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Abstract: Eye movement has become a new behavioral feature for biometric authentication. In the
eye movement-based authentication methods that use temporal features and artificial design features,
the required duration of eye movement recordings are too long to be applied. Therefore, this study
aims at using eye movement recordings with shorter duration to realize authentication. And we give
out a reasonable eye movement recording duration that should be less than 12 s, referring to the
changing pattern of the deviation degree between the gaze point and the stimulus point on the screen.
In this study, the temporal motion features of the gaze points and the spatial distribution features
of the saccade are using to represent the personal identity. Two datasets are constructed for the
experiments, including 5 s and 12 s of eye movement recordings. On the datasets constructed in this
paper, the open-set authentication results show that the Equal Error Rate of our proposed methods
can reach 10.62% when recording duration is 12 s and 12.48% when recording duration is 5 s. The
closed-set authentication results show that the Equal Error Rate of our proposed methods can reach
5.25% when recording duration is 12 s and 7.82% when recording duration is 5 s. It demonstrates that
the proposed method provides a reference for the eye movements data-based identity authentication.

Keywords: biometric recognition; behavior characteristics; gaze identification; recording duration;
metric learning

1. Introduction

Biometrics recognition is a kind of technology that uses human biometrics for identity
recognition. The commonly used biometric features are face, iris, and so on. In contrast to
these static biometrics, eye movement is a behavioral biometric, recorded by eye trackers.
The eye is directly controlled by the brain, and its behavior is the fastest response to
changes in the environment. This makes eye movement data difficult to fake. Therefore,
eye movement recognition is a highly secure identification technology.

We note that as early as 2004, Kasprowski P [1] used only 8-s recordings of eye
movements during training and testing. In their paper, they mentioned that “the main
problem with developing stimulation is to make it short and enriched. Eye movement
recordings should not exceed 10 s”. However, later researchers seemed to have overlooked
this important issue. Jia S. [2], Komogortsev O. V. [3], and Abdelwahab A. [4] used eye
movement recordings of 40 s, 60 s, and 95 s, respectively. Long duration of eye movement
recording can certainly bring more information and make the recognition results more
accurate. However, it also reduces the recognition efficiency, and in some scenarios, users
have low tolerance for recognition time. Such a long consumption is obviously unacceptable
to users.

In order to achieve authentication on shorter eye movement recordings, we summarize
the existing methods. Various studies have been dedicated to improving the performance
of eye movement recognition. According to the extracted eye movement recognition fea-
tures, they can be divided into three categories: frequency domain-based methods [1,5],
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statistical-based methods [6,7], and spatial-based methods [8,9]. The method based on fre-
quency domain is the earliest method applied in the field of eye movement recognition [1].
The basic principle of frequency-domain-based methods is to perform frequency-domain
analysis of eye movement recordings in the horizontal and vertical directions, respectively.
Various types of frequency domain analysis methods are applied in the research, such as
cepstrum, wavelet transform, and so on. A typical frequency-domain based approach was
done by Kasprowski P. et al. [1], who used a Support Vector Machine (SVM) to implement
authentication through the cepstrum. However, this method based on the frequency do-
main has some shortcomings. For example, the frequency domain analysis requires the eye
movement recording to be stable, and the design of the stimulation material is required.
In addition, the high-frequency noise caused by blinking and other noises generated by
devices seriously pollutes the obtained frequency domain information.

Statistical-based methods classify the eye movement recordings into fixation and
saccade. Then, statistical characteristics such as the average number of fixation points,
average fixation time, and average saccade speed are counted [10]. Researchers distinguish
between different identities by the individual information contained in these statistical
characteristics. Daniel L. et al. [6] recorded eye movement data while watching and typing.
They defined the number of fixation points, fixation time, average saccade speed, and
some other statistical features for identification, and use these statistical features to achieve
identification. Statistics-based methods are widely used in eye movement recognition, but
statistical features require a large amount of data to obtain stable distributions. In addition,
statistical features need to accurately classify fixation and saccade, which is greatly affected
by the classification results. Therefore, statistical features have high requirements for
classification algorithms.

The spatial-based method maps the eye movement recordings to a two-dimensional
space by means of density maps and trajectory maps, and can obtain the spatial distribu-
tion information of eye movements. Rigas I. et al. [8] calculated the density map of all
fixation points in each eye movement recording, and averaged the density maps of multiple
fixation points obtained in the same eye movement recording. Finally, they obtained the
recorded feature center. The disadvantage is that due to the huge difference in the spatial
distribution of fixation and saccade, placing fixations and saccade in the same space may
cause the spatial information between fixation and saccade to interfere with each other.
Their overlapping in space also causes some parts of fixation and saccade to be obscured
and cause information loss.

