A Principal Neighborhood Aggregation-Based Graph Convolutional Network for Pneumonia Detection
Abstract
:1. Introduction
- To the best of our knowledge, we made the first attempt to use the graph convolutional network approach for pneumonia detection.
- We propose PNA-GCN, an efficient principal neighborhood aggregation-based graph convolutional network framework for pneumonia detection. In PNA-GCN, we propose a new graph-based feature construction utilizing the transfer learning technique to extract features and construct the graph from images. Then, we propose a principal neighborhood aggregation-based graph convolutional network, in which we integrate multiple aggregation functions in a single layer with degree-scalers to enable each node to gain a better understanding of the distribution of messages it receives.
- The performance of the proposed method is evaluated on the publicly available chest X-ray datasets. The accuracy, precision, recall, and F1 score have been utilized to evaluate the effectiveness of the proposed method compared to existing work in the literature.
2. Related Work
3. Materials and Methods
3.1. Data Augmentation and Preprocessing
3.2. Feature Extraction
- In network transferring step, we first load a pre-trained convolution neural networks, which has been trained on the ImageNet dataset. Then, we remove the softmax and classification layers. After that, we add new layers, including a dropout layer and fully-connected layers with 256 and 2 channels (FC2 and FC256 in Figure 4). Using predefined parameters, we train the new networks on the training set of pneumonia dataset and save the networks and parameters.
- In feature extraction step, we first load the trained networks in the first step. Then, the target dataset is used as input to the network for feature extraction. We extract the features generated by the fully-connected layer (FC256 in Figure 4).
3.3. Graph Construction
- Calculate the distances between each feature and the other features in the batch. Then, the distance matrix is computed.
- Sort Each row of the distance matrix in a ascending order.
- Generate the corresponding index matrix , in which the nearest k features are recorded in the batch .
- Set the value of at the position to 1 if the features and are nearest to each other based on the distance matrix.
3.4. Principal Neighborhood Aggregation-Based Graph Convolutional Network
3.4.1. Graph Convolutional Networks
3.4.2. Principal Neighborhood Aggregation
4. Experiments
4.1. Dataset
4.2. Experimental Settings and Evaluation Criteria
Evaluation Criteria
- The accuracy metric is the ratio of the number correctly predicted images to the total number of images examined.
- The precision metric is the ratio of the number correctly predicted pneumonia images to the sum of the number correctly predicted pneumonia images and the number of normal images incorrectly identified as pneumonia images.
- The recall metric is the ratio of the number of correctly predicted pneumonia images to the sum of the number correctly predicted pneumonia images and the number of pneumonia images incorrectly identified as normal.
- F1 score is the weighted harmonic mean of recall and precision.
4.3. Results and Discussion
4.4. Ablation Study
4.4.1. Input Size
4.4.2. The Influence of Batch Size N
4.4.3. Effectiveness of the Multi-Head Attention
4.5. Influence of the Number of Aggregators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PNA | principal neighborhood aggregation |
GCN | graph convolutional network |
GRUs | gated recurrent units |
GNNs | graph neural network |
CNN | convolutional neural network |
WHO | world health organization |
References
- Varshni, D.; Thakral, K.; Agarwal, L.; Nijhawan, R.; Mittal, A. Pneumonia Detection Using CNN based Feature Extraction. In Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22 February 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Sharma, A.; Raju, D.; Ranjan, S. Detection of pneumonia clouds in chest X-ray using image processing approach. In Proceedings of the 2017 Nirma University International Conference on Engineering (NUiCONE), Ahmedabad, India, 23–25 November 2017; pp. 1–4. [Google Scholar]
