Standing-Wave Feeding for High-Gain Linear Dielectric Resonator Antenna (DRA) Array
Abstract
:1. Introduction
2. Design of DRA Array Unit Cell
3. Two-Element Standing-Wave Linear Array
4. Four-Element Standing-Wave Linear Array
5. Fabrication and Measurements
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kajfez, D.; Guillon, P. Dielectric Resonators; Artech House Microwave Library, Artech House: London, UK, 1986. [Google Scholar]
- Long, S.; McAllister, M.; Shen, L. The resonant cylindrical dielectric cavity antenna. IEEE Trans. Antennas Propag. 1983, 31, 406–412. [Google Scholar] [CrossRef]
- Brown, E.R.; Abdalmalak, K.A.; Zhang, W. Effect of Metal Resistive Losses on the Gain of a THz Planar Spiral Antenna. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar]
- Kesavan, A.; Al-Hassan, M.; Ben Mabrouk, I.; Denidni, T.A. Wideband Circular Polarized Dielectric Resonator Antenna Array for Millimeter-Wave Applications. Sensors 2021, 21, 3614. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Lavado, A.; García-Muñoz, L.E.; Lioubtchenko, D.; Preu, S.; Abdalmalak, K.A.; Santamaría-Botello, G.; Segovia-Vargas, D.; Räisänen, A.V. Planar Lens–Based Ultra-Wideband Dielectric Rod Waveguide Antenna for Tunable THz and Sub-THz Photomixer Sources. J. Infrared Millim. Terahertz Waves 2019, 40, 838–855. [Google Scholar] [CrossRef]
- García-Muñoz, E.; Abdalmalak, K.A.; Santamaría, G.; Rivera-Lavado, A.; Segovia-Vargas, D.; Castillo-Araníbar, P.; Dijk, F.V.; Nagatsuma, T.; Brown, E.R.; Guzman, R.C.; et al. Photonic-based integrated sources and antenna arrays for broadband wireless links in terahertz communications. Semicond. Sci. Technol. 2019, 34, 054001. [Google Scholar] [CrossRef]
- Warmowska, D.; Abdalmalak, K.A.; Muñoz, L.E.G.; Raida, Z. High-Gain, Circularly-Polarized THz Antenna with Proper Modeling of Structures with Thin Metallic Walls. IEEE Access 2020, 8, 125223–125233. [Google Scholar] [CrossRef]
- Petosa, A. Dielectric Resonator Antenna Handbook; Artech House Antennas and Propagation Library, Artech House: London, UK, 2007. [Google Scholar]
- Leung, K.W.; Lim, E.H.; Fang, X.S. Dielectric Resonator Antennas: From the Basic to the Aesthetic. Proc. IEEE 2012, 100, 2181–2193. [Google Scholar] [CrossRef]
- Gaya, A.; Jamaluddin, M.H.; Ali, I.; Althuwayb, A.A. Circular Patch Fed Rectangular Dielectric Resonator Antenna with High Gain and High Efficiency for Millimeter Wave 5G Small Cell Applications. Sensors 2021, 21, 2694. [Google Scholar] [CrossRef]
- Petosa, A.; Ittipiboon, A. Dielectric Resonator Antennas: A Historical Review and the Current State of the Art. IEEE Antennas Propag. Mag. 2010, 52, 91–116. [Google Scholar] [CrossRef]
- Luk, K.; Leung, K. Dielectric Resonator Antennas; Antennas, S., Ed.; Research Studies Press: New York, NY, USA, 2003. [Google Scholar]
- Abdalmalak, K.A.; Santamaría-Botello, G.; Lee, C.S.; Rivera-Lavado, A.; García-Castillo, L.E.; Segovia-Vargas, D.; García-Muñoz, L.E. Microwave Radiation Coupling into a WGM Resonator for a High-Photonic-Efficiency Nonlinear Receiver. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018; pp. 781–784. [Google Scholar] [CrossRef]