The duration of eye movement recording used in the existing research is too long,
which reduces the recognition efficiency and user experience. In order to determine the
appropriate duration of eye movement recording, this paper analyzes the concentration
changes of the subjects during the recording of eye movement data. We use the deviation
angle of the fixation point relative to the stimulus point on the screen to represent the
subject’s concentration [11] to the stimulus material. Since blink frequency is related to
concentration [12], changes in blink count over time are also taken into account. We observe
that the subjects’ gaze shifted gradually over time. Deviation from the central visual field
at the 5th and 12th seconds, indicates that the subject’s concentration has deviated from
the stimulus point at this time. Therefore, this paper recommends that the duration of eye
movement recordings should be less than 12 s. Based on existing datasets, we construct
datasets with eye movement recordings of 5 s and 12 s.

Take into account that the shortening of the duration of the eye movement recording
means less information. The information in eye movement recordings is still a kind of
visual information in nature, which means it has rich spatial information. Spatiotemporal
information features such as distance change and direction change between gaze points
are extracted. The saccade trajectory in each eye movement record is mapped to a saccade
distribution map, and the spatial distribution characteristics of the saccade are extracted.
We combine these two features to more fully exploit the information contained in the
eye movement recordings. In both open-set authentication and closed-set authentication
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experiments, the features proposed in this paper have obtained better authentication results
on the datasets constructed in this paper.

We propose an authentication method based on eye movement spatiotemporal fea-
tures, in which the eye movement authentication can be implemented based on the data
with much shorter recording duration. The contributions of this paper are as follows:

1. In this paper, the deviation angle of the gaze point relative to the screen stimulus
point is used to represent the user’s concentration to the stimulus during the eye
movement data recording process. By experimenting on a dataset containing only
fixation, we found that the subject’s concentration deviated from the stimulus at 5
and 12 s. Therefore, we recommend that the duration of the eye movement recording
should be less than 12 s. On this basis, we constructed 5 and 12 s eye movement
datasets based on an existing dataset;

2. The spatiotemporal information is extracted, including the distance change and
direction change between the gaze points and the spatial distribution information of
saccade. They are combined as a feature representation of identity. We use metric
learning to authentication task on the basis of the eye movement recording duration
and the constructed dataset proposed in this paper. We finally achieve better results
than other methods.

2. Related Work
2.1. Eye Movement Recording Duration and Concentration

Most of the eye movement researches did not consider the problem that the long dura-
tion of eye movement recording reduces people’s interest. Whether people are interested
in visual material can be judged by whether the visual material is located in the fovea.
When a person looks at an object, an image of the object is projected onto the retina, which
consists of photoreceptor cells that convert light into signals that are then transmitted to the
brain via the optic nerve. The density of such photoreceptor cells on the retina is uneven,
being denser in the center of the retina than in the periphery. This clustering results in
changes in vision, with the most detailed vision obtained when the object of interest falls in
the center of the retina. This area, called the yellow spot or fovea, covers a viewing angle
approximately two degrees in diameter [13,14]. Outside this area, vision declines rapidly.
Eye movements are performed to reorient the eye so that the object of interest falls on the
fovea and the highest level of detail can be extracted. When the eyes fixate on something
for a period of time, this eye state is called fixation. During this time, the brain analyzes the
images projected on the fovea. Therefore, if a person’s gaze area is projected in the fovea
area, it means that the person is interested and has concentrated attention in the gaze area.
Conversely, the person is disinterested and distracted from the gaze area [15–17].

Christoforou et al. [11] and Maffei et al. [12] found that the offset distance of the
subject’s gaze point relative to the stimulus material, which we call distraction distance,
and the number of blinks were positively correlated with the subject’s degree of distraction.
Longer distraction distances or more blinks represent less concentration on the target. We
count distraction distance and the number of blinks on a fixation dataset that does not
include saccades. This dataset is recorded by simply displaying a fixed point on the screen
as a stimulus material to elicit the subject’s fixation behavior. Since the positions of the
human eye and the stimulation material on the screen are fixed, the angle between the
sight line and the line connecting the eyeball to the stimulation material, which we call the
distraction angle, is positively related to the distraction distance. We can use the distraction
angle to represent the degree of distraction. When the distraction angle is greater than
about 1 degree, the position of the stimulation material is located outside the fovea. That
means the person does not pay enough attention to the stimulation material and has lost
interest in the stimulation material. Our experiments show that distraction angle gradually
spreads out over time, with a peak close to 1 degree at 5 s. By quadratic fitting of the
curve of distraction angle versus time, we find that the fitted distraction angle reaches
1 degree at 12 s. Therefore, this paper recommends that the duration of eye movement
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recording should be less than 12 s. Based on existing datasets, we construct a dataset with
eye movement recording durations of 5 s and 12 s.

2.2. Stimulus Material

Stimulus materials are used to elicit eye movement behaviors such as saccades and
fixation. The existing stimulation materials mainly include designed jump dots, random
jump dot, text, video, etc. We count the stimulus materials used in existing work, and
the results are shown in Table 1. The influence of different stimulus materials on eye
movement data can be distinguished in two aspects: First, whether it causes the subjects
to have a problem, called the learning effect [1]. Learning effect means that when the
subject repeatedly watches the same stimulus material, the subject produces memory of
the stimulus material, so that the subject’s interest in it gradually decreases [1]. Second,
whether there is a requirement for the subjects to gaze at the designated area.

