelectric motion capture into the clinic has been slow due to the restrictive operating
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environment required, high costs, and longer set-up times required to collect data from
optoelectric motion capture systems [11,13].

Barriers to the use of optoelectric motion capture systems have prompted interest in
other systems that have less restrictive operating environment requirements [22,23]. The
Microsoft Kinect is a markerless motion capture sensor system that has been of great interest
in research due to the low cost [23,24] and robustness of the sensors [11,13,22,25–27]. Due to
the markerless motion capture mechanism, the set-up time is reduced and the potential for
erroneous subject preparation is lower compared to marker-based motion capture systems
that are dependent on accurate and consistent identification of anatomical landmarks.
Alongside marker and markerless systems, battery and gyroscopic sensor miniaturization
and the rapid decrease in technology costs has rendered inertial measurements a new
avenue for motion capture research [28–34]. Due to the non-optical mechanism of inertial
measurement unit (IMU) motion capture, the operating environment requirements are less
restrictive compared to those required for optoelectric systems.

There have been several previous studies comparing motion capture systems that
have focused on one-to-one comparisons of a single test system and a gold standard
system [29,32,35–41], studied the lower limbs [26,30,40,42–45], or relied on mechanical
testing devices to ensure the greatest replicability of the ground truth [36,46–48]. For the one-
to-one system comparisons, the parameters examined, motions selected, and populations
tested varied greatly, rendering cross-system conclusions impractical. Regarding studies
in the lower limb, the analyses lack applicability and generalizability to the tracking of
motion in the upper limbs, specifically upper limb prosthesis users. Compared to the lower
limbs, the acyclic motions and the multiple redundant DOFs in the upper limb make upper
limb motion analysis more challenging. Furthermore, the few studies assessing upper limb
function have focused on a limited task space to simplify capture and analysis [49]. Lastly,
while the use of a mechanical testing device provides a highly consistent ground truth, it is
not fully representative of system performance during human motion given the avoidance
of soft tissue artifacts, sensor motion artifacts, and self-occlusion induced errors.

To better understand the performance of various motion capture systems in quantify-
ing upper limb movement in the prosthesis user population, this study compares kinematics
(i.e., joint angles) derived from three systems that vary in cost and motion capture mech-
anisms: a marker-based system, an IMU system, and a markerless system. Able-bodied
individuals using a bypass prosthesis device performed several tasks as movement of
the upper body was tracked simultaneously across all three systems. The results of this
study can be used to identify consistencies and limitations of various motion capture sys-
tems in tracking movements similar to those performed by the upper limb prosthesis user
population, which could facilitate the wider adoption of motion capture into rehabilitation.

2. Materials and Methods
2.1. Participants

Ten able-bodied participants with no upper limb disability or impairment were in-
cluded in this study. All subjects provided written informed consent prior to partici-
pating in the study. The study was conducted in accordance with the Declaration of
Helsinki, and the protocol was approved by the U.S. FDA Institutional Review Board (Pro-
tocol #16-071). The participants were selected through convenience sampling (5 females,
5 males; mean age 29.6 ± 7.1 years). Nine of the ten participants were right-hand dominant
(92.53 ± 10.62 laterality), one was left-hand dominant (−100 laterality) per the Edinburgh
handedness survey [50].

A bypass prosthetic device was used by able-bodied individuals to elicit similar
movement patterns as an upper limb prosthesis user [20,51–55]. A forearm brace adaptor
with a perpendicular handlebar provided by Next Step Bionics allowed the use of a right-
hand Ossur (previously TouchBionics) i-limb Ultra (OSSUR, Foothill Ranch, CA, USA)
myoelectric terminal device with manual wrist adjustment. The device was mounted to the
brace with a medial offset of 15◦ from the subject’s forearm (Figure 1A). In accordance with
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upper-limb amputee control configurations, myoelectric sensors were placed on antagonist
pairs of extensor and flexor muscles on the forearm to control the opening and closing of
the device. Grip changes were controlled with the TouchBionic my i-limbTM app on an
iPod TouchTM (Apple Inc., Cupertino, CA, USA) (Figure 1B). This adaptive bypass device
(MYO Bypass) allowed trained able-bodied participants to use a commercial upper limb
prosthesis terminal device.
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Figure 1. (A) Right-hand Ossur (TouchBionics) i-limb Ultra myoelectric terminal device. Medial
offset = 15◦; (B) my i-limb grip selection screenshot (Touch Bionics, Apple App Store, 2020).

Following the protocol specified in Bloomer et al., 2019, all participants were trained
with the right-hand MYO Bypass until a learning plateau of 90% peak performance had
been achieved [56].

2.2. Functional Tasks

When fully trained, participants performed the Targeted Box and Blocks Test (tBBT) [57]
as well as tasks selected from the Jebsen–Taylor Hand Function Test (JHFT) [58,59], Activi-
ties Measure for Upper Limb Amputees (AMULA) [60,61], and Comprehensive Assessment
of Prosthetic Performance for Upper Limb (CAPPFUL) [62]. Outcome measures were si-
multaneously recorded by three motion analysis systems. With the motivation to determine
the limitations of the motion analysis systems, tasks were selected from the outcome mea-
sures that would elicit a wide range of movements representative of those performed
during activities of daily living. These outcome measures have also been used in pre-
vious kinematic studies [57,58,63] and most are validated in the upper limb prosthesis
user population [62,64].
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A brief description of each task used in this study can be found in Table 1. Tasks
2, 3, and 7 from the JHFT were performed in a seated position and are referenced in
this manuscript as JHFT—Page Turn, JHFT—Small Objects, and JHFT—Heavy Objects,
respectively. Tasks 10, 16, and 24 from the AMULA were performed in the seated posi-
tion and are referenced as AMULA—Fork, AMULA—Doorknob, and AMULA—Reach,
respectively [60,61]. Tasks 4, 8, and 11 from the CAPPFUL were also performed and are
referenced as standing task CAPPFUL—Dice, and seated tasks CAPPFUL—Bottle, and
CAPPFUL—Picture [62]. A standard template was used to place each object for a given
task in the same location for each participant. The tBBT was performed in the standing
position [57]. Participants performed three trials of each task.

Table 1. Description of tBBT and tasks from the JHFT, AMULA, and CAPPFUL performed by
study participants.

OM—Task Name Description

JHFT—Page Turn Flip over five 3 × 5-inch notecards arranged in a row with any
technique, starting with the leftmost card and moving across.