- Abdalmalak, K.A.; Botello, G.S.; Suresh, M.I.; Falcón-Gómez, E.; Lavado, A.R.; García-Muñoz, L.E. An Integrated Millimeter-Wave Satellite Radiometer Working at Room-Temperature with High Photon Conversion Efficiency. Sensors 2022, 22, 2400. [Google Scholar] [CrossRef]
- Petosa, A.; Mongia, R.; Ittipiboon, A.; Wight, J. Investigation of various feed structures for linear arrays of dielectric resonator antennas. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, 1995 Digest, Newport Beach, CA, USA, 18–23 June 1995; Volume 4, pp. 1982–1985. [Google Scholar] [CrossRef]
- Mishra, N.K.; Das, S.; Vishwakarma, D.K. Beam steered linear array of Cylindrical Dielectric Resonator Antenna. AEU Int. J. Electron. Commun. 2019, 98, 106–113. [Google Scholar] [CrossRef]
- Petosa, A.; Ittipiboon, A.; Cuhaci, M. Array of circular-polarised cross dielectric resonator antennas. Electron. Lett. 1996, 32, 1742–1743. [Google Scholar] [CrossRef]
- Leung, K.W.; So, K.K. Rectangular waveguide excitation of dielectric resonator antenna. IEEE Trans. Antennas Propag. 2003, 51, 2477–2481. [Google Scholar] [CrossRef]
- Zhang, Y.; Kishk, A.A.; Yakovlev, A.B.; Glisson, A.W. Analysis of Wideband Dielectric Resonator Antenna Arrays for Waveguide-Based Spatial Power Combining. IEEE Trans. Microw. Theory Tech. 2007, 55, 1332–1340. [Google Scholar] [CrossRef]
- Eshrah, I.A.; Kishk, A.A.; Yakovlev, A.B.; Glisson, A.W. Excitation of dielectric resonator antennas by a waveguide probe: Modeling technique and wide-band design. IEEE Trans. Antennas Propag. 2005, 53, 1028–1037. [Google Scholar] [CrossRef]
- Leung, K.W.; Lo, H.Y.; So, K.K.; Luk, K.M. High-permittivity dielectric resonator antenna excited by a rectangular waveguide. Microw. Opt. Technol. Lett. 2002, 34, 157–158. [Google Scholar] [CrossRef]
- Xu, F.; Wu, K. Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans. Microw. Theory Tech. 2005, 53, 66–73. [Google Scholar] [CrossRef]
- Abdel-Wahab, W.M.; Busuioc, D.; Safavi-Naeini, S. Millimeter-Wave High Radiation Efficiency Planar Waveguide Series-Fed Dielectric Resonator Antenna (DRA) Array: Analysis, Design, and Measurements. IEEE Trans. Antennas Propag. 2011, 59, 2834–2843. [Google Scholar] [CrossRef]
- Abdallah, M.S.; Wang, Y.; Abdel-Wahab, W.M.; Safavi-Naeini, S. Design and Optimization of SIW Center-Fed Series Rectangular Dielectric Resonator Antenna Array with 45 Linear Polarization. IEEE Trans. Antennas Propag. 2018, 66, 23–31. [Google Scholar] [CrossRef]
- Al-Zoubi, A.S.; Kishk, A.A.; Glisson, A.W. A Linear Rectangular Dielectric Resonator Antenna Array Fed by Dielectric Image Guide with Low Cross Polarization. IEEE Trans. Antennas Propag. 2010, 58, 697–705. [Google Scholar] [CrossRef]
- Al-Zoubi, A.; Kishk, A.; Glisson, A.W. Slot-aperture-coupled linear dielectric resonator array fed by dielectric image line backed by a reflector. In Proceedings of the 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 5–11 July 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Wyville, M.; Petosa, A.; Wight, J. DIG feed for DRA arrays. In Proceedings of the 2005 IEEE Antennas and Propagation Society International Symposium, Washington, DC, USA, 3–8 July 2005; Volume 2A, pp. 176–179. [Google Scholar] [CrossRef]