- de Melo, G.; Macedo, S.O.; Vieira, S.L.; Oliveira, L.L. Classification of images and enhancement of performance using parallel algorithm to detection of pneumonia. In Proceedings of the 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), Concepción, Chile, 17–19 October 2018; pp. 1–5. [Google Scholar]
- Chaudhary, P.K.; Pachori, R.B. Automatic diagnosis of COVID-19 and pneumonia using FBD method. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2020), Seoul, Korea, 16–19 December 2020; pp. 2257–2263. [Google Scholar] [CrossRef]
- Edwards, M.; Xie, X. Graph based convolutional neural network. arXiv 2016, arXiv:1609.08965. [Google Scholar]
- Ma, T.; Wang, H.; Zhang, L.; Tian, Y.; Al-Nabhan, N. Graph classification based on structural features of significant nodes and spatial convolutional neural networks. Neurocomputing 2021, 423, 639–650. [Google Scholar] [CrossRef]
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale Dynamic Graph Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 3162–3177. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Wei, Z. Remote sensing image classification based on a cross-attention mechanism and graph convolution. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Razzak, M.I.; Naz, S.; Zaib, A. Deep Learning for Medical Image Processing: Overview, Challenges and Future. arXiv 2017, arXiv:1704.06825. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Stephen, O.; Sain, M.; Maduh, U.J.; Jeong, D.U. An efficient deep learning approach to pneumonia classification in healthcare. J. Healthc. Eng. 2019, 2019, 4180949. [Google Scholar] [CrossRef] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the Fourth International Conference on 3D Vision (3DV 2016), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar] [CrossRef] [Green Version]
- Grewal, M.; Srivastava, M.M.; Kumar, P.; Varadarajan, S. RADnet: Radiologist level accuracy using deep learning for hemorrhage detection in CT scans. In Proceedings of the 15th IEEE International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 281–284. [Google Scholar] [CrossRef] [Green Version]
- Voets, M.; Møllersen, K.; Bongo, L.A. Replication study: Development and validation of deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. arXiv 2018, arXiv:1803.04337. [Google Scholar]
- Bar, Y.; Diamant, I.; Wolf, L.; Lieberman, S.; Konen, E.; Greenspan, H. Chest pathology detection using deep learning with non-medical training. In Proceedings of the 12th IEEE International Symposium on Biomedical Imaging (ISBI 2015), Brooklyn, NY, USA, 16–19 April 2015; pp. 294–297. [Google Scholar] [CrossRef] [Green Version]
- Avni, U.; Greenspan, H.; Konen, E.; Sharon, M.; Goldberger, J. X-ray Categorization and Retrieval on the Organ and Pathology Level, Using Patch-Based Visual Words. IEEE Trans. Med. Imaging 2011, 30, 733–746. [Google Scholar] [CrossRef]
- Melendez, J.; van Ginneken, B.; Maduskar, P.; Philipsen, R.H.H.M.; Reither, K.; Breuninger, M.; Adetifa, I.M.O.; Maane, R.; Ayles, H.; Sánchez, C.I. A Novel Multiple-Instance Learning-Based Approach to Computer-Aided Detection of Tuberculosis on Chest X-Rays. IEEE Trans. Med. Imaging 2015, 34, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, S.; Karargyris, A.; Candemir, S.; Folio, L.R.; Siegelman, J.; Callaghan, F.M.; Xue, Z.; Palaniappan, K.; Singh, R.K.; Antani, S.K.; et al. Automatic Tuberculosis Screening Using Chest Radiographs. IEEE Trans. Med. Imaging 2014, 33, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Hermann, S. Evaluation of Scan-Line Optimization for 3D Medical Image Registration. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), Columbus, OH, USA, 23–28 June 2014; pp. 3073–3080. [Google Scholar] [CrossRef]
- Nasrullah, N.; Sang, J.; Alam, M.S.; Mateen, M.; Cai, B.; Hu, H. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies. Sensors 2019, 19, 3722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, L.; Poblenz, E.; Dagunts, D.; Covington, B.; Bernard, D.; Lyman, K. Learning to diagnose from scratch by exploiting dependencies among labels. arXiv 2017, arXiv:1710.10501. [Google Scholar]
- Khatri, A.; Jain, R.; Vashista, H.; Mittal, N.; Ranjan, P.; Janardhanan, R. Pneumonia identification in chest X-ray images using EMD. In Trends in Communication, Cloud, and Big Data; Springer: Singapore, 2020; pp. 87–98. [Google Scholar]