JHFT—Small Objects

Pick up six small objects (2 paperclips, 2 bottle caps, and 2
pennies) arranged two inches apart on the dominant side of the
subject, and place in an empty can individually, starting with the
right most object.

JHFT—Heavy Objects Lift 5 filled cans individually about 1 inch onto a board, starting
with the rightmost can.

AMULA—Fork Grasp fork and bring to mouth, move fork back to table and
release fork.

AMULA—Doorknob Reach, grasp, and turn doorknob. Release doorknob.

AMULA—Reach Lift arm overhead to grasp empty cup on shelf and bring down
arm with cup in hand.

CAPPFUL—Dice Pick up three dice from a plate, touch to chin, and return to plate.

CAPPFUL—Bottle Empty a squeeze bottle of water into a cup.

CAPPFUL—Picture
Modified task—Reach overhead to grasp two rings suspended in
the air on a pulley system, bring rings down to waist, then control
the placement of rings back in their suspended position.

tBBT
Transport 16 blocks, one at a time, over a partition using only the
dominant hand, starting with the innermost left block and
moving across each row placing the block in its mirrored position.

2.3. Motion Analysis Systems

Motion analysis involved the simultaneous recording of motion data from three systems:
optical marker-based system (Vicon, Oxford, UK), an inertial measurement unit (IMU)-based
system (Xsens Awinda MTw, El Segundo, CA, USA), and a markerless system (dual Microsoft
Kinect V1s with iPI Recorder). The Vicon optical marker-based system was selected as the
reference system based on its popularity and usage in the literature [27,36–38,44,45,48,65–68].
The IMU-based [28–32,39–43,69–71] and markerless systems [13,22–25,27,38,44–47,72,73] were
selected due to popularity in the literature and due to their differing mechanisms of motion
capture. Please see Appendix B for diagrams of the sensor placements for the systems and the
camera placements.

2.3.1. Optical Marker-Based System

A ten-camera passive marker ViconTM motion analysis system consisting of eight
Bonita B10 and two Vero v1.3 cameras was used to acquire and pre-process motion data
(VICON, Oxford, UK). The motion capture cameras were set to a sampling rate of 100 Hz.
Prior to each data collection session, the system was calibrated according to manufacturer
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guidelines. Twenty-seven retro-reflective markers were placed on the upper body of each
participant at bony anatomical landmarks of the upper body in accordance with the Vicon
Upper-Body Plug-In-Gait body model documentation. The Plug-In-Gait upper body model
was then calibrated to the dimensions of the participant to create the wrist, forearm, upper
arm, head, neck, thorax, and pelvic model segments. The Vicon was set as the primary
recording system and controlled the initiation and termination of IMU recordings with a
voltage duration sync pulse output.

2.3.2. IMU System

Five IMUs for the Xsens Awinda were placed either at bony anatomical landmarks or
the midpoints of moving body segments on the head, right arm, and torso. The head sensor
was placed in the center of the subject’s forehead. The torso sensor was on the xiphoid
process of the sternum. The pelvis sensor was placed at the midpoint between the left
and right posterior superior iliac spines. The upper arm sensor was placed on the lateral
midpoint of the upper arm. The forearm sensor was placed on the anterior midpoint of
the bypass. The system was set to a sampling rate of 100 Hz. Prior to each data collection
session, all accelerometry and gyroscope sensor outputs were set to zero at the origin of
the recording volume on the floor, as defined by the Vicon calibration to ensure consistent
initial sensor outputs. The Xsens was set as the secondary recording system with initiation
and termination of recordings automatically controlled through a voltage duration sync
pulse from the Vicon system, leading to the synchronization of two data streams from
these systems.

2.3.3. Markerless System

Two Kinect V1 cameras (Microsoft, Seattle, WA, USA) were used with the iPi Soft
markerless motion capture software (iPi Soft, Moscow, Russia) to acquire and pre-process
motion data. The Kinect V1 was selected due to the limitations of the native Microsoft
SDK which did not allow for multiple Kinect V2 data streams into a single computer. This
limitation did not apply to the Kinect V1, which allowed for larger capture volumes and
improved capture results when multiple Kinect V1 sensors were used [74]. Additionally,
the Azure Kinect was not commercially available and not supported by the iPi software
at time of experiment. The Kinect cameras were positioned approximately ±45◦ from
the midline of the subject at a distance of approximately 6 feet. The camera tripods were
placed in the same position for each subject. The point of aim for the Kinect cameras
was determined through the calibration procedures for the Kinect system and may vary
depending on the experimental conditions.

The system was set to 30 Hz, the maximum sampling rate of the cameras. Prior to each
data collection session, the system was calibrated according to the software manufacturer’s
guidelines. Initiation and termination of recordings were manually controlled by the
operator of the motion analysis systems. Data synchronization and resampling to 100 Hz
with the built-in MATLAB function resample was achieved through a post-processing
automated MATLAB script. This was done to create time series data that were sampled at
the same rate to compare each distinct time point across systems.

2.4. Data Analysis

Joint angles over time were generated for all three systems. The joint angle dataset from
the Vicon system was set as the reference system given its high resolution and accuracy [1–8],
as well as previous history of use as reference systems in research [27,36–38,44,45,48,65–68].
Root mean square error (RMSE) (1) and bias (2) were calculated for the IMU and mark-
erless datasets. In Equations (1) and (2), i is the index for each frame in a given joint
movement trajectory.

RMSE =

√(
1
n

)
∑n

i=1(testSystemi −Viconi)
2, (1)
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bias =

(
1
n

)
∑n

i=1(testSystemi −Viconi)
2, (2)

A description of the joint angle calculations from each system used in the above
equations is provided below.

To assess consistency of measurements from each system, the intraclass correlation
coefficient (ICC) was calculated using a two-way mixed effects model (ICC(3,1)). Each
participant performed three trials of the same task. These three trials were used to determine
the ICC of discrete kinematic parameters derived from the joint trajectory (range of motion)
for each task/DoF combination and for each motion system evaluated in our study. The
use of discrete kinematic parameters, such as RoM, was used to avoid artificially low ICC
values due to slight misalignments in the trajectories across trials within a subject.

2.4.1. Optical Marker-Based System

Joint angles were calculated from the Vicon upper body model using YXZ Euler angles
derived from relative orientation comparisons of two segments (VICON Plug-in Gait,
Oxford, UK). Joint angles analyzed in this study include right elbow flexion/extension;
right shoulder flexion/extension, abduction/adduction, and internal/external rotation;
torso flexion, lateral flexion, and rotation; and neck flexion, lateral flexion, and rotation.