Table 1. The stimulus materials used in a previous study.

Stimulus Material Designed Jump Dot Random Jump Dot Text Video Others

Study [1,7,18–23] [23–25] [23–29] [3,8,23,26] [6,9,23]

The designed jump dots display a jump point at a specified location and time. The
user is required to follow the jump dots for gaze. The advantage of designed jump dots
is that they can elicit fixation of a specified duration and saccades of a specified duration
and amplitude [18]. The drawback is that the user has no free will to move the eye in
response to the jump dot. This results in the loss of all information from the brain, resulting
in biometric information loss [19]. In contrast, random jump dots do not elicit fixations
and saccades with the specified duration or amplitude, but can elicit fixations and saccades
with a greater variety of directions and lengths. Since random jump points cannot be
memorized, the learning effect can be better relieved. Text refers to rendering a piece of
text on the screen. Unlike jump dots, the user is not required to view a designated area.
Therefore, users can browse the text content at will without being limited by time and text
space position. This better simulates brain activity during stimulation. However, it has its
own drawbacks, as it can cause a strong learning effect [1]. This problem can be solved
by presenting a different text to the user each time the simulation is performed, but care
should be taken that the different text presented should have the same difficulty level, so
that the number of glances and fixations does not change drastically [19]. As a temporal
sequence, video has a wide range of visual stimuli, which can relieve learning fatigue well.
At the same time, video is the same as text in terms of behavioral constraints, and does not
impose restrictions on the free will of users.

2.3. Eye Movement Features

In 2004, eye movement was proposed as a biological feature [1]. Subsequent studies
have mainly focused on the feature representation of eye movement individual information.
The main methods proposed in this domain mainly include frequency domain-based
methods, statistics-based methods, and spatial-based methods. Statistics on related work
published from 2004 to 2019 can be found in [30].

2.3.1. Frequency Domain-Based Methods

In methods based on frequency domain analysis, eye movement recordings are pro-
cessed from both horizontal and vertical directions [31]. Common frequency domain
analysis methods that can be used for eye movement recording include wavelet trans-
form [22], cepstrum [1], and Mel frequency cepstral coefficients [5,32,33], etc. Since the
eyes are directly controlled by the brain, they are the fastest response to environmen-
tal changes [1]. When eye behavior is not constrained, the speed and direction of eye
movement are not fixed. The eye movement recordings thus obtained are time-varying
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signals and do not have stationarity. In order to perform frequency domain analysis on eye
movement recordings, scholars presented stimulus points [1,5,22] on the screen in a fixed
sequence, and asked subjects to fixate on these stimulus points to induce a fixed pattern of
eye movement behavior. By this way, the eye movement recordings are generally stabilized.
At the same time, because the human eye inevitably blinks and has other behaviors, the
eye movement recording is prone to extraneous noise. These extraneous noises usually
appear in the spectrum in the form of high-frequency noise, which are easily confused with
saccades and cause serious information pollution in the frequency domain [24].

2.3.2. Statistical-Based Methods

Because the frequency domain analysis has problems such as signal stability require-
ments and sensitivity to extraneous noise. Statistics-based methods [6,24,34] have gradu-
ally become the main eye movement recognition methods. Since it is difficult to compare
between raw eye movement recordings [1], statistics-based methods use classification meth-
ods to classify eye movement recordings into eye movement behaviors such as fixation and
saccade [10,18]. The basic principle of the eye movement behavior classification algorithm
is that the speed of fixation and saccade has a immense difference. In addition, there were
differences in the duration of fixation and saccades. Therefore, fixation and saccade can be
screened by setting the speed threshold and the duration of the eye movement recording
segment. The classification process can filter extraneous noise caused by blinks and errors
inherent in the eye tracker system.

After the fixation and saccade clips are obtained, some artificially designed statistical
indicators are extracted from them. These metrics are used to express statistical differences
in eye movement behaviors among different populations. For example: average duration of
fixation, average duration of saccades, average number of fixations in a saccade, etc. [6,24,34].
These indicators can play different roles in eye movement recognition, so they are usually
given different weights for feature selection [7,35]. In the study of Rigas et al. [36], thousands
of statistical indicators were proposed. Statistical features can be used for any eye movement
data and have broad application prospects. However, these statistical features require a large
amount of data to obtain stable distributions. In addition, artificially designed features can
cause some information to be lost.

2.3.3. Spatial-Based Methods

Some researchers have attempted to extract spatial information from eye movement
data. Rigas I. et al. [8] asked 200 subjects aged 18–44 to watch 2 videos twice, each
with 4 eye movement recordings. The density maps of all fixation points in the eye
movement recordings in each two-dimensional space were calculated, and the multiple
density maps obtained from the same segment of eye movement recordings were averaged
to finally obtain the feature centers of the recordings. Li Chunyong et al. [9] obtained eye
movement recordings in a visual search task, using images to restore the path of recording
eye movements in space. Texture features are extracted from eye-tracking trajectories using
multi-channel Gabor Wavelet Transform (GWT). A SVM classifier was used for biometric
identification and verification. Then, this feature is improved in [37] by downsampling the
filtered image to preserve the spatial structure. However, these features compressed the eye-
tracking data in the temporal dimension, reducing the temporal information contained in
the data. They also ignored the problem of spatial information loss caused by overlapping
saccades and gazes in space.

