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Abstract: Recently, the feedforward architecture of a super-resolution network based on deep learning
was proposed to learn the representation of a low-resolution (LR) input and the non-linear mapping
from these inputs to a high-resolution (HR) output, but this method cannot completely solve the
interdependence between LR and HR images. In this paper, we retain the feedforward architecture
and introduce residuals to a dual-level; therefore, we propose the dual-level recurrent residual
network (DLRRN) to generate an HR image with rich details and satisfactory vision. Compared
with feedforward networks that operate at a fixed spatial resolution, the dual-level recurrent residual
block (DLRRB) in DLRRN utilizes both LR and HR space information. The circular signals in DLRRB
enhance spatial details by the mutual guidance between two directions (LR to HR and HR to LR).
Specifically, the LR information of the current layer is generated by the HR and LR information of the
previous layer. Then, the HR information of the previous layer and LR information of the current
layer jointly generate the HR information of the current layer, and so on. The proposed DLRRN has a
strong ability for early reconstruction and can gradually restore the final high-resolution image. An
extensive quantitative and qualitative evaluation of the benchmark dataset was carried out, and the
experimental results proved that our network achieved good results in terms of network parameters,
visual effects and objective performance metrics.

Keywords: super-resolution; dual-level; satisfactory vision

1. Introduction

Image super-resolution (SR), reconstructing HR from the corresponding LR image,
is an important image processing technique in computer vision. It has applications in all
aspects of the real world, such as medical imaging [1], surveillance and security [2] and
satellite imaging [3].

The SR task has the inherent ill-posed problem that multiple different HR images can be
recovered from a single LR image. To solve this issue, researchers have proposed a number
of methods for SR reconstruction, which we can divide into two categories according
to the process of reconstruction: traditional-based methods (such as interpolation-based
methods [4] or reconstruction-based methods [5]) and learning-based methods (DL). At
present, the typical method is to learn the non-linear mapping of LR-HR through neural
networks [2,6–8] to construct HR images. These networks calculate a series of feature
maps from LR images; the resolution is then increased by one or more upsampling layers
to construct the final HR images. Compared with these pure feedforward methods, it is
believed that using a feedback connection to simply guide the tasks can produce results
that are more suitable for the human visual system, i.e., visually satisfactory results [9].

Dong et al. [10] first used the CNN model for the SR task and the proposed SRCNN,
which predicts the non-linear mappings of LR-HR via a fully connected layers network.
Its reconstruction results are significantly better than traditional methods. The advantage
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of the deep learning method comes from two key factors. Firstly, increasing the depth
of the CNN model to learn more complex mappings from LR to HR and to improve SR
performance. Secondly, adding residual connections to the network (globally [7], locally [11]
or jointly [8]) can effectively alleviate the problem of gradient vanishing and exploding
caused by deepening the network only by stacking more layers.

Although these methods based on deep learning can achieve superior results, there
are also some shortcomings. The main problem is that the deeper the network, the more
parameters are required, and the more storage resources are taken up. A recursive structure
is usually adopted to reduce network parameters. These networks with recursive structures
work at a single spatial resolution (e.g., DRCN [7] and DRRN [8]). Similar to most CNN-
based approaches, these networks transmit information in a feedforward manner.

In this paper, we add an additional level to the residual branch in the classical feedfor-
ward network structure, so that our model becomes a dual-level network that operates in
different resolution spaces. Specifically, the HR-level (HRL) information is used to refine
LR-level (LRL) information through feedback connections, while it uses LRL to enrich HRL
information through feedforward connections, and finally, obtains SR with rich details
and is visually satisfied. The DLRRB is composed of multiple groups of cross-level feature
fusion blocks of HRL (CLFFB_S) and cross-level feature fusion blocks of LRL (CLFFB_L)
with dense connections. We use the output of CLFFB_S (that is, the hidden information of
the DLRRB as shown in Figure 1a) as the feedback information in our network. The hidden
information (F_lrt

out and F_srt
out) in the DLRRB of each iteration was used to modulate the

input of the next iteration and output F_srt
out. To provide our network with an early recon-

struction ability and obtain clearer SR images, as in work [12], we input the LR images into
each iteration and formed loss functions between the output SR and HR in each iteration.
The principle of the feedback scheme in our network is that the HRL information in the
feedback information flow can refine the LR image features, and the refined LR image
features can guide the network to gradually construct better SR images. Our network ranks
successive iterations of target HR images from easy to hard according to the difficulty of
the LR image recovery. Such a learning process allows our network DLRRN to handle a
more complex degradation, while the experimental results also prove that our network can
deal accurately with complex degradation models.
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Figure 1. The illustration of the feedback mechanism in the proposed network. (a) Feedback is car-
ried out through the hidden information in DLRRB in one iteration. (b) The principles of our feed-
back scheme, which gradually reconstruct a clearer image; orange arrows represent the feedback 
connection. 

Figure 1. The illustration of the feedback mechanism in the proposed network. (a) Feedback
is carried out through the hidden information in DLRRB in one iteration. (b) The principles of
our feedback scheme, which gradually reconstruct a clearer image; orange arrows represent the
feedback connection.

The DLRRN proposed in this paper is different from DSRN [13] in the following three
points: Firstly, this paper performs mutual correction through the feature map of the image,
while the image directly processed by DSRN will increase the memory consumption of the
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network. Secondly, the DLRRN proposed in this paper outputs SR images at each iteration,
which provides the network with the ability of early reconstruction and can deal with more
complex degradation. Thirdly, this paper uses the output of the last iteration as the final
output image, while the final output of DSRN is the LR image, and then the final output is
obtained by upsampling. In general, the DLRRN and DSRN are very different in terms of
performance and network structure.

In summary, our main contributions are as follows:

• This paper proposes a single image super-resolution network via dual-level recur-
rent residuals (DLRRN), which use both feedforward and feedback connections
to generate HR images with rich details. This recursive structure with feedback
connections has a small number of parameters, while providing a powerful early
reconstruction capability.

• Inspired by [14], in this paper, a cross-layer feature fusion block (CLFFB) for the SR task
is designed as the core part of DLRRB, which can enhance information by effectively
processing cross-layer information flow.

• Since the self-attention module [15] can describe the spatial correlation of any two
positions in an image, in this paper, we use it to propose the self-attention feature
extraction block (SAFEB). SAFEB models the local features by contextual relevance; it
cooperates with the applied MS-SSIM [16] to improve the reconstruction performance
and produce better visual effects.

The remainder of this paper is arranged as follows: The second section mainly intro-
duces some classic super-resolution algorithms based on deep learning and attempts to
apply feedback connections to super-resolution, as carried out in recent years. The third
section is the details of our network. The fourth section is about the implementation details
of our experiment and the analysis of the results. The fifth section is the summary of this
paper and some defects of the algorithm.