The recorded data from each task were processed and manually segmented in Vicon
Nexus into object interactions with the beginning of a segment defined as when the ter-
minal device approached the object, and the end of a segment when the terminal device
released the object. For tasks with multiple objects, such as the six objects in JHFT—Small
Objects, this resulted in multiple segments. Although the locations of the task objects are
standardized with placement templates, the individual objects may be distributed in the
task space. Therefore, to reduce variability introduced in joint kinematics due to object
distribution, the analysis was limited to the last segment, or last object interaction, within
each trial.

2.4.2. IMU System

The joint angles for the IMU-based system were calculated based on relative sensor
orientation. To generate joint angles, the IMUS proximal and distal to each joint were paired:
one sensor was defined as the parent sensor and used to establish a local coordinate system
and the other sensor was defined as the child sensor and provided the orientation data
necessary to generate the joint angles. The right elbow flexion/extension was calculated
between the forearm and upper arm sensors. Right shoulder angles were calculated
between the sternum and upper arm sensors. Neck angles were calculated from the head
and sternum sensors. Torso angles were calculated between the sternum and pelvis sensors.
A brief description of the IMU joint angle calculation process is described below, with
further details in Appendix A.

The IMU sensor orientations were output as quaternions and decomposed into axial
vector components that corresponded to the three axes of the sensor units in unit quater-
nions. Then, the axial vector components were used to generate the individual Euler joint
angle components through decomposition. The decomposition used the known initial
orientations of the sensor unit locations on the body to define a superior-inferior axis for
each sensor, with the other two axes defined through orthogonality. The angles defined
through the pairs of sensors sought to mimic the output of the Vicon YXZ Euler angle
outputs. However, the shoulder angles suffered from computational errors and the XYZ
rotation order was used instead to best match the Vicon outputs. This approach matched
what was found in a recent study [32]. The planar surface sensor calibrations and known
body placement locations were used for the alignment of sensor axes to body segment axes.
The initial values of the Vicon outputs were used to initialize the values of the derived
Xsens angles to limit the variance from the calibration approach. In some instances, joint
angles from the Xsens IMU system were inverted to match the conventions of the Vicon
reference system angle values. The resultant angles were then visually examined for com-
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putational anomalies that violated anatomical angle limits due to gimble lock. Trajectories
with computational anomalies were manually removed from the analysis.

Since the data from the optical marker-based and IMU systems were synchronized,
the IMU data were segmented for analysis using the segmentation event markers from the
optical marker-based system. As previously mentioned, analysis was limited to the last
segment of each task.

2.4.3. Markerless System

The joint angles for the dual Kinects were calculated with the Biomech add-on toolbox
for iPi studio using YXZ Euler angles derived from the relative orientation comparisons
of two skeletal rig segments (iPi Soft, Moscow, Russia). To derive joint angles compara-
ble to those generated from the Vicon marker-based system, re-zeroing operations were
performed on the outputs of the Biomech toolbox. In some instances, joint angles from
the Kinect system were inverted to match the conventions of the Vicon reference system
angle values. For the right elbow angles, due to the obscuration of the MYO Bypass device
caused by the actual right arm, the Kinect prioritized arm tracking over bypass tracking.
An offset of 15◦, equal to the medial offset of the bypass device, was applied to these elbow
angles to provide a more accurate estimate.

The data from the markerless system were synced with the optical marker-based and
IMU systems post-capture with an automated MATLAB script. To aid in this synchro-
nization, all subjects started each trial with their hands at their side and subsequently
moved their arms into a “motor-bike” pose before performing the task. The transition to
the motor-bike pose caused a predictable spike in the right shoulder angle. The MATLAB
script detected time points in each system where the joint angle rate of change, or joint
angle derivative, in the right shoulder exceeded a preset threshold (determined through
pilot experiments). The data from each system were aligned to this detected time point
and the first data point of the markerless system was adjusted to match the Vicon data
point to be consistent. As previously mentioned, analysis was limited to the last segment
of each task.

3. Results

The distributions of RMSE and bias values across all trials and subjects for the
two comparison systems relative to the reference system are shown as boxplots for each
joint in Figures 2–5. In each figure, the values for the IMU system are shown in red; values
for the markerless system are shown in blue. Within each distribution, white circles with a
black dot indicate the median of the distribution.

The markerless system tended to slightly overestimate the right elbow angle while the
IMU system was inconsistent and greater in magnitude in the bias measurement (Figure 2B).
Larger errors were seen with the IMU system for right elbow flexion: the median RMSE
values for the markerless system were between 14.4◦ and 31.2◦ while the median RMSE
values for the IMU system were between 23.8◦ and 62.6◦. The AMULA—Reach task had
the highest median RMSE values across both systems (Figure 2A). This task resulted in a
relatively low bias value across the tasks for the markerless system at 8.4◦, and the most
positive bias value for the IMU system at 59.1◦.



Sensors 2022, 22, 2953 8 of 22Sensors 2022, 22, x FOR PEER REVIEW 8 of 22 
 

 
Figure 2. Distributions of (A) right elbow flexion RMSE and (B) right elbow flexion bias across sub-
jects for the IMU system (Xsens Awinda MTw, El Segundo, CA) and markerless system (Kinect, 
Microsoft, Seattle, WA, USA) compared to the reference system (VICON, Oxford, UK). X-axis iden-
tifies the task and associated joint angle. F/E = flexion/extension, Ab/Ad = abduction/adduction, LaF 
= lateral flexion, Rot = rotation. Black dots indicate medians, empty circles indicate outliers, bold 
line indicates quartiles, and whiskers indicate non-outlier maximums and minimum. 