- Petosa, A.; Ittipiboon, A.; Antar, Y.M.M.; Roscoe, D.; Cuhaci, M. Recent advances in dielectric-resonator antenna technology. IEEE Antennas Propag. Mag. 1998, 40, 35–48. [Google Scholar] [CrossRef]
- Elkarkraoui, T.; Delisle, G.Y.; Hakem, N.; Coulibaly, Y. High gain cross DRA antenna array for underground communications. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 1942–1943. [Google Scholar] [CrossRef]
- Elkarkraoui, T.; Hakem, N.; Delisle, G.Y.; Coulibaly, Y. A Novel Design Approach for a 60 GHz Circularly Polarized EBG Antenna. Prog. Electromagn. Res. 2016, 69, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Shahadan, N.H.; Jamaluddin, M.H.; Kamarudin, M.R.; Yamada, Y.; Khalily, M.; Jusoh, M.; Dahlan, S.H. Steerable Higher Order Mode Dielectric Resonator Antenna With Parasitic Elements for 5G Applications. IEEE Access 2017, 5, 22234–22243. [Google Scholar] [CrossRef] [Green Version]
- Movahedinia, R.; Sebak, A.R.; Chaharmir, M.R.; Ranjbar Nikkhah, M.; Kishk, A.A. X -Band Circularly Polarized Electronically Steerable Parasitic Array Radiator of DRA. IEEE Trans. Antennas Propag. 2018, 66, 721–728. [Google Scholar] [CrossRef]
- Rivera-Lavado, A.; García-Muñoz, L.E.; Generalov, A.; Lioubtchenko, D.; Abdalmalak, K.A.; Llorente-Romano, S.; García-Lampérez, A.; Segovia-Vargas, D.; Räisänen, A.V. Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves. J. Infrared Millim. Terahertz Waves 2017, 38, 33–46. [Google Scholar] [CrossRef]
- Bhartia, P.; Bahl, I. Millimeter Wave Engineering and Applications; A Wiley-Interscience Publication; Wiley: Seoul, Korea, 1984. [Google Scholar]
- Lakshmanan, A.; Lee, C.S. A Standing-Wave Microstrip Array Antenna. IEEE Trans. Antennas Propag. 2011, 59, 4858–4861. [Google Scholar] [CrossRef]
- Althuwayb, A.A.; Abdalmalak, K.A.; Lee, C.S.; Santamaría-Botello, G.; García-Castillo, L.E.; Segovia-Vargas, D.; García-Muñoz, L.E. 3-D-Printed Dielectric Resonator Antenna Arrays Based on Standing-Wave Feeding Approach. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2180–2183. [Google Scholar] [CrossRef]
- Huber, E.; Mirzaee, M.; Bjorgaard, J.; Hoyack, M.; Noghanian, S.; Chang, I. Dielectric property measurement of PLA. In Proceedings of the 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, USA, 19–21 May 2016; pp. 0788–0792. [Google Scholar] [CrossRef]
- Kumar, P.; Dwari, S.; Utkarsh; Singh, S.; Kumar, J. Investigation and Development of 3D Printed Biodegradable PLA as Compact Antenna for Broadband Applications. IETE J. Res. 2020, 66, 53–64. [Google Scholar] [CrossRef]
- Fang, X.S.; Chow, C.K.; Leung, K.W.; Lim, E.H. New single-/dual-mode design formulas of the rectangular dielectric resonator antenna using covariance matrix adaptation evolutionary strategy. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 734–737. [Google Scholar] [CrossRef]
- Petosa, A.; Thirakoune, S. Rectangular Dielectric Resonator Antennas With Enhanced Gain. IEEE Trans. Antennas Propag. 2011, 59, 1385–1389. [Google Scholar] [CrossRef]
- ANSYS Simulation Driven Product Development, HFSS. Available online: https://www.ansys.com/ (accessed on 1 February 2022).