Recently, some researchers have introduced neural network [2] and metric learning [4,38]
into the field of eye movement recognition, and obtained good results. The features proposed
in this paper combine temporal information with more complete spatial information. By
combining it with metric learning, individual information contained in eye movement data
can be better utilized for recognition.
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3. Eye Movement Recording Duration

Eye movement recognition is a way of identifying behavioral characteristics as bio-
metrics. Behavioral data is a kind of data that has a time span. The duration of a single eye
movement recording affects its amount of information. Therefore, it has a direct impact
on the recognition result. However, the existing methods do not unify the duration of eye
movement recordings. We count the duration of eye movement recordings used by some
previous eye movement recognition methods and the results are shown in Table 2.

Table 2. Duration of eye movement recordings for training and testing in a previous study.

Study [1] [39] [7] [2] [40] [3,9,24–26,29,34,39]

Duration (s) 8 15 21 30 40 60 and more

We find that most of the previous works used eye movement recordings with a dura-
tion of more than 60 s. This obviously reduces the efficiency of recognition and challenges
the patience of users. In order to analyze the changes of people’s concentration and interest
over time in the process of recording eye movement data, we perform experiments on a
dataset recorded with a fixed point as the stimulus to determine a proper eye movement
recording duration.

We denote the distraction distance (the distance between the gaze point and the
stimulus point) [11] as D and denote the number of blinks as P to measure the change of
the subject’s attention during the process of gaze data collection. The number of blinks
is stored as NaN in the data. It has been shown that an increase in the number of blinks
represents a decrease in attention [12]. We split every recording to m time periods. For
every eye movement recordings in the time period m, we use Equation (1) to calculate
the distraction distance D, and use Equation (2) to calculate the number of blinks P. We
calculate the distraction angle γ by the average distance of each distraction distance in the
time period m as described in Equation (3). Then we observe the trend of γ and P over time,
and compare γ with the human central visual angle [13,14] to determine a reasonable eye
movement recording duration. The eye movement recording process is shown in Figure 1.
The experiments and results will be introduced in Section 5.

D =
∑n

j=0 |d(xj, yj)− T|
n

, (1)

P =
∑n

j=0 p

n
, (2)

γ =
arctan(D · h/(hpix · l))× 180

π
, (3)

where n refers to the number of gaze points in the time period m, d refers to a gaze point in
m and T is the stimulus point, l refers to the distance between the subject’s head and the
screen, h is the actual height of the screen, and hpix refers to the pixel resolution height of
the screen.

We show an example of eye movement recording in Figure 2. Gaze points in different
time periods are marked with different colors. We draw the circumscribed circle of all gaze
points in each time period to represent the dispersion of fixation points, and draw the line
between the center of the circle and the stimulus point to represent the distance between
the gaze point and the stimulus point. It shows that as time progresses, the gaze points
gradually deviate from the stimulus point and become more dispersed.
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Figure 1. Optical geometry for gaze recording.

Figure 2. Example of an eye movement recording split into seven segments by time.

4. Our Methods
4.1. Data Pre-Processing

Eye movement recordings can be split into gazes and saccades through an eye move-
ment classification algorithm. These classification algorithms can be divided into velocity-
based, dispersion-based, and region-based methods [41]. There are two kinds of velocities
during eye movements, which are low velocity (<100 degrees/s) for fixation and high
velocity (>300 degrees/s) for saccades. It makes the eye movement classification based on
velocity simple and robust. That is why we use the velocity thresholding algorithm [3] to
classify the eye movement.
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The eye movement data used in this paper includes gaze angles in the x and y direc-
tions, and these data are recorded at a sampling rate of 1000 Hz. Since the method proposed
in this paper mainly uses the spatial information of the eye movement data, these data
needs to be converted into the form of screen coordinates in the preprocessing stage. We
use the method as described in Equations (4) and (5) to get the screen coordinates:

xscreen = (
l ∗ wpix

w
)tan(θx) +

wpix

2
, (4)

yscreen = (
l ∗ hpix

h
)tan(θy) +

hpix

2
, (5)

where, l refers to the distance between the subject’s head and the screen, w and h are the
actual width and height of the screen, respectively, and wpix and hpix refer to the pixel
resolution width and height of the screen, respectively. θx and θy refers to the line of sight
angle stored in the original data.

4.2. Motion Information

The gaze consists of eye movements, which is a kind of behavior. The motion informa-
tion (MI) of gaze covers the temporal and spatial features extracted from the trajectory of
eye movement. Hence, the MI is used as the feature to represent the gaze.