Figure 2. Distributions of (A) right elbow flexion RMSE and (B) right elbow flexion bias across subjects
for the IMU system (Xsens Awinda MTw, El Segundo, CA) and markerless system (Kinect, Microsoft,
Seattle, WA, USA) compared to the reference system (VICON, Oxford, UK). X-axis identifies the task
and associated joint angle. F/E = flexion/extension, Ab/Ad = abduction/adduction, LaF = lateral
flexion, Rot = rotation. Black dots indicate medians, empty circles indicate outliers, bold line indicates
quartiles, and whiskers indicate non-outlier maximums and minimum.
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line indicates quartiles, and whiskers indicate non-outlier maximums and minimum.
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the IMU system (Xsens Awinda MTw, El Segundo, CA) and markerless system (Kinect, Microsoft,
Seattle, WA, USA) compared to the reference system (VICON, Oxford, UK). X-axis identifies the task
and associated joint angle. F/E = flexion/extension, Ab/Ad = abduction/adduction, LaF = lateral
flexion, Rot = rotation. Black dots indicate medians, empty circles indicate outliers, bold line indicates
quartiles, and whiskers indicate non-outlier maximums and minimum.
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system (Xsens Awinda MTw, El Segundo, CA) and markerless system (Kinect, Microsoft, Seattle,
WA, USA) compared to the reference system (VICON, Oxford, UK). X-axis identifies the task and
associated joint angle. F/E = flexion/extension, Ab/Ad = abduction/adduction, LaF = lateral flexion,
Rot = rotation. Black dots indicate medians, empty circles indicate outliers, bold line indicates
quartiles, and whiskers indicate non-outlier maximums and minimum.

Conversely, with the right shoulder, the IMU system had lower median RMSE values
and tended to have lower variance for RMSE and bias compared to the markerless system
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(Figure 3A,B). The median RMSE values across tasks and DOFs for the IMU system were all
under 30◦ while median RMSE values at the shoulder for the markerless system were above
30◦. The markerless system tended to underestimate shoulder flexion/extension and shoulder
rotation while overestimating shoulder adduction/abduction. In contrast, the IMU system
tended to overestimate shoulder rotation and underestimate shoulder abduction/adduction
across tasks. Compared to the markerless system, the median bias values for the IMU
system tended to be closer to zero across all tasks and DOFs (Figure 3B). The tasks with
the lowest RMSE values and the bias values closest to zero varied depending on the joint
angle component. For the IMU system, JHFT—Page Turn had the lowest median RMSE
for shoulder flexion/extension at 5.1◦ and the task’s median bias was the closest to zero
for all tasks in the shoulder flexion/extension component at 0.02◦. The AMULA—Reach
task had the lowest median IMU RMSE for shoulder abduction/adduction at 7.2◦, and
the corresponding median bias was 1.3◦. CAPPFUL—Bottle had the lowest median IMU
RMSE for shoulder rotation at 9.2◦. For the markerless system: the lowest median shoulder
flexion/extension RMSE value was in the AMULA—Fork task (18.5◦), the lowest median
shoulder abduction/adduction RMSE value was in the JHFT—Page task (30.8◦), and
the smallest median shoulder rotation RMSE value was in the CAPPFUL—Picture task
(28.2◦). The bias values closest to zero for all tasks in the markerless system were in:
AMULA—Fork for shoulder flexion/extension (−7.0◦), CAPPFUL—Bottle for shoulder
abduction/adduction (−3.1◦), and CAPPFUL—Bottle for shoulder rotation (−2.6◦).

With the neck angle measurements (Figure 4A,B), the IMU system tended to have
slightly lower RMSE values and comparable variance compared to the markerless system.
For the IMU system, neck rotation in the AMULA—Reach was a notable outlier in the
variance even though the median RMSE value of 13.9◦ was in line with the magnitude of
the neck rotation values found in other tasks. Similarly, the markerless system had the
largest median RMSE value in AMULA—Reach neck rotation at 29.04◦. The IMU system
was more closely clustered around zero for the bias values compared to the markerless
system. The median RMSE and bias values that were closest to zero were distributed
across the JHFT—Heavy Objects, CAPPFUL—Bottle, and CAPPFUL—Dice tasks for the
three components of the neck across the two systems. In the IMU system, the median
RMSE values ranged from 6.6◦ to 14.7◦ while bias values ranged from −13.7◦ to 4.9◦; for
the markerless system, the median RMSE values ranged from 4.2◦ to 28.3◦ and the median
bias values ranged from −25.6◦ to 23.6◦.

With the torso angle measurements (Figure 5A,B), the IMU system tended to have
slightly lower median RMSE values compared to the markerless system. However, the IMU
system had much greater variance in torso rotation RMSE values in the CAPPFUL—Dice
and tBBT tasks. The markerless system had the greatest median RMSE values and greatest
RMSE variance in torso flexion for the JHFT—Page Turn and JHFT—Small Objects tasks.
For both systems, the task with the lowest median RMSE values for all torso components
was CAPPFUL—Bottle. For the IMU, the torso flexion/extension was 5.30◦, the torso
lateral flexion was 2.9◦, and the torso rotation was 3.2◦. For the markerless system, the
torso flexion/extension was 6.9◦, the torso lateral flexion was 2.3◦, and the torso rotation
was 2.6◦. With the IMU system, the median RMSE values ranged from 3.2◦ to 15.8◦ and the
bias values ranged from −10.7◦ to 10.3◦; with the markerless system, the median RMSE
values ranged from 2.3◦ to 24.1◦ and the bias values ranged from −22.5◦ to 14.0◦.

Table 2 shows the ICC(3,1) along with the 95% confidence interval for each system,
DOF, and task combination. ICC values less than 0.4 were considered weak correlation;
values between 0.4 and 0.74 were considered moderate, and values equal to or greater than
0.75 were considered strong [75]. To facilitate the qualitatively comparison of ICC across
systems, the table is color-coded according to the weak, moderate, and strong definitions.
In general, the Vicon and IMU systems have moderate to strong correlations across trials
for all subjects. There does not appear to be any trend based on the task or DoF. The Kinect
system generally has poor reliability with weaker ICC values.
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Table 2. ICC values with 95% confidence intervals for each DoF, task, and motion system comparison.
Red cells indicate a weak correlation (ICC < 0.4). Yellow cells indicate a moderate correlation
(0.4 ≤ ICC < 0.75). Green cells indicate a strong correlation (ICC ≥ 0.75).