- Abiyev, R.H.; Ma’aitah, M.K.S. Deep convolutional neural networks for chest diseases detection. J. Healthc. Eng. 2018, 2018, 4168538. [Google Scholar] [CrossRef] [Green Version]
- Rajaraman, S.; Candemir, S.; Kim, I.; Thoma, G.; Antani, S. Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs. Appl. Sci. 2018, 8, 1715. [Google Scholar] [CrossRef] [Green Version]
- Sirazitdinov, I.; Kholiavchenko, M.; Mustafaev, T.; Yixuan, Y.; Kuleev, R.; Ibragimov, B. Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Comput. Electr. Eng. 2019, 78, 388–399. [Google Scholar] [CrossRef]
- Abbas, A.; Abdelsamea, M.M. Learning transformations for automated classification of manifestation of tuberculosis using convolutional neural network. In Proceedings of the 2018 13th International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 18–19 December 2018; pp. 122–126. [Google Scholar]
- Rajpurkar, P.; Irvin, J.; Ball, R.L.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.P.; et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018, 15, e1002686. [Google Scholar] [CrossRef]
- Ho, T.K.K.; Gwak, J. Multiple feature integration for classification of thoracic disease in chest radiography. Appl. Sci. 2019, 9, 4130. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, A.A.; Santos, D.; Costa, N.J.C.; Sousa, J.V.M.; Ferreira, N.M.F.; Valente, A.; Soares, S. Models of Learning to Classify X-ray Images for the Detection of Pneumonia using Neural Networks. Bioimaging 2019, 76–83. [Google Scholar] [CrossRef]
- Ayan, E.; Ünver, H.M. Diagnosis of pneumonia from chest X-ray images using deep learning. In Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 24–26 April 2019; pp. 1–5. [Google Scholar]
- Rahman, T.; Chowdhury, M.E.; Khandakar, A.; Islam, K.R.; Islam, K.F.; Mahbub, Z.B.; Kadir, M.A.; Kashem, S. Transfer learning with deep convolutional neural network (CNN) for pneumonia detection using chest X-ray. Appl. Sci. 2020, 10, 3233. [Google Scholar] [CrossRef]
- Xiao, Z.; Du, N.; Geng, L.; Zhang, F.; Wu, J.; Liu, Y. Multi-scale heterogeneous 3D CNN for false-positive reduction in pulmonary nodule detection, based on chest CT images. Appl. Sci. 2019, 9, 3261. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Wu, H.; Bie, R. CXNet-m1: Anomaly detection on chest X-rays with image-based deep learning. IEEE Access 2018, 7, 4466–4477. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Tiwari, P.; Kumar, S.; Gupta, D.; Khanna, A.; Rodrigues, J.J. Identifying pneumonia in chest X-rays: A deep learning approach. Measurement 2019, 145, 511–518. [Google Scholar] [CrossRef]
- Jung, H.; Kim, B.; Lee, I.; Lee, J.; Kang, J. Classification of lung nodules in CT scans using three-dimensional deep convolutional neural networks with a checkpoint ensemble method. BMC Med. Imaging 2018, 18, 48. [Google Scholar] [CrossRef]
- Chouhan, V.; Singh, S.K.; Khamparia, A.; Gupta, D.; Tiwari, P.; Moreira, C.; Damaševičius, R.; De Albuquerque, V.H.C. A novel transfer learning based approach for pneumonia detection in chest X-ray images. Appl. Sci. 2020, 10, 559. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Zhang, Y.; Wang, J.; Ye, Q.; Liu, Y.; Tong, J. Diagnosis of COVID-19 pneumonia based on graph convolutional network. Front. Med. 2021, 7, 1071. [Google Scholar] [CrossRef]
- Keicher, M.; Burwinkel, H.; Bani-Harouni, D.; Paschali, M.; Czempiel, T.; Burian, E.; Makowski, M.R.; Braren, R.; Navab, N.; Wendler, T. U-GAT: Multimodal Graph Attention Network for COVID-19 Outcome Prediction. arXiv 2021, arXiv:2108.00860. [Google Scholar]
- Chen, B.; Zhang, Z.; Lu, Y.; Chen, F.; Lu, G.; Zhang, D. Semantic-interactive graph convolutional network for multilabel image recognition. IEEE Trans. Syst. Man Cybern. Syst. 2021, 1, 13. [Google Scholar] [CrossRef]
- Mondal, R.; Mukherjee, D.; Singh, P.K.; Bhateja, V.; Sarkar, R. A New Framework for Smartphone Sensor-Based Human Activity Recognition Using Graph Neural Network. IEEE Sensors J. 2020, 21, 11461–11468. [Google Scholar] [CrossRef]