We set a vector b, whose starting and ending points are the coordinates of two gaze
points that are adjacent in time. We use b to model the spatial changes of adjacent fixation
points. As we all know, a vector can be determined by only two factors: the vector
length and the vector direction. Therefore, the spatial change of the gaze points in the
eye movement recording can be represented by the length and the direction of b. We
respectively calculate the distance between adjacent gaze points and the change of direction
to extract the spacial motion information. Suppose that two adjacent fixation points are
represented by Pi−1 = (xi−1, yi−1) and Pi = (xi, yi), where Pi−1 represents the forward
fixation point, and Pi represents the latter fixation point. The calculation method of the
change distance between Pi−1 and Pi is described as Equation (6).

L =
√
(xi − xi−1)2 + (yi − yi−1)2, (6)

Let the vector a = (0, 1) be the reference vector. Calculate the vector b = (xi −
xi−1, yi − yi−1) with Pi−1 as the starting point and Pi as the ending point. We denote the
angle that the vector a rotates clockwise until it coincides with the vector b as θ to indicate
the direction change of the gaze points. Suppose that one eye movement recording has
n gaze points. θ is calculated from each pair of adjacent gaze points in an eye movement
recording to get a 1× (n− 1) sequence, as described in Equation (7).

θ =


arccos(

α · β
|α||β| ), i f x1 − x0 ≥ 0,

2π − arccos(
α · β
|α||β| ), i f x1 − x0 < 0,

(7)

The geometric representation of the gaze point motion information is shown in Figure 3.
We fuse the distance motion feature and the direction motion feature to get a 2× (n− 1)
feature and normalize it with the z-score. This feature serves as a representation of the
change of the spatial information of gaze points.
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(a) (b)

Figure 3. (a) Motion information from gaze points A to B. (b) Saccade distribution map.

4.3. Saccade Distribution Map

In a data recording process, the subjects watch the materials on the screen by alter-
nately making fixations and saccades, because the spatial information contained in fixation
trajectory is not obvious, and the trajectory generated by each body during saccade has
obvious individual information in space. In addition, the fixation trajectory may overlap
the saccade trajectory in space, causing information loss. Therefore, we choose to map each
saccade to a feature image, which we call the saccade distribution map (SDM).

Suppose the saccade trajectory is a two-dimensional spatial coordinate sequence
Ti = {(x1, y1), (x2, y2), · · · , (xn, yn)}. We calculate the maximum horizontal and vertical
distance, which corresponds to the maximum width and maximum height of the saccade
trajectory in space. The sequences whose maximum width or maximum height are too
short are then discarded. Then, each saccade coordinate point is mapped to a 1680× 1050
image and all the images are scaled to a size of 128× 128. These images represent the spatial
distribution of the corresponding saccade trajectory. Before entering these feature maps
to our network, they are divided by their own pixel sum separately to get the probability
images. The process to get a SDM is shown in Figure 3.

4.4. Architecture

We design a network to realize feature extraction and classification. Two branch
networks are designed to perform further feature extraction on MI and SDM, respectively.
All pipelines are shown in Figure 4. Since saccades and fixations are not related to the
position in eye movement recordings, convolutional neural network (CNN) is a good
network for feature extraction. The branch network that processes SDM contains four
2D-CNNs, and each 2D-CNN has 64 filters, a kernel size of (5,5), and a dilation of 1. The
purpose of using dilated convolutions is to expand the perceptive view of each filter. The
branch network that processes MI contains 4 1D-CNNs, and each 1D-CNN has 64 filters, a
kernel size of 7, and a dilation of 7. Each convolutional layer used the batch normalization
followed by the ReLU activation function. Then, the outputs of the two branch networks
are spliced and input into two fully connected layers. The fully connected layers are used
for feature fusion and classification. The result obtained by the fully connected layer is
flattened into a one-dimensional array, and L2 normalization is performed on it, and finally
a 128-dimensional embedding feature is obtained.
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Figure 4. Our architecture for eye movement features extraction.

5. Experiments
5.1. Platform

The operating system is Ubuntu 16.04. The hardware platform is Intel Core CPU
i7-7700K 4.2GHz and 16 GB DDR4-2133 RAM. The Graphic Processing Unit is GeForce RTX
2080Ti 11 GB.

5.2. Datasets

The dataset used in this paper is a part of GazeBase v2.0 [23] recorded by Henry
Griffith and Oleg Komogortsev et al. GazeBase v2.0, and contains 12,334 monocular eye
movement recordings collected from 322 college-age participants. It has a total of nine
rounds of data at different times. During each round of recording, participants finish a
set of seven tasks in two consecutive sessions, including (1) gaze task (FXS), (2) horizontal
saccade task (HSS), (3) random squinting task (RAN), (4) reading task (TEX), (5/6) free
watching movie and video task (VD), and (7) gaze-driven game task (BLG). In the same
round, each task can collect two eye movement recordings from each participant. The
recording process lasted 37 months, and participants in each round were recruited from the
previous round. The eye movement data is recorded using the EyeLink 1000 eye tracker at
a sampling rate of 1000 Hz, including data such as the coordinates of the eye movement
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and pupil size. The distribution of the number of participants in GazeBase v2.0 in each
round is shown in Table 3.