Joint/DoF Tasks ICC (Kinect) 95% CI ICC (Vicon) 95% CI ICC (Xsens) 95% CI

R
ig

ht
El

bo
w

F/
E

CAPPFUL4 0.73 [0.42, 0.92] 0.88 [0.6, 0.98] 0.88 [0.59, 0.98]
tBBT 0.21 [−0.15, 0.66] 0.76 [0.32, 0.96] 0.66 [0.17, 0.94]

AMULA10 0.31 [−0.071, 0.72] 0.72 [0.34, 0.93] 0.91 [0.75, 0.98]
AMULA16 0.19 [−0.18, 0.66] 0.47 [0.025, 0.84] 0.85 [0.59, 0.96]
AMULA24 0.86 [0.64, 0.96] 0.68 [0.2, 0.94] 0.80 [0.42, 0.97]

CAPPFUL11 0.69 [0.35, 0.9] 0.36 [−0.073, 0.79] 0.79 [0.46, 0.95]
CAPPFUL8 0.47 [0.077, 0.81] 0.95 [0.85, 0.99] 0.82 [0.53, 0.96]

JHFT2 0.33 [−0.05, 0.73] −0.16 [−0.38, 0.36] 0.18 [−0.21, 0.69]
JHFT3 0.19 [−0.16, 0.64] 0.54 [0.096, 0.87] 0.41 [−0.029, 0.81]
JHFT7 0.40 [−0.014, 0.79] 0.63 [0.21, 0.9] 0.69 [0.3, 0.92]

R
ig

ht
Sh

ou
ld

er
F/

E

CAPPFUL4 0.66 [0.31, 0.89] 0.92 [0.75, 0.98] 0.91 [0.73, 0.98]
tBBT 0.22 [−0.14, 0.66] 0.56 [0.12, 0.87] 0.57 [0.14, 0.88]

AMULA10 0.50 [0.1, 0.82] 0.65 [0.24, 0.91] 0.69 [0.3, 0.92]
AMULA16 0.33 [−0.077, 0.75] 0.73 [0.4, 0.92] 0.58 [0.18, 0.87]
AMULA24 0.73 [0.4, 0.92] 0.88 [0.7, 0.97] 0.92 [0.79, 0.98]

CAPPFUL11 0.42 [0.024, 0.78] 0.87 [0.68, 0.96] 0.80 [0.54, 0.94]
CAPPFUL8 0.16 [−0.19, 0.61] 0.98 [0.93, 0.99] 0.78 [0.49, 0.93]

JHFT2 −0.12 [−0.34, 0.33] 0.67 [0.3, 0.9] 0.66 [0.29, 0.9]
JHFT3 0.66 [0.31, 0.89] 0.78 [0.48, 0.94] 0.75 [0.43, 0.93]
JHFT7 0.23 [−0.15, 0.69] 0.80 [0.5, 0.95] 0.81 [0.52, 0.96]

R
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ht
Sh
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ld

er
A

b/
A

d

CAPPFUL4 0.47 [0.072, 0.8] 0.66 [0.25, 0.91] 0.63 [0.21, 0.9]
tBBT 0.10 [−0.22, 0.57] 0.42 [−0.02, 0.82] 0.64 [0.22, 0.9]

AMULA10 0.38 [−0.014, 0.76] 0.71 [0.33, 0.93] 0.90 [0.7, 0.98]
AMULA16 0.50 [0.081, 0.83] 0.76 [0.44, 0.93] 0.51 [0.094, 0.84]
AMULA24 0.83 [0.57, 0.95] 0.90 [0.74, 0.97] 0.91 [0.77, 0.97]

CAPPFUL11 0.46 [0.065, 0.8] 0.85 [0.63, 0.96] 0.89 [0.72, 0.97]
CAPPFUL8 0.51 [0.11, 0.82] 0.91 [0.76, 0.97] 0.90 [0.75, 0.97]

JHFT2 0.37 [−0.021, 0.75] 0.69 [0.33, 0.91] 0.79 [0.49, 0.94]
JHFT3 0.39 [0.0016, 0.77] 0.79 [0.49, 0.94] 0.86 [0.64, 0.96]
JHFT7 −0.01 [−0.3, 0.5] 0.50 [0.062, 0.85] 0.42 [−0.017, 0.82]

R
ig

ht
Sh
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ld

er
R

ot

CAPPFUL4 0.78 [0.49, 0.93] 0.92 [0.75, 0.98] 0.79 [0.47, 0.95]
tBBT 0.11 [−0.21, 0.58] 0.61 [0.18, 0.89] 0.60 [0.17, 0.89]

AMULA10 0.44 [0.048, 0.79] 0.84 [0.56, 0.96] 0.97 [0.91, 0.99]
AMULA16 0.15 [−0.2, 0.64] 0.77 [0.46, 0.94] 0.51 [0.099, 0.84]
AMULA24 0.44 [0.022, 0.81] 0.92 [0.78, 0.98] 0.89 [0.71, 0.97]

CAPPFUL11 0.49 [0.096, 0.82] 0.73 [0.42, 0.92] 0.79 [0.52, 0.94]
CAPPFUL8 0.84 [0.61, 0.95] 0.56 [0.17, 0.85] 0.70 [0.36, 0.9]

JHFT2 0.78 [0.49, 0.93] 0.18 [−0.19, 0.65] 0.56 [0.15, 0.86]
JHFT3 0.35 [−0.033, 0.75] 0.66 [0.28, 0.9] 0.78 [0.48, 0.94]
JHFT7 −0.11 [−0.35, 0.38] 0.53 [0.089, 0.86] 0.45 [0.0077, 0.83]

N
ec

k
F/

E

CAPPFUL4 0.54 [0.15, 0.84] 0.52 [0.0014, 0.9] −0.10 [−0.38, 0.56]
tBBT −0.03 [−0.3, 0.45] 0.17 [−0.26, 0.76] 0.05 [−0.32, 0.69]

AMULA10 0.30 [−0.082, 0.71] 0.60 [0.14, 0.91] 0.60 [0.14, 0.91]
AMULA16 0.55 [0.14, 0.86] 0.28 [−0.14, 0.75] 0.42 [−0.019, 0.82]
AMULA24 0.52 [0.11, 0.84] 0.96 [0.9, 0.99] 0.97 [0.91, 0.99]

CAPPFUL11 0.31 [−0.075, 0.72] 0.54 [0.13, 0.85] 0.86 [0.63, 0.96]
CAPPFUL8 0.72 [0.4, 0.91] 0.76 [0.38, 0.95] 0.58 [0.11, 0.9]

JHFT2 0.31 [−0.089, 0.74] 0.69 [0.31, 0.92] 0.20 [−0.19, 0.7]
JHFT3 0.29 [−0.084, 0.71] 0.68 [0.19, 0.94] 0.36 [−0.14, 0.85]
JHFT7 −0.02 [−0.3, 0.49] 0.76 [0.41, 0.94] 0.86 [0.62, 0.97]
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Table 2. Cont.