2. Related Work
2.1. Deep-Learning-Based Image Super-Resolution

Due to the powerful learning ability of deep learning, many scholars have introduced
it into computer vision tasks (including SR), and the results have shown its excellent
performance. Dong et al. [10] proposed the first CNN-based SR method, namely SRCNN,
which introduced three fully connected layers to SR tasks to learn the complex mapping
from LR to HR, and SRCNN was trained via end-to-end methods. Theoretically, the
CNN-based SR network reconstruction process consists of three stages: feature extraction,
non-linear mapping and image reconstruction. The VDSR proposed by Kim et al. [6]
learns the LR to HR representation by stacking 20 convolutional layers. In [8], a skip
connection and adjustable gradient are adopted to overcome gradient vanishing and
exploding, which may be caused when the network becomes deeper. However, the deeper
the model, the more parameters it needs, which is not conducive to practical applications.
It has become a research hotspot for reducing network parameters without sacrificing
network performance, the DRCN [7] loops the same recursive layer 16 times, which can
effectively reduce parameters without reducing network performance. In addition, skip
connections and recursive supervision are used in DRCN to alleviate training difficulties.
A variety of different skip connections are used in SR tasks to improve reconstruction
performance. The residual skip connections in [17] were applied to SRResNet [18] and
EDSR [19]. SRDenseNet [20] applies the dense skip connections in [21]. Zhang et al. [22]
proposed RDN using local/global residuals and dense skip connections. These network
structures can use or combine hierarchical features in a down-up manner through skip
connections, extracting shallow features from the first few layers lacks sufficient contextual
information that will be reused in subsequent layers, thus limiting the reconstruction
capability of the network. At the same time, skip connections make the neural network
deeper, resulting in greatly increased network parameters. Such a large-capacity network
occupies a large amount of storage resources and has the problem of over-fitting. To
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solve these problems give the network a better generalization ability. This work proposes
DLRRN with a recursive structure, in which LRL features are corrected by HRL with more
contextual information in a top-down flow of information, while LRL information enriches
HRL features in a down-top manner. In particular, the recursive structure in the DLRRN
(shown in Figure 1b) plays a crucial role in implementing the feedback process.

2.2. Feedback Mechanism

The feedback network divides the prediction process of non-linear mapping inputs to
the target space into multiple steps, so that the model has a self-correcting ability. In recent
years, many network architectures have applied feedback mechanisms to various visual
tasks [23–25].

Some researchers have made attempts to introduce feedback mechanisms into SR
tasks. The DBPN proposed by Haris et al. [23] realizes iterative error feedback through
up- and down-projection units. The feedback block (FB) designed in [11] directly iterates
convolution and deconvolution to realize (down-) up-sampling, and feedback is realized
through the output of FB. To make the feedback mechanism suitable for image SR, this
paper carefully designed a CLFFB as the basic module in DLRRN, instead of simple and
repeated up- and down-sampling as in [11]. The information in our CLFFB is efficiently
inter-corrected between HRL and LRL via cross-layer connections. The experimental results
also demonstrate the excellent reconstruction performance of our well-designed CLFFB.

2.3. Attention Mechanism

An attention module can model remote dependency and has been widely used in many
tasks [11,15,26]. The study of [15] first proposed a self-attention mechanism to describe
the global dependencies of inputs and applied it to machine translation. The work [27]
introduced self-attention mechanisms to learn better image generators. Subsequently,
different attention modules are widely used in computer vision tasks.

The attention module models the features with learning weights to update the features.
For example, SENet [28] generates feature vectors in the channel direction through a
global pooling operation, then learns the correlation among the channels through feature
vectors, highlighting the channel maps with a large amount of information and suppressing
unimportant channel features according to different channel weights. CBAM [14] focuses
on salient regions by extending the SE module to the spatial dimension. More and more
attention mechanisms are used in SR tasks, and SFTGAN [29] adopts a spatial feature
transformation layer to make the generated SR images have more realistic and visually
pleasing textures. The study of [30] explored the potential of a reference-based super-
resolution method on remote sensing images, utilizing rich texture information from
HR reference images to reconstruct the details in LR images. The study of [31] learned
the predicted convolution kernels and channel modulation coefficients obtained from
unsupervised degenerate representations to handle various quantization models. In order
to capture rich context and produce visually satisfactory SR images, this paper introduced
a self-attention mechanism to SR and crafted SAFEB to better represent features with
intra-class compactness.

3. Methods

This section introduces the details of our network architecture. Section 3.1 briefly
introduces the overall network architecture. Section 3.2 is the basic block (DLRRB) of
DLRRN, which is composed of dense CLFFB to handle information flow. Section 3.3
introduces CLFFB, as the core part of our network, which can enhance information by
effectively handling cross-layer information flow. SAFEB is introduced in Section 3.4.
Because the self-attention mechanism models the spatial position, it is helpful to calculate
the loss function of MS-SSIM, thus achieving a better visual effect. Section 3.5 provides
a detailed description of the loss function of our network, and this study introduces MS-
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SSIM [16] to enable the network to produce results that are more consistent with human
vision. Finally, the implementation details of our network are shown in Section 3.6.

3.1. Network Structure

Unlike models that work at a single spatial resolution, DLRRN enables pieces of
information in LR and HR spaces to be guided to each other. The overall structure of our
DLRRN is shown in Figure 2. Specifically, in Figure 2a, CLFFB_L and CLFFB_S represent
the LRL information space and HRL information space, respectively. The four colored
arrows represent the transfer function between LRL and HRL. There are purple ( flr), brown
( fhr) and yellow fup arrows exits in conventional RNN, which provide information flow
from LRL to LRL, HRL to HRL, and LRL to HRL, respectively. For LRL information to
access HRL information with more context information, this paper adds a green arrow
( fdown) to realize the feedback of HRL information.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 21 
 

 

introduces CLFFB, as the core part of our network, which can enhance information by 
effectively handling cross-layer information flow. SAFEB is introduced in Section 3.4. Be-
cause the self-attention mechanism models the spatial position, it is helpful to calculate 
the loss function of MS-SSIM, thus achieving a better visual effect. Section 3.5 provides a 
detailed description of the loss function of our network, and this study introduces MS-
SSIM [16] to enable the network to produce results that are more consistent with human 
vision. Finally, the implementation details of our network are shown in Section 3.6. 

3.1. Network Structure 
Unlike models that work at a single spatial resolution, DLRRN enables pieces of in-

formation in LR and HR spaces to be guided to each other. The overall structure of our 
DLRRN is shown in Figure 2. Specifically, in Figure 2a, CLFFB_L and CLFFB_S represent 
the LRL information space and HRL information space, respectively. The four colored 
arrows represent the transfer function between LRL and HRL. There are purple (𝑓 ), 
brown (𝑓) and yellow 𝑓௨ arrows exits in conventional RNN, which provide information 
flow from LRL to LRL, HRL to HRL, and LRL to HRL, respectively. For LRL information 
to access HRL information with more context information, this paper adds a green arrow 
(𝑓ௗ௪) to realize the feedback of HRL information. 