Table 3. The number of subjects of each round in Gazebase v2.0.

Round 1 2 3 4 5 6 7 8 9

Number of Subjects 322 136 105 101 78 59 35 31 14

5.3. A Proper Eye Movement Recording Duration

In GazeBaseV2.0, a sub-dataset FXS recorded fixation recordings from 322 subjects
by presenting stimulus points at a fixed position on the screen. The duration of these
recordings is about 15 s. Since the subjects need a certain amount of time to notice the
stimulus at the beginning of each recording, we removed the first second data of each
recording and only used the last 14 s for our experiment.

We split all recordings into non-overlapping segments of 0.5 s, so that each recording
could get 28 segments. The method described in Section 3 is performed to calculate the
mean value of γ and P and curve fitting is performed on it. The results are shown in
Figure 5. The two indicators, the distraction angle γ and the number of blinks P of the user
in the data recording process, increased over time. According to the research in [11], this
shows that the subject’s concentration when looking at a fixed position decreases with time
and becomes less and less concentrated.

Figure 5. The average distance from the fixation point to the target point over time and the average
number of blinks per recording.

At the 5th second, the distraction angle γ has a peak value close to 1◦. When the time
reaches the 12th second, the fitted curve indicates that γ is about 1◦. The radius of the
viewing angle range corresponding to the fovea is about 1◦ [13,14]. This means that over
time, the position of the target point will gradually deviate from the visual range of the
fovea, which means that the subject’s concentration to the stimulus point will gradually
deviate from the visual range of the central fovea. Therefore, we recommend that the
duration of the eye movement recordings is no longer than 12 s. This paper chooses 5 s and
12 s as the eye movement recording duration for our experiment.

5.4. Authentication Results

The closed-set authentication means that each one in the test set have to be identified
as one in the training dataset no matter what the match rate is, while in the open-set
authentication, the one with the lower match rate than the predefined threshold will not
be identified as any one in the training dataset. These are the two kinds of strategies in
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the field of authentication. Hence, in this section, we demonstrate our proposed method
through the open-set and closed-set authentication experiments.

5.4.1. Open-Set Authentication

According to whether the target identity is identified in the training dataset, the
identity recognition task can be divided into two categories: closed-set recognition and
open-set recognition. Closed-set recognition means that all people in testing must appear
in training. Open-set recognition means that people in testing will not appear in training.

This paper focuses on open-set authentication task. In GazeBase v2.0, the number
of subjects in each round of the first 9 rounds of testing is different, which means that
the amount of data of the subjects is different. In order to eliminate the impact of the
inconsistency of the amount of data between the experimental subjects, and to make each
subject have enough data, we select 31 participants who joined in the first 8 rounds for
test. For the training set and validation set, we use the method in [39] to perform 10-fold
cross-validation on the other 291 subjects. In order to make the number of objects in per
fold the same, we pick the first 290 subjects out from the 291 subjects. In addition, the
9th round of data is discarded in the training data. This way, for GazeBase v2.0, a total of
496 eye movement recordings are used for testing, and 1228 eye movement gaze recordings
are used for the training and validation sets.

We use three sub-dataset, HSS, RAN, and TEX, in GazeBase v2.0 to reconstruct the
new datasets. In accordance with the eye movement recording duration recommended in
Section 5.3, we split each recording into sub-sequences of 5 s to form new datasets, HSS5,
RAN5, and TEX5, and 12 s to form new datasets HSS12, RAN12, and TEX12. Due to the
recording duration in TEX being 60 s, which is shorter than 100 s in HSS and RAN, we
only take the first 60 s of data to use in our experiment. Therefore, for HSS12, RAN12,
and TEX12, each reconstructed sub-dataset contains 6190 training recordings and 2480
test recordings. For HSS5, RAN5, and TEX5, each reconstructed sub-dataset contains
14,856 training recordings and 5952 test recordings.

In our training stage, the learning rate of our model is set to 1× 10−4, the max epoch
is 100,000, the optimizer is AdamW, and the weight decay is set to 1 × 10−4. We use
MultiSimilarity Loss to measure the difference between the positive category and the
negative category. The parameters of MultiSimilarity Loss are set to default. At each
training step, we randomly sampled 8 subjects and 4 trajectory from each subject.

In the testing stage, we use cosine similarity to measure the similarity between two
embeddings, and set a threshold to indicate whether the two samples belong to the same
subject. We use Equal Error Rate (EER) and Receiver Operating Characteristic (ROC) curve
to measure the effectiveness of the authentication model. Take dataset HSS12 as an example,
we paired samples of the same subject to form genuine pairs and we got 97,960 genuine
pairs. We pair the first half of the samples of each subject with the back half samples of other
subjects to form the imposter pairs, and a total of 1,488,000 imposter pairs are obtained.
Genuine pairs account for 6.17% of all pairs. The ratio of genuine pairs to imposter pairs
is about 15:1. The results of our method are shown in Tables 4 and 5. The best results are
marked in bold. The ROC curve is shown in Figure 6. The dott line represents the EER.