Joint/DoF Tasks ICC (Kinect) 95% CI ICC (Vicon) 95% CI ICC (Xsens) 95% CI

N
ec

k
La

F

CAPPFUL4 −0.23 [−0.39, 0.17] 0.75 [0.3, 0.96] 0.86 [0.54, 0.98]
tBBT 0.23 [−0.13, 0.67] 0.49 [−0.029, 0.89] 0.37 [−0.13, 0.85]

AMULA10 0.59 [0.22, 0.86] 0.64 [0.18, 0.92] 0.79 [0.43, 0.96]
AMULA16 0.26 [−0.13, 0.71] 0.23 [−0.17, 0.72] −0.12 [−0.36, 0.41]
AMULA24 0.69 [0.33, 0.91] 0.93 [0.81, 0.98] 0.93 [0.79, 0.98]

CAPPFUL11 0.44 [0.048, 0.79] 0.85 [0.62, 0.96] 0.90 [0.74, 0.98]
CAPPFUL8 0.62 [0.25, 0.87] 0.74 [0.34, 0.94] 0.67 [0.23, 0.92]

JHFT2 0.11 [−0.23, 0.61] 0.66 [0.25, 0.91] 0.63 [0.21, 0.9]
JHFT3 0.48 [0.087, 0.81] 0.85 [0.53, 0.98] 0.92 [0.71, 0.99]
JHFT7 0.09 [−0.24, 0.58] 0.39 [−0.048, 0.81] 0.48 [0.034, 0.84]

N
ec

k
R

ot

CAPPFUL4 −0.05 [−0.31, 0.42] 0.91 [0.69, 0.99] 0.13 [−0.28, 0.74]
tBBT 0.13 [−0.2, 0.59] 0.71 [0.25, 0.95] 0.47 [−0.051, 0.88]

AMULA10 0.60 [0.23, 0.87] 0.89 [0.66, 0.98] 0.56 [0.09, 0.89]
AMULA16 0.25 [−0.13, 0.71] 0.31 [−0.12, 0.76] 0.38 [−0.057, 0.8]
AMULA24 0.59 [0.19, 0.87] 0.93 [0.8, 0.98] 0.99 [0.98, 1]

CAPPFUL11 0.54 [0.16, 0.84] 0.89 [0.7, 0.97] 0.80 [0.52, 0.95]
CAPPFUL8 0.51 [0.12, 0.82] 0.60 [0.14, 0.9] 0.71 [0.29, 0.94]

JHFT2 0.27 [−0.12, 0.71] 0.60 [0.18, 0.89] 0.15 [−0.22, 0.67]
JHFT3 0.36 [−0.028, 0.75] 0.91 [0.68, 0.99] 0.69 [0.21, 0.94]
JHFT7 0.09 [−0.24, 0.59] 0.74 [0.37, 0.93] 0.68 [0.28, 0.92]

To
rs

o
F/

E

CAPPFUL4 0.82 [0.58, 0.95] 0.98 [0.93, 1] 0.90 [0.65, 0.98]
tBBT −0.07 [−0.32, 0.4] 0.52 [0.043, 0.88] 0.58 [0.12, 0.9]

AMULA10 0.50 [0.11, 0.82] 0.70 [0.27, 0.93] 0.69 [0.26, 0.93]
AMULA16 0.06 [−0.26, 0.56] 0.59 [0.22, 0.86] 0.42 [0.032, 0.78]
AMULA24 0.07 [−0.25, 0.57] 0.96 [0.87, 0.99] 0.93 [0.79, 0.98]

CAPPFUL11 0.46 [0.066, 0.8] 0.90 [0.74, 0.97] 0.60 [0.23, 0.87]
CAPPFUL8 0.62 [0.25, 0.87] 0.83 [0.57, 0.95] 0.68 [0.31, 0.91]

JHFT2 0.40 [0.0059, 0.77] 0.48 [0.083, 0.81] 0.72 [0.4, 0.91]
JHFT3 0.34 [−0.044, 0.74] 0.89 [0.73, 0.97] 0.90 [0.73, 0.97]
JHFT7 0.70 [0.35, 0.91] 0.57 [0.16, 0.86] 0.39 [−0.023, 0.78]

To
rs

o
La

F

CAPPFUL4 0.67 [0.32, 0.89] 0.66 [0.17, 0.94] 0.78 [0.36, 0.96]
tBBT 0.27 [−0.1, 0.7] 0.71 [0.29, 0.94] 0.66 [0.22, 0.92]

AMULA10 0.72 [0.4, 0.91] 0.82 [0.49, 0.96] 0.35 [−0.11, 0.81]
AMULA16 0.19 [−0.18, 0.67] 0.90 [0.74, 0.97] 0.72 [0.4, 0.91]
AMULA24 0.11 [−0.23, 0.6] 0.90 [0.73, 0.97] 0.89 [0.7, 0.97]

CAPPFUL11 0.55 [0.16, 0.84] 0.88 [0.7, 0.97] 0.95 [0.87, 0.99]
CAPPFUL8 0.25 [−0.11, 0.68] 0.90 [0.73, 0.97] 0.94 [0.82, 0.98]

JHFT2 0.28 [−0.093, 0.7] 0.61 [0.23, 0.87] 0.88 [0.69, 0.96]
JHFT3 0.40 [0.01, 0.77] 0.57 [0.19, 0.85] 0.88 [0.69, 0.96]
JHFT7 0.38 [−0.028, 0.78] 0.70 [0.34, 0.91] 0.33 [−0.076, 0.75]

To
rs

o
R

ot

CAPPFUL4 0.46 [0.063, 0.8] 0.40 [−0.11, 0.86] 0.50 [−0.023, 0.89]
tBBT 0.27 [−0.1, 0.69] 0.73 [0.32, 0.94] 0.62 [0.17, 0.91]

AMULA10 0.69 [0.35, 0.9] 0.80 [0.45, 0.96] 0.85 [0.57, 0.97]
AMULA16 0.36 [−0.046, 0.77] 0.63 [0.27, 0.88] 0.54 [0.15, 0.84]
AMULA24 −0.08 [−0.34, 0.42] 0.89 [0.7, 0.97] 0.96 [0.89, 0.99]

CAPPFUL11 0.62 [0.26, 0.88] 0.62 [0.25, 0.87] 0.67 [0.33, 0.9]
CAPPFUL8 0.49 [0.094, 0.82] 0.93 [0.81, 0.98] 0.89 [0.7, 0.97]