LR

Upsample

3×3 Conv

SAFEB

Conv

CLFFB_L

CLFFB_S

SR

DLRRB

Unfold

LR

3×3 Conv

SAFEB

Conv

SR

Upsample

DLRRB_1

LR

3×3 Conv

SAFEB

Conv

SR

DLRRB_2

LR

3×3 Conv

SAFEB

Conv

SR

Upsample

DLRRB_t

Upsample

(a) DLRRN (b) Unfolding DLRRN T times

LRI LRI LRI LRI

1
inF

2
inF

1
outF

1
SRI
1
ResI

1
outF 2

outF

2
outF

2
ResI

2
SRISRI

ResI

outF

inF

hrf

lrf

downfupf

LR

3×3 Conv

SAFEB

Conv

SR

Upsample

DLRRB_T

LRI

1
out
TF −

in
TF

out
TF

Res
TI

T
SRI

in
tF

1
out
tF −

out
tF

1
Res
tI −

SR
tI

 
Figure 2. The recurrent structure of the DLRRN is defined as shown in (a), and (b) is the unfolded 
DLRRN. Blue arrows represent feedback information flow and green arrows represent global resid-
ual skip connections. 

The DLRRN can be unfolded to ordered T iterations in time, as shown in Figure 2b. 
In order to make the DLRRN have an early reconstruction ability and carry output infor-
mation in the feedback information, we established a loss function between each iteration 
result and HR. The residual branch in each iteration t consists of three parts: shallow fea-
ture extraction part (𝐶𝑜𝑛𝑣 + 𝑆𝐴𝐹𝐸𝐵), dual-level recurrent residual block (DLRRB) and di-
mension reduction block. Each DLRRB is weight-shared in time, while the up-sampled 
images in each iteration t use global residual skip connections to bypass the residual 
branch. Therefore, the purpose of the residual branch in each iteration t is to restore the 
high-resolution residual image 𝐼ோ௦௧  after inputting the low-resolution image 𝐼ோ. In this 
paper, we used 𝐶𝑜𝑛𝑣(𝑠, 𝑚) and 𝐷𝑒𝑐𝑜𝑛𝑣(𝑠, 𝑚) to denote the regular convolution and de-
convolution layers, respectively, where 𝑠 and 𝑚 denote the size and number of filters, 
respectively. We use𝑑 𝐶𝑜𝑛𝑣(3,4𝑚) and SAFEB to extract shallow features. In subsequent 
experiments, we set 𝑚 to 64 (𝑚 = 64) by default. We provided the LR image input 𝐼ோ 
for LR feature extraction part, and obtained the shallow feature 𝐹௧  containing LR image 
information: 𝐹௧ = 𝑆𝐴𝐹𝐸𝐵(𝐶𝑜𝑛𝑣(𝐼ோ)) (1)

where 𝐹௧  is the input of the shallow information of the t-th DLRRB. 

Figure 2. The recurrent structure of the DLRRN is defined as shown in (a), and (b) is the unfolded
DLRRN. Blue arrows represent feedback information flow and green arrows represent global residual
skip connections.

The DLRRN can be unfolded to ordered T iterations in time, as shown in Figure 2b. In
order to make the DLRRN have an early reconstruction ability and carry output information
in the feedback information, we established a loss function between each iteration result
and HR. The residual branch in each iteration t consists of three parts: shallow feature ex-
traction part (Conv + SAFEB), dual-level recurrent residual block (DLRRB) and dimension
reduction block. Each DLRRB is weight-shared in time, while the up-sampled images in
each iteration t use global residual skip connections to bypass the residual branch. There-
fore, the purpose of the residual branch in each iteration t is to restore the high-resolution
residual image It

Res after inputting the low-resolution image ILR. In this paper, we used
Conv(s, m) and Deconv(s, m) to denote the regular convolution and deconvolution layers,
respectively, where s and m denote the size and number of filters, respectively. We use
d Conv(3, 4m) and SAFEB to extract shallow features. In subsequent experiments, we set m
to 64 (m = 64) by default. We provided the LR image input ILR for LR feature extraction
part, and obtained the shallow feature Ft

in containing LR image information:

Ft
in = SAFEB(Conv(ILR)) (1)

where Ft
in is the input of the shallow information of the t-th DLRRB.

The DLRRB of the t-th iteration receives the hidden information Ft−1
out of the previous

iteration and the shallow feature Ft
in, Ft

out represents the output of DLRRB in the t-th
iteration. The mathematical formula of DLRRB is:

Ft
out = HDLRRN

(
Ft−1

out , Ft
in

)
(2)
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where HDLRRN(·) refers to DLRRB operation.
The DLRRB output feature Ft

out generates a residual image It
Res through a dimension

reduction block (DRB). The mathematical formula is:

It
Res = Conv

(
Ft

out
)

(3)

where Conv represents the dimension reduction operation.
The output SR image of the t-th iteration can be expressed as:

It
SR = It

Res + HUP(ILR) (4)

where HUP represents the up-sampling function; therefore, we can choose any up-sampling
operation. Here we use bilinear up-sampling operation. After T iterations, we can obtain a
total of T SR images

(
I1
SR, I2

SR, . . . , IT
SR
)
; we chose IT

SR as the final output of our network.

3.2. Dual-Level Recurrent Residual Block

The structure of the DLRRB is shown in Figure 3. The DLRRB of the t-th itera-
tion receives hidden information F_lrt−1

out

(
F_srt−1

out

)
to correct the low-level representation

F_lrt−1
in

(
F_srt−1

in

)
, and then outputs the high-level representation F_lrt

out
(

F_srt
out
)

with
richer features to the t + 1 iteration and DRB. The DLRRB is composed of G group dense
CLFFB, and each CLFFB can make HRL features and LRL features interact to generate final
SR images with rich details.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21 
 

 

The DLRRB of the t-th iteration receives the hidden information 𝐹௨௧௧ିଵ of the previous 
iteration and the shallow feature 𝐹௧ , 𝐹௨௧௧  represents the output of DLRRB in the t-th it-
eration. The mathematical formula of DLRRB is: 𝐹௨௧௧ = 𝐻ோோே(𝐹௨௧௧ିଵ, 𝐹௧ ) (2)

where 𝐻ோோே(·) refers to DLRRB operation. 
The DLRRB output feature 𝐹௨௧௧  generates a residual image 𝐼ோ௦௧  through a dimen-

sion reduction block (DRB). The mathematical formula is: 𝐼ோ௦௧ = 𝐶𝑜𝑛𝑣(𝐹௨௧௧ ) (3)

where 𝐶𝑜𝑛𝑣 represents the dimension reduction operation. 
The output SR image of the t-th iteration can be expressed as: 𝐼ௌோ௧ = 𝐼ோ௦௧ + 𝐻(𝐼ோ) (4)

where 𝐻 represents the up-sampling function; therefore, we can choose any up-sam-
pling operation. Here we use bilinear up-sampling operation. After T iterations, we can 
obtain a total of T SR images (𝐼ௌோଵ , 𝐼ௌோଶ , … , 𝐼ௌோ்); we chose 𝐼ௌோ் as the final output of our net-
work. 