Table 4. The results of open-set authentication when the recordings last 12 s.

Methods HSS12 RAN12 TEX12

Baseline [39] 13.61% 17.06% 16.07%
Ours (Only MI) 10.62% 14.73% 14.49%
Ours (SDM+MI) 12.62% 12.90% 17.18%
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Table 5. The results of open-set authentication when the recordings last 5 s.

Methods HSS5 RAN5 TEX5

Baseline [39] 14.98% 20.17% 18.89%
Ours (Only MI) 12.48% 18.22% 16.41%
Ours (SDM+MI) 13.98% 17.29% 17.45%

Figure 6. The ROC curve of our open-set authentication results when recordings last 12 s.

In Table 4, the baseline method of [39] originally used an about 100 s eye movement
recording as a single identity representation. Its EER was greatly reduced to 13.61% on HSS12,
17.06% on RAN12 and 16.07% on TEX12, which contain 12 s recordings reconstructed in this
paper. Since the baseline method only used velocity data to extract features, it lost part of the
information. Compared with the features of the baseline methods, the features proposed in
this paper contain richer effective information, so we can get better authentication results.
The EER of the method proposed in this paper reaches 10.62% on HSS12, 12.90% on RAN12,
and 14.49% on TEX12. The reason why the result of Ours (SDM+MI) is worse on HSS than
Ours (Only MI), but better on RAN is that the saccades on HSS overlap each other spatially.
However, there is no overlap on RAN and RAN has more saccades direction. In TEX12, the
effect of Ours (MI) is increased to 14.49% compared to the baseline, but the effect of Ours
(SDM+MI) is even worse. This is because the position of the text stimulus materials on the
screen is constantly changing when recording the eye movement data in TEX, resulting in a
large difference in the location of the gaze point between different time periods. SDM refers
to the spatial distribution of saccade trajectories in eye movement recordings, represented
by a probability density map. SDM is suitable for eye movement data with stable location
distribution of stimulus material and scattered saccade distribution with little overlap.

We also experimented with the baseline method and the effect of our proposed method
when the eye movement recording duration is only 5 s. The results are shown in Figure 7.
The EER of baseline method is 14.98% on the 5-s dataset HSS5, 20.17% on RAN5, and
18.89% on TEX5, which we reconstructed. The EER of the method proposed in this paper
reaches 12.48% on HSS5, 17.29% on RAN5, and 16.41% on TEX5. The average EER decrease
of our method compared to the baseline is about 17.71%. The experimental results of all
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methods have different degrees of decline and the recognition effect on the HSS has the
smallest decline. The experimental results of our method show that on HSS5, the EER can
still reach 12.48% at the best, which is still less than the baseline result 13.61% on HSS12.

Figure 7. The EER of some dynamic biometrics with shorter recording.

We also compare the identification effects of eye movement features and other dynamic
biological features when the data time duration is short, as shown in Figure 7. In 2020,
the EER of the gait recognition method proposed by Alobaidi et al. using 5–10 s of gait
data for authentication is preferably 11.32%. The speaker recognition method proposed
by Al-Karawi et al. has an EER of 10.8% when using voice data with a duration of only
4 s for authentication. The method proposed in this paper achieves 12.48% and 10.62%
EER when using eye movement recordings with a duration of 5 s and 12 s, respectively.
The identification effect is similar to that of other dynamic biometrics, indicating that eye
movement recognition has certain usability.

5.4.2. Closed-Set Authentication

The effect of our method on closed-set authentication is also investigated. We use
the test datasets from the open-set authentication as our closed-set datasets. These test
datasets, which have 31 subjects data of three sub-dataset HSS, RAN, and TEX in GazeBase
v2.0, are used to reconstruct our closed-set authentication datasets. In accordance with the
eye movement recording duration recommended in Section 5.3, we use the test dataset to
form new datasets HSS5-C, RAN5-C ,and TEX5-C and 12 s to form new datasets HSS12-C,
RAN12-C, and TEX12-C. Each subject has 16 eye movement data in each task, so a total
of 496 eye movement tracks are used for training, validation, and testing. Since the 8-
round collection process of the GazeBase v2.0 dataset is from the 1st round of collection
on 13 September 2013 to the 8th round of collection on 16 May 2015, it has a large time
span. In order to test the time invariance of eye movement features and make the time
results better in line with the setting that the training data time is earlier than the validation
data time in real applications, we initially selected the first 4 rounds of data from 31 test
subjects as the training data. and the 5th and the 6th round as validation data, and the last
2 rounds as test data. In the experiments in Section 5.3, we suggest that eye movement data
with a duration of less than 12 s is used as the representation of a single identity, which
can improve the efficiency of recognition and improve the user experience. Therefore, for
HSS12-C, RAN12-C, and TEX12-C, each reconstructed sub-dataset contains 1860 training
recordings and 620 test recordings. For HSS5-C, RAN5-C, and TEX5-C, each reconstructed
sub-dataset contains 4464 training recordings and 1488 test recordings. We will experiment
with our closed-set authentication method on these six new datasets.