JHFT2 0.06 [−0.25, 0.53] 0.68 [0.33, 0.9] 0.53 [0.14, 0.83]
JHFT3 0.16 [−0.18, 0.61] 0.85 [0.63, 0.96] 0.63 [0.27, 0.88]
JHFT7 0.49 [0.075, 0.83] 0.23 [−0.15, 0.69] 0.39 [−0.02, 0.79]

4. Discussion

In this study, joint kinematics derived from three motion capture systems of varying
costs and mechanisms were compared through simultaneous motion capture of able-bodied
participants using an upper limb myoelectric bypass device. By evaluating the ability of
each system to capture kinematic changes of simulated upper limb prosthesis users during
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a variety of standardized tasks, this study provides insight into the advantages and limita-
tions of using different motion capture technologies for upper limb functional assessment.
Two established metrics of precision and accuracy (RMSE and bias) were calculated as a
function of ten different joint degrees of freedom and ten different upper-limb tasks for
every time point to assess inter-subject variability and inter-system agreement. Because
differences are calculated for every time point, the RMSE values would reflect unstable
system-related influences given the simultaneous capture setup. Similarly, the bias values
would indicate systematic influences on differences over time—allowing for an assessment
of joint angle stability. In addition, ICC values were calculated for each system and each
task/DoF combination using a two-way mixed effects model (ICC(3,1) to further assess
consistency of measurements from each system. A discussion of advantages and limitations
of each system is presented along with considerations for clinical implementation.

Based on the results presented in this study, the IMU system yields more accurate
kinematics for shoulder, neck, and torso angles over all DOFS (Figures 3–5) compared to
the Kinect (markerless) system’s performance over all DOFs. Due to the current level of
accuracy and variability, the IMU system is not recommended in the elbow DOF (Figure 2).
The markerless system is not recommended for use in measuring the elbow or the shoulder
DOFs due to high variability and bias (Figures 2 and 3), which are in line with the results
from the literature [23,27,35], but may provide accurate results for neck and torso DOFs
(Figures 4 and 5) when individuals perform the specific tasks analyzed in this study.

For both systems, the tasks requiring the greatest amount of movement (i.e., CAPPFUL—
Dice, CAPPFUL—Picture, and tBBT) resulted in the largest RMSE and variability values
over the DOFs examined. This implies that both systems struggled with precision during
large gross movements, a result in line with the previous literature that suggests the
markerless system overestimates large motions and underestimates small motions [27].

For DOFs parallel to the recording plane of the cameras (e.g., neck/torso lateral
flexion and shoulder abduction/adduction), the markerless system had the best results.
Given the mechanism of movement capture for the Kinect V1, which measures infrared
reflectivity and subtracts changes from a predefined static background [24,46,73], this result
is expected [38,45,73]. The elbow bias values (Figure 2B) for the markerless system were
inconsistent overestimates, which were likely influenced by how the system struggled to
detect the bypass device. The markerless shoulder bias values (Figure 3B) measured in
this study were also notably different from those found in the literature (current study
measured approximately−25◦ compared to an average around +10◦) [26,27]. Although this
difference is large, it may be a more accurate representation of the expected performance
of these motion capture systems given the use of complex tasks [76] and human subjects
in this study compared to simple ROM measurements [26,27] and testing machines [47]
found in the literature.

The precision of the IMU system was best in the shoulder (Figure 3), which is consistent
with previous results in the literature [28,32]. The variability across subjects in the elbow
DOF (Figure 2) for the IMU system was likely influenced by variations in sensor placement
and movement artifacts from the sensor attachment method, which are known factors in the
literature [39]. The variability across subjects in the neck and torso angles (Figures 4 and 5)
appeared to be heavily task-influenced and the capture accuracy of the systems was likely
affected by the varying motions used by the participants to achieve the task. The magnitude
of the differences between the IMU-generated angles and the Vicon reference system angles
found in the DOFs examined in this study were similar to the magnitude of the differences
previously found in the literature for the commercial Xsens software [76] in the shoulder,
neck, and back. However, the magnitude of the differences in the elbow are much greater
in this study compared to those previously found in the literature. The source of the errors
within the elbow is currently still unclear and warrants further investigation given the
results seen in the other angles measured.

In terms of the system stability as measured by the ICC values, the IMU and marker-
based systems showed comparable moderate to strong correlations across trials for all



Sensors 2022, 22, 2953 16 of 22

subjects. The markerless system generally showed weaker correlations compared to the
IMU system and marker-based reference system. Due to the lack of any trends based on
the task or DoF, these results can be considered to support the general performance of the
three systems. However, it should be noted that the participants were free to choose their
own approaches to achieve the tasks and often used different approaches between trials.
As such, it is difficult to draw more specific conclusions based on the ICC values due to the
inherent variability of the base data. Overall, the marker-based reference system and IMU
system showed the greatest stability per the ICC metric.

In terms of capturing environment restrictions and operating stability, the IMU system
proved more robust and less demanding compared to the markerless system. The IMU system
did not require the consideration of issues such as the color and reflectivity of the capture
background and was not vulnerable to issues of obscuration from task objects or body parts.
The IMU system had comparable costs for the number of sensors used, and less strenuous
requirements for data processing, data storage, and data export procedures compared to the
markerless system. The markerless system incorporated established calibration procedures,
while there exist many approaches for effective calibration of the IMU system. The impact of
IMU calibration procedure on derived joint angles was not the subject of this study but may
need further investigation regarding the most effective calibration approach. However, both
systems proved lacking in data annotation abilities—with the markerless system holding a
slight advantage due to the visual review allowed by the video-based capture data. Overall,
the IMU system may be best for clinical and remote monitoring purposes.

The generalizability of the joint kinematics observed here with able-bodied individuals
to those of upper limb prosthesis users is uncertain. However, the movements elicited
by able-bodied individuals using a bypass prosthesis are close approximations to the
movements of interest, making the results obtained in this study relevant to understanding
the utility of different motion capture systems for tracking upper limb prosthesis user
movement. The limitations and advantages discovered about each system in this study can
be used to inform clinical implementation of motion analysis for research and rehabilitation.
The focus on unilateral tasks performed with the MYO Bypass device may not be fully
representative of device use patterns in daily living and may also be considered a limitation
of the current study. While a bilateral task was included, (i.e., CAPPFUL Task 11—Picture),
the task required symmetrical use of the two upper limbs. Motion analysis of tasks with
independent use of both upper limbs has yet to be performed under these simultaneous
capture conditions and is a future avenue of investigation. Given the current results
with unilateral tasks, and other results in the literature [41], it is likely that asymmetrical
bilateral tasks may further elucidate the performance capabilities of the IMU and the
markerless motion analysis systems. Future work may also focus on investigating the
effects of additional Kinect V1 cameras, the results from more modern Kinect cameras
models such as the Azure Kinect, and refinement of the IMU system joint angle calculations
and sensor placements to allow for more reliable capture of challenging task performance
zones such as the portion of the lower central zone by the feet and the far left and far right
of the lateral zones [49]. Future work may also include remote monitoring and additional
capture mechanisms such as those employed in visual-inertial systems or single-view pose
estimation systems.