3.2. Dual-Level Recurrent Residual Block 
The structure of the DLRRB is shown in Figure 3. The DLRRB of the t-th iteration 

receives hidden information 𝐹_𝑙𝑟௨௧௧ିଵ(𝐹_𝑠𝑟௨௧௧ିଵ)  to correct the low-level representation 𝐹_𝑙𝑟௧ିଵ(𝐹_𝑠𝑟௧ିଵ), and then outputs the high-level representation 𝐹_𝑙𝑟௨௧௧ (𝐹_𝑠𝑟௨௧௧ ) with 
richer features to the t + 1 iteration and DRB. The DLRRB is composed of G group dense 
CLFFB, and each CLFFB can make HRL features and LRL features interact to generate 
final SR images with rich details. 

Deconv

1x
1 

Co
nv

1x
1 

Co
nv

1x
1 

Co
nv

CLFFB_L_g

CLFFB_S_1

1x
1 

Co
nv

1x
1 

Co
nv

CLFFB_L_G 1x
1 

Co
nv

CLFFB_S_g

1x
1 

Co
nv

CLFFB_S_G

1x
1 

Co
nv

CLFFB_L_1

 
Figure 3. The internal structure of the DLRRB. 

As can be seen from Figure 3, DLRRB contains two branches, one is the SR branch 
that generates an HRL feature map with rich details through fine LRL feature maps, and 
the other is the LR branch, which refines LRL feature maps through detailed HRL feature 
maps. The two branches guide each other and gradually achieve our final image 𝐼ௌோ் in 
rich detail. 

At the beginning of the t-th DLRRB, the LR branch receives the input information 𝐹_𝑙𝑟௧  and output information 𝐹_𝑙𝑟௨௧௧ିଵ of the previous layer, and then concatenates and 
compresses them by 𝐶𝑜𝑛𝑣(1, 𝑚) to generate a rough input feature map 𝐿௧ : 𝐿௧ = 𝐶([𝐹_𝑙𝑟௧ , 𝐹_𝑙𝑟௨௧௧ିଵ]) (5)

Similarly: 𝐻௧ = 𝐶([𝐹_𝑠𝑟௧ , 𝐹_𝑠𝑟௨௧௧ିଵ]) (6)

Figure 3. The internal structure of the DLRRB.

As can be seen from Figure 3, DLRRB contains two branches, one is the SR branch that
generates an HRL feature map with rich details through fine LRL feature maps, and the
other is the LR branch, which refines LRL feature maps through detailed HRL feature maps.
The two branches guide each other and gradually achieve our final image IT

SR in rich detail.
At the beginning of the t-th DLRRB, the LR branch receives the input information

F_lrt
in and output information F_lrt−1

out of the previous layer, and then concatenates and
compresses them by Conv(1, m) to generate a rough input feature map Lt

0:

Lt
0 = Cl

0

([
F_lrt

in, F_lrt−1
out

])
(5)

Similarly:
Ht

0 = Ch
0

([
F_srt

in, F_srt−1
out

])
(6)

where F_lrt
in is Ft

in in Figure 2, F_srt
in = Deconv

(
F_lrt

in
)
, Deconv is Deconv(s, m),[

F_lrt
in, F_lrt−1

out

]
refers to the concatenations of F_lrt

in and F_lrt−1
out , and Cl(h)

0 represents
the initial dimensionality reduction operation using Conv(1, m) in LR(SR) branch.
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Lt
g and Ht

g represent the LRL and HRL feature map output of the g-th CLFFB of
DLRRB in the t-th iteration, respectively. Lt

g can be expressed as:

Lt
g = Cl

g

([
Lt

0, Lt
1, . . . , Lt

g−1, f _lrt
g

])
(7)

where Cl
g indicates that Conv(1, m) is used for dimension reduction in the g-th feature

fusion group in LR branch, and f _lrt
g indicates the feature maps the output of the g-th

CLFFB in the t-th iteration (see Figure 3).
Similarly:

Ht
g = Ch

g

([
Ht

0, Ht
1, . . . , Ht

g−1, f _srt
g

])
(8)

To use useful information from each group and to correct the input features Ft+1
in for

the next iteration, we fuse the feature maps of each group (green arrows in Figure 3). the
output of DLRRB as follows:

For the LRL:
F_lrt

out = Cl
FF
([

Lt
0, Lt

1, . . . , Lt
G
])

(9)

For the HRL:
F_srt

out = Ch
FF
([

Ht
0, Ht

1, . . . , Ht
G
])

(10)

where F_srt
out is Ft

out in Figure 2. Cl(h)
FF (·) represents the feature fusion of the last layer of

the t-th DLRRB in the LR(SR) branch, which is expressed as Conv(1, m) function.
It is worth mentioning that in the first DLRRB in the DLRRN, we initialize as follows.
For LR branch:

F_lr1
in = F1

in, F_lr0
out = F_lr1

in (11)

For SR branch:

F_sr1
in = Deconv(F_lr1

in), F_sr0
out = F_sr1

in (12)

3.3. Cross-Level Feature Fusion Block

Different from the study of [12,23], which directly fuses low-level and high-level
features, we use the cross-layer feature gate mechanism to guide selectively enhanced
spatial details. Therefore, we propose an effective CLFFB (as shown in Figure 4) to process
the information flow in the network.
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Figure 4. The proposed CLFFB, (a) is the SR branch represented as CLFFB_S, (b) is the LR branch
denoted as CLFFB_L.

Specifically, the input of the CLFFB (the following takes CLFFB_L as an example)
includes two parts. One part is that the feature map Ht

g from the SR branch is resized to
the same size as Lt

g by a convolution operation, and the previous output Lt
g from the LR

branch jointly generates the cross-level feature map lt
g:

lt
g =

[(
Ht

g

)↓
, Lt

g

]
(13)

where
(

Ht
g

)↓
indicates the downsampling operation of Ht

g.

We feed the generated cross-layer feature map lt
g into two branches to refine the LRL

features. One branch is to generate the weight vector α to reweight the features in the
channel direction:

α = Sigmoid
(

conv
(

conv
(

avgpool
(

lt
g

))))
(14)

where avgpool(·) represents the global average pooling function, conv represents conv(1, m),
and Sigmoid refers to the Sigmoid activation function.

The other branch is used to generate an attention map β ∈ RH×W :

β = Sigmoid(conv
(

conv
([

Mean
(

lt
g

)
, Max

(
lt
g

)]))
(15)

where Mean, Max is the average and maximum pooling function along the channel axis,
and conv is the conv(1, 1).