- Roth, H.R.; Lu, L.; Seff, A.; Cherry, K.M.; Hoffman, J.; Wang, S.; Liu, J.; Turkbey, E.; Summers, R.M. A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Boston, MA, USA, 14–18 September 2014; pp. 520–527. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Wang, S.; Zhang, Y. CGNet: A graph-knowledge embedded convolutional neural network for detection of pneumonia. Inf. Process. Manag. 2021, 58, 102411. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, F.M.; Grattarola, D.; Alippi, C. Spectral clustering with graph neural networks for graph pooling. In Proceedings of the 37th International Conference on Machine Learning Research, Virtual Event, 13–18 July 2020; pp. 874–883. [Google Scholar]
- Zhang, Y.; Wu, B.; Liu, Y.; Lv, J. Local community detection based on network motifs. Tsinghua Sci. Technol. 2019, 24, 716–727. [Google Scholar] [CrossRef]
- Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral Networks and Locally Connected Networks on Graphs. In Proceedings of the 2nd International Conference on Learning Representations (ICLR 2014), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017. [Google Scholar]
- Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning (ICML 2017), Sydney, Australia, 6–11 August 2017; pp. 1263–1272. [Google Scholar]
- Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of the 7th International Conference on Learning Representations (ICLR 2019), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Corso, G.; Cavalleri, L.; Beaini, D.; Liò, P.; Velickovic, P. Principal Neighbourhood Aggregation for Graph Nets. In Proceedings of the Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020 (NeurIPS 2020), Virtual Event, 6–12 December 2020. [Google Scholar]
- Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [Google Scholar] [CrossRef]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Fey, M.; Lenssen, J.E. Fast graph representation learning with PyTorch Geometric. In Proceedings of the 7th International Conference on Learning Representations, Workshop, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Lahsaini, I.; El Habib Daho, M.; Chikh, M.A. Convolutional neural network for chest x-ray pneumonia detection. In Proceedings of the 1st International Conference on Intelligent Systems and Pattern Recognition, Virtual Event, 16–18 October 2020; pp. 55–59. [Google Scholar]
- Arunmozhi, S.; Rajinikanth, V.; Rajakumar, M. Deep-Learning based Automated Detection of Pneumonia in Chest Radiographs. In Proceedings of the 2021 International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry, India, 30–31 July 2021; pp. 1–4. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
Methods | Setting |
---|---|
Rotation range | 30 |
Height shift | 0.10 |
Width shift | 0.10 |
Rescale | (1/255) |
Zoom range | 0.20 |
Shear range | 0.20 |
Horizontal flip | True |
Pneumonia Infected Chest X-ray Images | Healthy Chest X-ray Images | |
---|---|---|
Training set | 3100 | 1073 |
Validation set | 775 | 628 |
Test set | 390 | 234 |
Accuracy | Precision | Recall | F1 Score | |
---|---|---|---|---|
Kermany et al. [54] | 92.8% | 90.1% | 93.2% | - |
Lahsaini et al. [56] | 93.24% | 91.4% | 95% | 92.96% |
Arunmozhi et al. [57] | 97.65% | 96.71% | 98.32% | 97.86% |
PNA-GCN (Ours) | 97.79% | 98.63% | 98.40% | 98.51% |
M = 1 | M = 2 | M = 4 | M = 8 | |
---|---|---|---|---|
Accuracy | 96.12% | 96.59% | 97.79% | 96.90% |
Precision | 97.99% | 98.30% | 98.63% | 98.41% |
Recall | 96.75% | 97.08% | 98.40% | 97.39% |
F1 score | 97.36% | 97.69% | 98.51% | 97.90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guail, A.A.A.; Jinsong, G.; Oloulade, B.M.; Al-Sabri, R. A Principal Neighborhood Aggregation-Based Graph Convolutional Network for Pneumonia Detection. Sensors 2022, 22, 3049. https://doi.org/10.3390/s22083049
Guail AAA, Jinsong G, Oloulade BM, Al-Sabri R. A Principal Neighborhood Aggregation-Based Graph Convolutional Network for Pneumonia Detection. Sensors. 2022; 22(8):3049. https://doi.org/10.3390/s22083049
Chicago/Turabian StyleGuail, Akram Ali Ali, Gui Jinsong, Babatounde Moctard Oloulade, and Raeed Al-Sabri. 2022. "A Principal Neighborhood Aggregation-Based Graph Convolutional Network for Pneumonia Detection" Sensors 22, no. 8: 3049. https://doi.org/10.3390/s22083049
APA StyleGuail, A. A. A., Jinsong, G., Oloulade, B. M., & Al-Sabri, R. (2022). A Principal Neighborhood Aggregation-Based Graph Convolutional Network for Pneumonia Detection. Sensors, 22(8), 3049. https://doi.org/10.3390/s22083049