5. Conclusions

This study is the first that simultaneously compares multiple mechanisms of motion
capture using a simulated upper limb prosthesis user population. It can serve as a starting
point for minimum technical requirements in motion capture systems for use in clinical
rehabilitation and highlights the current state of commercially available technology in
terms of technical and capture environment requirements that may be barriers to the
clinical adoption of motion capture. The results from this study can also be used to guide
improvements in the design and algorithms of low-cost, portable motion capture systems
to facilitate the wider adoption of these tools in clinical practice.
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Appendix A

The parent sensor is the sensor used to define a local coordinate system for a given
body segment, which will be called the parent body segment. The child sensor is the
sensor that measures the motion of a different body segment, which will be called the
child segment. The method described below defines the motion of the child body segment
relative to the local coordinate system defined by the parent sensor as measured through
Euler decomposition.

Table A1. Definitions of Parent and Child Segments for each joint of Interest.

Joint Parent Child

Elbow Upper Arm Forearm
Shoulder Torso Upper Arm

Neck Torso Head
Torso Torso Pelvis

First, the quaternion outputs of the parent and child sensors are transformed into
standardized local coordinate systems. The known locations of each sensor upon the body
are used to define three element vectors which correspond to the Superior-Inferior (SI),
Medial-Lateral (ML), and Anterior-Posterior (AP) axes of the sensor that align with the
body. These vectors can be called SICalVec, MLCalVec, APCalVec, respectively. These three
element vectors are used to transform the coordinate systems of the sensors from sensor-
based local coordinates to body-based local coordinates through quaternion conjugations.

The first step to determining the Euler angles is taking the standardized SI, ML, and
AP axes of the child sensor. These axes are defined relative to the body of the participant,
so the SI axis of the sensor corresponds to the SI axis of the participant’s body. The ML axis
of the sensor corresponds to the ML axis of the body, and the AP axis corresponds to the
AP axis of the body. These axes are used to produce the three vectors ProjectedVectorSI,
ProjectedVectorML, ProjectedVectorAP, which are defined by projecting the SI, ML, and

https://github.com/dbp-osel
https://github.com/dbp-osel
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AP axes of the child sensor onto the standardized local coordinate system defined by the
parent sensor, X-Y-Z.

The first rotation of the Euler decomposition, labeled RotationY, as it rotates the child
sensor’s projected SI axis in the local coordinate system’s original Z-X plane, which is
described as follows in Equation (A1). This rotation also results in a new interim coordinate
system with axes labeled X′, Y′, Z′.

RotationY = tan−1

(
ProjectedVectorSIComponent3

ProjectedVectorSIComponent1

)
(A1)

The second rotation of the Euler decomposition is performed about the new X’ axis
that results from Equation (A1). This can be found in the Z′-Y plane, which is iden-
tical to the Z′-Y′ plane as Equation (A1) did not involve the local coordinate system’s
y-axis. The ProjectedVectorSI component along the z’ axis can be found from the com-
ponents of the original z-x plane using the Pythagorean theorem. This is used to define
ProjectedVectorsSIComponentZ’ in Equation (A2). ProjectedVectorsSIComponentZ’ is then used
to find the resultant second Euler rotation about the new X′ axis with Equation (A3). This
also results in a new coordinate system with axes labeled X”, Y”, Z”.

ProjectedVectorSIComponentZ′ =
√(ProjectedVector2

SIComponent1 + ProjectedVector2
SIComponent3

) (A2)

RotationX′ = tan−1

(
ProjectedVectorSI Component2

ProjectedVectorSIComponentZ′

)
, (A3)

To determine the third Euler Angle about Z”, first a quaternion is defined (A4) to
describe rotation about axis Y from the X, Y, Z coordinate system, also known as the ML
axis. MLCalVec is a three-element vector describing the ML axis of the parent sensor, which
was pre-defined by the known orientations of the individual IMU sensors on the body. This
vector is the same vector previously used to transform the individual sensor coordinate
systems into uniform body-based coordinate systems.

QuaternionrotationY =

[cos
(

Rotationy
2

)
; sin

(
Rotationy

2

)
×MLCalVeccomponent1; sin

(
Rotationy

2

)
×MLCalVeccomponent2; sin

(
Rotationy

2

)
×MLCalVeccomponent3]

(A4)

QuaternionrotationY is then used to rotate the X axis from the X, Y, Z coordinate system
to find the X’ axis through quaternion conjugation as described in (A5). The X’ Axis vector is
then projected onto the coordinate system defined by ProjectedVectorSI, ProjectedVectorML,
and ProjectedVectorAP to produce ProjectedX’Axis. The third Euler Angle about Z” is
found with the components of ProjectedX’Axis as described in (A6).

X′Axis = (QuaternionrotationY ×QuaternionXAxis)×Quaternion−1
rotationY (A5)

RotationZ′′ = tan−1(ProjectedX′AxisComponent2/ProjectedX′Axiscomponent3 (A6)

Appendix B

The sensors of the three systems were not expected to interfere due to the indepen-
dent locations of the sensor placements and the differences in the recording mechanisms.
Excepting the sternum location alone, all other IMUs and retroreflective markets were
mounted directly on the body (Figure A1). The sternum location required the sternum
reflective marker to be mounted on the sternum IMU sensor for the tracking accuracy of
the Vicon software.
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Figure A1. Illustration of sensor locations with the anterior view on the left and posterior view on
the right. Orange boxes represent IMU sensors. Blue dots represent retroreflective markers.

During the data cleaning and processing phase, review of the exported data showed
that the markerless system’s software and background subtraction mechanism detected
neither the retroreflective markers used by the optical system-based system nor the IMU
sensors. The IMU sensors were not retroreflective and were not detected by the optical
marker-based system.
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