The generated weight vector α, attention map β and feature map Lt
g are summed

and multiplied element-wise to obtain a fine feature map, and cascaded with the cross-

level feature map
(

Ht
g

)↓
, and then the output f _lrt

g of CLFFB is obtained through a
convolution layer.

f _lrt
g = conv

([
Conv

(
Lt

g
⊙(

1 + α
⊙

β
))

,
(

Ht
g

)↓])
(16)

where
⊙

is the element-wise product, (·)↓ is the downsampling operation, Conv is
Conv(3, m), and conv is conv(1, m).

3.4. Self-Attention Feature Extraction Block

The scale of objects in LR images is varied, and single-scale features cannot capture
multi-scale contextual information of different objects. Since the non-salient regions are
relatively dispersed, the direct aggregation of multi-scale features may weaken the repre-
sentation ability of important regions. We separately placed self-attention [15] (the structure
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is shown in Figure 5b) on different scales of features in order to focus more attention on
visually important areas; therefore, we have constructed SAFEB, as shown in Figure 5a.
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We first load the input low-level feature maps in parallel to the dilated convolution lay-
ers with different dilation rates to extract rich features, then add self-attention mechanism
modules [15] (as shown in Figure 5b) to each branch. The input and output of the self-
attention block are denoted as F_attin = Rm×H×W and F_attout = Rm×H×W , respectively.
The attention map A can be obtained by:

A = so f tmax
(

R1(Conv(Fattin))
T × R1(Conv(F_attin))

)
) (17)

where so f tmax(·) is the so f tmax function, R1(·) indicates that the reshape input feature is
RC×N , N = H ×W.

Next, we combine the attention features maps A with F_attin to generate enhanced
attention feature maps, then add the input feature maps F_attin to obtain the final output
F_attout as follows:

F_attout = F_attin + R2

(
R1(Conv(F_attin))× AT

)
(18)

where R2(·) refers to reshape input features to RC×H×W .
In particular, we do not apply the self-attention module to the global average pooling

branch and 1× 1 convolution branch because these two branches are designed to use the
minimum and maximum receptive fields to keep the intrinsic properties of the input.

3.5. Loss Function

In deep neural networks, the loss function is the essential part, which determines the
direction of our network optimization. We use the L1 loss function and MS-SSIM [16] loss
function to optimize our network. The results show that our network can produce a better
visual effect without reducing objective performance metrics (PSNR, SSIM), and achieve
the balance between perception and objective evaluation metrics.

In the evaluation index of image quality, PSNR and SSIM [32] is generally used as the
evaluation index for images generated by L1 and L2 loss function optimization networks,
but L1 and L2 have one thing in common: they are based on per-pixel comparison of
differences, without considering human visual perception, and without considering human
aesthetics, so a high PSNR value does not mean a good visual quality of an image. In [16],
the structural similarity loss function (SSIM) and multi-scale structural similarity loss
function (MS-SSIM) are designed to restore images with better vision. The SSIM loss
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function considers luminance, contrast and structure, which takes human visual perception
into account. Generally speaking, the results obtained by SSIM are better than those
obtained by L1 and L2 in visual.

SSIM for a certain pixel p is defined as:

SSIM(p) =
2µxµy + C1

µ2
x + µ2

y + C1
·

2δxy + C2
δ2

x + δ2
y + C2

= l(p)·cs(p) (19)

where x, y represents the processed image and the real image, µx(y) is the mean value of
X(Y), δ2

x(y) represents the variance of X (Y), δxy is the covariance of X and Y, C1 and C2 are

constants, and its calculation formula is C1 = (k1L)2 and C2 = (k2L)2, L is the gray value
range of the image ([0, 255] for color images and [0, 1] for gray images). k1 and k2 are two
constants, and the default values are 0.01 and 0.03. It should not be overlooked that the
mean and standard deviation are calculated by the Gaussian filter.

We can learn from [16] that it is crucial to choose the size of Gaussian kernel to calculate
the mean and variance of images in SSIM. If it is chosen to be small, the calculated SSIM
loss cannot keep the local structure of the image well, and artifacts will appear. If the
selection is large, the network will produce noise at the edge of the image. In order to avoid
time-consuming adjustments of Gaussian kernel size, [16] proposed a version of multi-scale
SSIM, and MS-SSIM is defined as:

MS− SSIM(p) = lα
M(p)·∏M

j=1 cs
β j
j (p) (20)

where lM and csj represent Equation (19) at the scale of M and j, respectively. For conve-
nience, α = β j = {1}, j = {1, . . . , M}.

Therefore, the loss function of MS-SSIM is:

LMS−SSIM(p) = 1−MS− SSIM( p̃) (21)

where p̃ is the center pixel of input image patch P.
We combine L1 with MS-SSIM as the loss function of our network, which is defined as

LDLRRN :

LDLRRN(ω) = L1 + ωLMS−SSIM =
1
T

T

∑
t=1

(‖It
HR − It

SR‖1 + θLMS−SSIM(It
HR, It

SR
)
) (22)

where the θ indicates the trade-off factor, ω denotes the parameters of the DLRRN, and
I0
HR = I1

HR = . . . = IT
HR represents the SR image reconstructed by the t-th iteration.

3.6. Network Details

The activation function after the convolution layer and deconvolution layer is PRelu [32].
As with [12], we set different k in the (De)Conv(k, m) according to different scaling factors
to achieve (up-)downsampling of the feature map, as shown in Table 1. We can obtain
a total of T SR images

(
I0
HR, I1

HR, · · · , IT
SR
)
, and we chose IT

SR as the final output of our
network. Our network can handle both grey and color images, the output channel of the
last convolution layer can be 1 or 3, accordingly.

Table 1. Different scaling factors correspond to different kernel_size, padding, stride.

Scale Kernel_Size Padding Stride

2 6 2 2
3 7 2 3
4 8 2 4
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4. Experimental Section

In this chapter, we describe the experimental process and analyze results in detail. The
public datasets, evaluation metrics, degradation model, training settings and experimental
conditions are described in Section 4.1. Section 4.2 is the experimental analysis. Firstly, we
study the influence of iteration times T and the number G of CLFFB_L and CLFFB_S in
CLFFB on the reconstruction performance. Secondly, we analyze the loss function. Finally,
we explore the influence of SAFEB on the experimental results. Section 4.3 describes the
algorithm comparison and visualization results. We first analyze the network parameters
and the complexity. The training results of the network’s training models (BI × 2, BI × 3,
BI × 4, BD × 3, DN × 3) were then compared with those of other algorithms.

4.1. Implementation Details

We use DIV2K [33] as the training dataset of the network, which contains 800 train-
ing images and 100 validation images. To make our trained model more robust, there
are two ways to augment the data, as described in [14]: (1) scaling—reducing the scale
[0.8, 0.7, 0.6, 0.5]; (2) rotation and flip—horizontally flipping and rotating 90 degrees to
expand the training data. We evaluated SR results for five standard benchmark datasets
under PSNR and SSIM [32] indicators: Set5 [25], Set14 [34], BSD100 [35], Urban100 [36]
and Manga109 [37]. As in previous work, our experimental results were quantitatively
evaluated in the luminance (Y) channel.