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Kremer, H.I.; Leung, K.W.; Wong, W.C.; Lo, K.K.W.; Lee, M.W.K. Design of Dielectric Resonator Antenna Using Dielectric Paste. Sensors 2021, 21, 4058. [Google Scholar] [CrossRef] [PubMed]
- Abdalmalak, K.A.; Botello, G.S.; Llorente-Romano, S.; Rivera-Lavado, A.; Flygare, J.; Fernández, J.A.L.; Puente, J.M.S.; García-Castillo, L.E.; Segovia-Vargas, D.; Pantaleev, M.; et al. Ultrawideband Conical Log-Spiral Circularly Polarized Feed for Radio Astronomy. IEEE Trans. Antennas Propag. 2020, 68, 1995–2007. [Google Scholar] [CrossRef]
- Lamkaddem, A.; El Yousfi, A.; Abdalmalak, K.A.; Posadas, V.G.; Segovia-Vargas, D. Circularly Polarized Miniaturized Implantable Antenna for Leadless Pacemaker Devices. IEEE Trans. Antennas Propag. 2022, 1. [Google Scholar] [CrossRef]
- Petosa, A.; Thirakoune, S.; Ittipiboon, A. Higher-order modes in rectangular DRAs for gain enhancement. In Proceedings of the 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, Banff, AB, Canada, 15–18 February 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Dichtl, C.; Sippel, P.; Krohns, S. Dielectric properties of 3D printed polylactic acid. Adv. Mater. Sci. Eng. 2017, 2017, 6913835. [Google Scholar] [CrossRef] [Green Version]
- Veselý, P.; Tichý, T.; Šefl, O.; Horynová, E. Evaluation of dielectric properties of 3D printed objects based on printing resolution. IOP Conf. Ser. Mater. Sci. Eng. 2018, 461, 012091. [Google Scholar] [CrossRef]
- Abdalmalak, K.A. Analysis and Design of Antennas and Radiometers for Radio Astronomy Applications in Microwave, Mm-wave, and THz Bands. Ph.D. Thesis, Universidad Carlos III de Madrid, Madrid, Spain, 2022. [Google Scholar]
- Zhang, S.; Njoku, C.C.; Whittow, W.G.; Vardaxoglou, J.C. Novel 3D printed synthetic dielectric substrates. Microw. Opt. Technol. Lett. 2015, 57, 2344–2346. [Google Scholar] [CrossRef] [Green Version]
280 | 70 | |||||
15 | 17 | 4 | 22 |
Ref | DRA Array Feeding Method | No. of Elements | Gain @ (dBi) | Antenna Size () | Impedance/Gain BW Product (%) | Efficiency @ (%) |
---|---|---|---|---|---|---|
[31] | Parasitic | 3 | 9.25 | 0.89 | 9 | 92 |
[23] | SIW | 4 | 10.6 | 1 | 5 | 93 |
[16] | Microstrip lines | 4 | 10 | 0.9 | 3 | 85 |
[25] | DIG | 7 | 7.61 | 15.4 | 10 | 64.6 |
[24] | SIW | 8 | 11.5 | 11 | 2 | 85 |
[36] | Standing-wave | 9 | 15 | 18.7 | 7 | 91 |
[25] | DIG | 15 | 12.46 | 25.2 | 15 | 63 |
This work | Standing-wave | 2 | 12 | 0.9 | 4 | 93 |
This work | Standing-wave | 4 | 14 | 2 | 4 | 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalmalak, K.A.; Althuwayb, A.A.; Lee, C.S.; Botello, G.S.; Falcón-Gómez, E.; García-Castillo, L.E.; García-Muñoz, L.E. Standing-Wave Feeding for High-Gain Linear Dielectric Resonator Antenna (DRA) Array. Sensors 2022, 22, 3089. https://doi.org/10.3390/s22083089
Abdalmalak KA, Althuwayb AA, Lee CS, Botello GS, Falcón-Gómez E, García-Castillo LE, García-Muñoz LE. Standing-Wave Feeding for High-Gain Linear Dielectric Resonator Antenna (DRA) Array. Sensors. 2022; 22(8):3089. https://doi.org/10.3390/s22083089
Chicago/Turabian StyleAbdalmalak, Kerlos Atia, Ayman Abdulhadi Althuwayb, Choon Sae Lee, Gabriel Santamaría Botello, Enderson Falcón-Gómez, Luis Emilio García-Castillo, and Luis Enrique García-Muñoz. 2022. "Standing-Wave Feeding for High-Gain Linear Dielectric Resonator Antenna (DRA) Array" Sensors 22, no. 8: 3089. https://doi.org/10.3390/s22083089
APA StyleAbdalmalak, K. A., Althuwayb, A. A., Lee, C. S., Botello, G. S., Falcón-Gómez, E., García-Castillo, L. E., & García-Muñoz, L. E. (2022). Standing-Wave Feeding for High-Gain Linear Dielectric Resonator Antenna (DRA) Array. Sensors, 22(8), 3089. https://doi.org/10.3390/s22083089