Sensors 2022, 22, 3002 15 of 18

In the training stage, our closed-set authentication method is implemented by training
a classifier. The output of the classifier is the ID of users. The learning rate of our model is
set to 1× 10−3, the max epoch is 20,000, the optimizer is Adam, and the weight decay is set
to 1× 10−4. We use Arcface Loss [42] as the loss function. The parameters of Arcface Loss
is default. In the testing stage, we use cosine distance to measure the similarity between
the embeddings output by the last fully connected layer. We also use EER and ROC curve
to measure the effectiveness of the authentication model. Take dataset HSS12-C as an
example, where we paired samples of the same subject to form genuine pairs and we got
5890 genuine pairs. We pair the first half of the samples of each subject with the back
half samples of other subjects to form the imposter pairs, and a total of 96,100 imposter
pairs are obtained. Genuine pairs account for 5.75% of all pairs. The ratio of genuine pairs
to imposter pairs is about 16:1. The results of our method are shown in Tables 6 and 7.
The best results are marked in bold. The ROC curve is shown in Figure 8. The dott line
represents the EER.

Table 6. The results of closed-set authentication when the recordings last 12 s.

Methods HSS12-C RAN12-C TEX12-C

Baseline [24] 12.44% 14.41% 14.93%
Ours (Only MI) 5.25% 6.79% 7.33%
Ours (SDM+MI) 5.88% 6.30% 7.51%

Table 7. The results of closed-set authentication when the recordings last 5 s.

Methods HSS5-C RAN5-C TEX5-C

Baseline [24] 16.23% 17.76% 20.87%
Ours (Only MI) 7.82% 8.97% 9.93%
Ours (SDM+MI) 8.06% 8.21% 10.11%

Figure 8. The ROC curve of our closed-set authentication results when the recordings last 12 s.

In Table 6, the baseline method of [24] originally used about 60 s of eye movement
recording as a single identity representation. In closed-set authentication task, its EER
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is 12.44% on HSS12-C, 14.41% on RAN12-C, and 14.93% on TEX12-C, which contain
12 s recordings reconstructed in this paper. The EER of the method proposed in this
paper reaches 5.25% on HSS12-C, 6.30% on RAN12-C, and 7.33% on TEX12-C. We also
experimented the closed-set authentication with the baseline method and the effect of our
proposed method when the eye movement recording duration is only 5 s. The experimental
results are shown in Table 7. The EER of baseline method is 16.23% on the 5-second dataset
HSS5-C, 17.76% on RAN5-C, and 20.87% on TEX5-C, which we reconstructed. The EER of
the method proposed in this paper reaches 7.82% on HSS5-C, 8.21% on RAN5-C, and 9.93%
on TEX5-C. The average EER decrease of our method compared to baseline is about 53.83%.
The experimental results of our method show that on HSS5-C, the EER can still reach 7.82%
at the best, which is still less than the baseline result 12.44% on HSS12-C. Notice that the
result of Ours (SDM+MI) is still worse on HSS than Ours (Only MI), but better on RAN.
This indicates that the data from HSS cause noises to SDM. In TEX12-C, the effect of Ours
(MI) is increased to 7.33% compared to the baseline, but the effect of Ours (SDM+MI) is still
worse. Due to the position of texts shown on the screen changing constantly, this indicates
that the gaze position can influence the information included in the saccade distribution.
Therefore, we can conclude that MI is useful for these three materials and SDM is only
useful for RAN.

6. Conclusions

This paper proposes a feature to effectively express spatial information in eye move-
ment data. The distance and direction changes between fixation points and the spatial
distribution of saccades were combined as valid information in eye movement recordings.
Meanwhile, this paper proposes a network for metric learning of this feature. Identity
authentication is finally achieved.

In this paper, we conduct some exploratory studies on the length of recorded data used
for identification. This paper presents a method to evaluate the duration of eye movement
recordings for eye movement recognition. Changes in human attention were measured by
whether the stimulus material was in the foveal field of vision. After the experiment, it
was found that at the 5th and 12th seconds, the subject’s attention to the stimulus point
deviates from the visual range of the fovea. Therefore, this paper recommends that the
duration of eye movement recordings should not exceed 12 s. Appropriate eye movement
recording duration can improve the efficiency of eye movement recognition and improve
user experience. Based on the existing datasets, this paper reconstructs datasets with eye
movement recording durations of 5 s and 12 s. The authentication method proposed in this
paper achieves better results on multiple datasets constructed in this paper.

Our experimental results show that the MI proposed in this paper can achieve better
results on all datasets. Our proposed SDM achieves better results only on the RAN dataset.
This indicates that the distribution information of saccades is only applicable to the authen-
tication data generated by the specific stimulus material. Considering that the research
on the spatial distribution information of eye movement has not been deeply explored, it
will be a valuable research direction for which kind of data is effective for eye movement
distribution information.
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