To ensure a fair comparison with previous work, we used the process of HR obtaining
LR by bicubic downsampling as the standard degradation (denoted as BI). To verify the
generalization ability of our network to deal with multiple degradation models, we further
experimented with two additional degradation models BD and DN [22]. BD is defined as
firstly blurring HR image with Gaussian kernel with size 7 × 7 and standard deviation
of 1.6, and then performing downsampling operation. DN is defined as the process of
first adding Gaussian noise with a noise level of 30 to the HR and then obtaining the
LR by standard bicubic downsampling. BI/BD/DN × n means that HR is degraded by
BI/BD/DN and the downsampling factor is n to obtain LR, and the formed LR-HR image
pair is used for network training or testing, as shown in Table 2.

Table 2. Degradation model experiments conducted in this paper.

Degeneration Definition

BI×2 Under BI degradation, the scaling factor is 2.
BI×3 Under BI degradation, the scaling factor is 3.
BI×4 Under BI degradation, the scaling factor is 4.

DN×3 Under DN degradation, the scaling factor is 3.
BD×3 Under BD degradation, the scaling factor is 3.

In our training process, we set the input batchsize to 8. In order to make the extracted
features contain more LR image context information, similar to the study of [12], we set
different patchsizes for different scaling factors (Table 3 lists the input patchsize settings).
Using the method in [24] to initialize the network parameters, we used Adam [26] as the
optimization function for our network. The initial learning rate of our network was 0.0001,
and was halved every 150 epochs; we trained a total of 600 epochs. We used the Pytorch
framework to realize our network and train it at TITAN RTX.

Table 3. Different scaling factors correspond to different kernel_size, padding, stride.

Scale ×2 ×3 ×4

Input patchsize 60× 60 50× 50 40× 40
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4.2. Experimental Analysis
4.2.1. Study of T and G

In this subsection, we will discuss the effect of the iterations times (denoted as T)
and the number of groups (denoted as G) of CLFFB_L and CLFFB_S in the DLRRB on the
reconstruction results. We first set G = 5 to analyze the effect of T on the reconstruction
results, and the experimental results are shown in Figure 6a. It highlights the fact that
the reconstruction quality increases with T. In general, the reconstruction performance of
the network is outstanding; therefore, CLFFB is effective for the SR task. In addition, we
visualized T on the BI × 4 model (as shown in Figure 7, the first group is the reconstructed
RGB image, and the second group is its corresponding residual image (IT

Res). Then, T = 4
is allowed to study the influence of G on network reconstruction, and its convergence
curve is shown in Figure 6b. We can find that the larger the G value, the better the
reconstruction performance, indicating that the deep network has a strong representation
capability. Overall, choosing a larger T or G is helpful to obtain better results. In the
following discussion, we use DLRRN (T = 4, G = 5) for analysis. It is worth mentioning
that we consider both network performance and network parameters, so we assume T = 4
and G = 5.
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4.2.2. Analysis of Loss Function

We uses Equation (22) LDLRRN as the loss function of our optimized network. We
first explored the influence of hyperparameter θ on the training of our network. We used
the dichotomy method to explore the value range of θ as shown in Figure 8, and the
experimental results showed that when θ = 0.1, the training results could reach the relative
optimal solution (i.e., the PSNR value was relatively maximum). At the same time, our
network was compared with the L1-trained network alone, and the results showed that the
results of the LDLRRN training were slightly higher than the results of the L1 loss training
in the objective evaluation metrics (32.28 vs. 32.26 from Figure 8). Additionally, we proved
that, when the results of the LDLRRN and the L1 training were the same as the PSNR, due
to MS-SSIM, our network produced superior visual effects, as shown in Figure 9 (the visual
evaluation metrics, PI [38] and LPIPS [39], are shown at the bottom of the figure) and in
Table 4.
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Figure 9. (a) SR images generated only by L1 loss function training. (b) SR image generated by L1
and MS-SSIM joint loss function training.

Table 4. Ablation analysis of SAFEB.

DLRRN DLRRN-LMS−SSIM DLRRN-SAFEB

Set5 (PI/LPIPS) 5.944/0.1730 6.054/0.1745 6.123/0.1745

4.2.3. Ablation Analysis of SAFEB

Regarding the ablation analysis of SAFEB, we could use Conv(1, m) a convolution
layer to place SAFEB as our baseline. As shown in Table 5, we could obtain the following
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results through experiments: within 100 epochs, when SAFEB acted on the network alone,
the reconstruction performance was slightly increased. Our network performance was
improved by 0.04 dB (32.38 vs. 32.42) when we experimented with 200 epochs, which
shows that it is effective for SAFEB.

Table 5. Ablation analysis of SAFEB.

a b

Base
√

Base + SAFEB
√

PSNR on Set5 (BI×4) 32.26 32.28

Although SAFEB acting alone on the network did not significantly improve perfor-
mance, our experiments showed that it could improve the visual effects. As shown in
Table 4, we used the BI × 4 model to test on Set5 under PSNR = 32.40, and we used PI [38]
and LPIPS [39] as evaluation metrics of visual quality, which showed the effectiveness of
SAFEB and MS-SSIM in improving visual effect.

4.3. Comparison with Previous Work
4.3.1. Network Parameters and Complexity

We compared DLRRN with ten deep-learning-based SR methods: SRCNN [10],
VDSR [6], DRRN [8], MemNet [40], EDSR [19], DBPN-S [23], D-DBPN [24], SRFBN [12],
USRNet [41] and RFANet [42]. The comparison results of network parameters and recon-
struction effect (PSNR) are shown in Figure 10. We can see from Figure 10a that the network
parameters and reconstruction performance of our method are relatively optimal. Our
network requires only 35% and 8% of the parameters in the D-DBPN and EDSR, while
achieving better reconstruction results. Although RFANet has a slightly higher perfor-
mance than our network, its number of parameters is twice that of our network. Overall,
compared with other latest methods, our network is lighter and more efficient.
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We compared DLRRN’s Flops with other algorithms, and the comparison results are
shown in the Figure 10b. It can be seen from the figure that, compared with SRFBN, the
Flops of the algorithm in this paper increases by 75%, and its performance is improved
by 0.19 dB. Compared with USRNet, the Flops of this algorithm is reduced by 68%, and it
can achieve comparable performance. Overall, Flops also reflects the effectiveness of our
algorithm to some extent. Since the algorithm in this paper works in the LR and HR spaces
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and adopts a dense structure, it leads to more computational complexity of the network.
Next, we will try to drastically reduce the complexity of the network without affecting the
reconstruction effect.

4.3.2. Results of Evaluation on BI Model

We compare DLRRN with the ten latest image SR methods: SRCNN [10], VDSR [6],
DRRN [8], SRDenseNet [20], MemNet [40], EDSR [19], D-DBPN [23], SRFBN [12], USR-
Net [41] and RFANet [42]. The results of quantitative evaluation are shown in Table 6.
Compared with our method, EDSR uses more filters (256 v.s. 64), while D-DBPN, USRNet
and DRN use more training images (DIV2K + Flickr2K v.s. DIV2K). Compared with them,
however, our DLRRN can obtain competitive results.

Table 6. Quantitative evaluation of comparative algorithms in BI degradation models. Red indicates
the best SR reconstruction performance, and blue is the second best.

Scale Method Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

2

Bicubic 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.30/0.9339
SRCNN [10] 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

VDSR [6] 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750
DRRN [8] 37.74/0.9591 33.23/0.9136 32.05/0.8973 32.23/0.9188 37.60/0.9736

MemNet [40] 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
EDSR [19] 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773

D-DBPN [23] 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 38.89/0.9775
SRFBN [12] 38.02/0.9601 33.74/0.9190 32.21/0.9004 32.53/0.9320 38.99/0.9771
USRNet [41] 37.71/0.9592 33.49/0.9156 32.10/0.8981 31.79/0.9255 38.37/0.9760
RFANet [42] 38.26/0.9615 34.16/0.9220 32.41/0.9026 33.33/0.9389 39.44/0.9783

DLRRN (ours) 38.19/0.9612 34.05/0.9219 32.33/0.9012 33.02/0.9357 39.24/0.9783

3

Bicubic 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [10] 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

VDSR [6] 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340
DRRN [8] 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.42/0.9359

MemNet [40] 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
EDSR [19] 34.65/0.9280 30.52/0.8462 29.25/0.8092 28.80/0.8653 34.17/0.9476

D-DBPN [23] -/- -/- -/- -/- -/-
SRFBN [12] 34.59/0.9283 30.45/0.8450 29.16/0.8071 28.58/0.8628 34.03/0.9462
USRNet [41] 34.43/0.9279 30.51/0.8446 29.18/0.8076 28.38/0.8575 34.05/0.9466
RFANet [42] 34.79/0.9300 30.67/0.8487 29.34/0.8115 29.15/0.8720 34.59/0.9506

DLRRN 34.74/0.9297 30.61/0.8473 29.27/0.8088 29.06/0.8684 34.32/0.9489

4

Bicubic 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [10] 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

VDSR [6] 31.35/0.8830 28.02/0.7680 27.29/0.7260 25.18/0.7540 28.83/0.8870
DRRN [8] 31.68/0.8888 28.21/0.7721 27.38/0.7284 25.44/0.7638 29.18/0.8914

MemNet [40] 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
EDSR [19] 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

D-DBPN [23] 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137
SRFBN [12] 32.36/0.8970 28.77/0.7863 27.67/0.7392 26.49/0.7979 30.99/0.9142
USRNet [41] 32.42/0.8978 28.83/0.7871 27.69/0.7404 26.44/0.7976 31.11/0.9154
RFANet [42] 32.66/0.9004 28.88/0.7894 27.79/0.7442 26.92/0.8112 31.41/0.9187

DLRRN (ours) 32.55/0.8994 28.90/0.7887 27.74/0.7408 26.82/0.8057 31.38/0.9176

We show the SR visualization results of BI × 4 in Figure 11. The proposed DLRRN can
produce more convincing results (as the RFANet code is not open source, we do not have
access to its visuals). We can see from SR visualization results of the “BokuHaSitatakaKun”
image in Manga109 that “M” letters reconstructed by DRRN and MemNet are separated, the
VDSR, EDSR and D-DBPN cannot restore the clear texture of the image, the image generated
by SRFBN is fuzzy, and the image edge restored by USRNet has many artifacts. The
proposed DLRRN produces clear images, even smoother than the label. In addition, we also
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visualized “img 092” in Urban100, the texture directions of SR images reconstructed by other
comparison methods except SRFBN and USRNet are all wrong. However, our proposed
DLRRN allows HRL information and LRL information to be mutually corrected in the
iterative process and optimizes our network by using L1 and MS-SSIM loss functions, so the
obtained SR image is smoother than the ground truth and more in line with people’s vision.
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Figure 11. Comparison of the visual effect of the method in this paper with other methods on BI × 4.

4.3.3. Results of Evaluation on BD and DN Models

To verify the generalization ability of our network model, the proposed DLRRN is
also trained in BD and DN degradation models and DLRRN with SRCNN [10], VDSR [6],
IRCNN_G [43], IRCNN_C [43], SRMD(NF) [44], RDN [22], SRFBN [12] and RFANet are
compared [42]. The results of the quantitative evaluation with the latest algorithm are
shown in Table 7. We find that our algorithm performs well on most datasets.

Table 7. Quantitative evaluation results in BD × 3 and DN × 3: Red indicates optimal PSNR/SSIM,
and blue is the next best.

Method Model Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

Bicubic
BD 28.34/0.8161 26.12/0.7106 26.02/0.6733 23.20/0.6661 25.03/0.7987
DN 24.14/0.5445 23.14/0.4828 22.94/0.4461 31.63/0.4701 23.08/0.5448

SRCNN [10]
BD 31.63/0.8888 28.52/0.7924 27.76/0.7526 25.31/0.7612 28.79/0.8851
DN 27.16/0.7672 25.49/0.6580 25.11/0.6151 23.32/0.6500 25.78/0.7889

VDSR [6]
BD 33.30/0.9159 29.67/0.8269 28.63/0.7903 26.75/0.8145 31.66/0.9260
DN 27.72/0.7872 25.92/0.6786 25.52/0.6345 23.83/0.6797 26.41/0.8130

IRCNN_G [43]
BD 33.38/0.9182 29.73/0.8292 28.65/0.7922 26.77/0.8154 31.15/0.9245
DN 24.85/0.7205 23.84/0.6091 23.89/0.5688 21.96/0.6018 23.18/0.7466
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Table 7. Cont.

Method Model Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

IRCNN_C [43]
BD 29.55/0.8246 27.33/0.7135 26.46/0.6572 24.89/0.7172 28.68/0.8574
DN 26.18/0.7430 24.68/0.6300 24.52/0.5850 22.63/0.6205 24.74/0.7701

SRMD(NF) [44]
BD 34.09/0.9242 30.11/0.8364 28.98/0.8009 27.50/0.8370 32.97/0.9391
DN 27.74/0.8026 26.13/0.6974 25.64/0.6495 24.28/0.7092 26.72/0.8424

RDN [22]
BD 34.57/0.9280 30.53/0.8447 29.23/0.8079 28.46/0.8581 33.97/0.9465
DN 28.46/0.8151 26.60/0.7101 25.93/0.6573 24.92/0.7362 28.00/0.8590

SRFBN [12]
BD 34.65/0.9283 30.64/0.8435 29.18/0.8066 28.43/0.8578 34.02/0.9462
DN 28.52/0.8180 26.58/0.7140 25.94/0.6615 24.96/0.7120 27.98/0.8612

RFANet [42]
BD 34.77/0.9292 30.68/0.8473 29.34/0.8104 28.89/0.8661 34.49/0.9492
DN -\- -\- -\- -\- -\-

DLRRN(ours)
BD 34.80/0.9295 30.68/0.8469 29.32/0.8094 28.95/0.8658 34.57/0.9490
DN 28.64/0.8210 26.70/0.7147 26.00/0.6630 25.24/0.7485 28.24/0.8650

We show two groups of SR visual results tested on the BD and DN models in Figure 12.
From the visualization results, we can see that our network can reduce distortion and
recover SR images with more details. From the overall experimental results, it is concluded
that our network handles BD and DN degradation more robustly and effectively.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21 
 

 

DN 27.16/0.7672 25.49/0.6580 25.11/0.6151 23.32/0.6500 25.78/0.7889 

VDSR [6]  
BD 33.30/0.9159  29.67/0.8269  28.63/0.7903  26.75/0.8145  31.66/0.9260 
DN 27.72/0.7872 25.92/0.6786 25.52/0.6345 23.83/0.6797 26.41/0.8130 

IRCNN_G [43] 
BD 33.38/0.9182  29.73/0.8292 28.65/0.7922  26.77/0.8154  31.15/0.9245 
DN 24.85/0.7205 23.84/0.6091 23.89/0.5688 21.96/0.6018 23.18/0.7466 

IRCNN_C [43] 
BD 29.55/0.8246  27.33/0.7135 26.46/0.6572  24.89/0.7172  28.68/0.8574 
DN 26.18/0.7430 24.68/0.6300 24.52/0.5850 22.63/0.6205 24.74/0.7701 

SRMD(NF) [44] 
BD 34.09/0.9242  30.11/0.8364  28.98/0.8009  27.50/0.8370  32.97/0.9391 
DN 27.74/0.8026 26.13/0.6974 25.64/0.6495 24.28/0.7092 26.72/0.8424 

RDN [22] 
BD 34.57/0.9280  30.53/0.8447  29.23/0.8079  28.46/0.8581  33.97/0.9465 
DN 28.46/0.8151 26.60/0.7101 25.93/0.6573 24.92/0.7362 28.00/0.8590 

SRFBN [12] 
BD 34.65/0.9283  30.64/0.8435  29.18/0.8066 28.43/0.8578  34.02/0.9462 
DN 28.52/0.8180 26.58/0.7140 25.94/0.6615 24.96/0.7120 27.98/0.8612 

RFANet [42] 
BD 34.77/0.9292  30.68/0.8473  29.34 /0.8104  28.89/0.8661  34.49 /0.9492  
DN -\- -\- -\- -\- -\- 

DLRRN(ours) 
BD 34.80/0.9295 30.68/0.8469 29.32/0.8094 28.95/0.8658 34.57/0.9490 
DN 28.64/0.8210 26.70/0.7147 26.00/0.6630 25.24/0.7485 28.24/0.8650 

We show two groups of SR visual results tested on the BD and DN models in Figure 
12. From the visualization results, we can see that our network can reduce distortion and 
recover SR images with more details. From the overall experimental results, it is con-
cluded that our network handles BD and DN degradation more robustly and effectively. 

 
Figure 12. The visualization results of BD × 3 and DN × 3; the first group and the second group 
represent the results of BD × 3 and DN × 3, respectively. 

5. Conclusions and Discussion 
In this paper, we realize image super-resolution reconstruction by adding an extra 

level in the super-resolution network based on feedforward structure, called super-reso-
lution via dual-level recurrent residual network (DLRRN), which makes the pieces of HRL 

“butterfly”from Set5

“img_044”from Urban100

HR Bicubic SRCNN VDSR IRCNN_G

SRMD(NF) RDN SRFBN DLRRN(Ours)

HR Bicubic SRCNN VDSR IRCNN_C

SRMD RDN SRFBN DLRRN(Ours)

Figure 12. The visualization results of BD × 3 and DN × 3; the first group and the second group
represent the results of BD × 3 and DN × 3, respectively.

5. Conclusions and Discussion

In this paper, we realize image super-resolution reconstruction by adding an extra level
in the super-resolution network based on feedforward structure, called super-resolution via
dual-level recurrent residual network (DLRRN), which makes the pieces of HRL informa-
tion and LRL information guide each other through the iterative process, so as to achieve
the better reconstruction of SR images. The proposed CLFFB plays an important role in
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the iterative process, which is used to effectively fuse the cross-level information flow and
features enhancement. We use the combination of L1 and LMS−SSIM loss function to make
an attempt to trade-off objective performance measures and visual effects. In conclusion,
our comprehensive experimental results show that the proposed DLRRN has a good effect
on the objective evaluation index and visual effects.

However, the method proposed in this paper has the limitation of a high complexity
compared to a pure feed-forward network (i.e., The high-level feature learning stage only
works in the LR space.) due to the dense structure and working in both HR and LR
spaces. Our experimental results show that (as shown Figure 13) the SR image generated
by our network can produce a good visual effect for the middle area of the image, but
the restoration effect for the edge of the image is not ideal. We find that Equation (13)
emphasizes that the calculation of the standard deviation in SSIM(p) needs the support
of pixel neighborhood, and SSIM(p), and its derivatives cannot be calculated in some
boundary regions of p. In conclusion, our comprehensive experimental results show that
the proposed DLRRN has a good effect on objective evaluation index and visual effect. Next,
our work will continue to explore the situation of satisfying visual effects and recovering
better edge information.
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In future studies, we will explore the lightweight aspects of the SR network and try to
introduce a non-parametric attention mechanism or dynamic convolution layer to enhance
information extraction in the high-level information learning stage of the network. We will
improve the reconstruction block of the network and design a more efficient reconstruction
part instead of simply using transposed convolution or sub-pixel convolution. At the same
time, in the future work, we will apply this work to video SR or introduce it into the real
world for real-time broadcasting.
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Abbreviations
LR (HR) Low-(high-)resolution
DLRRB The dual-level recurrent residual block
HRL (LRL) HR-level (LR-level)
CLFFB_S/CLFFB_L Cross-level feature fusion block of HRL/(LRL)
SAFEB The self-attention feature extraction block
CLFFB Collectively referred to as CLFFB_S and CLFFB_L
DRB dimension reduction block
BI The process of obtaining LR image by bicubic downsampling of HR image.

BD
First blurring the HR image with a Gaussian kernel with size 7× 7 and
standard deviation of 1.6, and then performing a downsampling operation

DN
The process of first adding Gaussian noise with a noise level of 30 to the HR
and then obtaining the LR by standard bicubic downsampling
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