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Abstract: Magnetoencephalography (MEG) is a neuroimaging technique that measures the magnetic
fields of the brain outside of the head. In the past, the most suitable magnetometer for MEG was
the superconducting quantum interference device (SQUID), but in recent years, a new type has
also been used, the optically pumped magnetometer (OPM). OPMs can be configured to measure
multiple directions of magnetic field simultaneously. This work explored whether combining multiple
directions of the magnetic field lowers the source localization error of brain sources under various
conditions of noise. We simulated dipolar-like sources for multiple configurations of both SQUID-
and OPM-MEG systems. To test the performance of a given layout, we calculated the average signal-
to-noise ratio and the root mean square of the simulated magnetic field; furthermore, we evaluated
the performance of the dipole fit. The results showed that the field direction normal to the scalp yields
a higher signal-to-noise ratio and that ambient noise has a much lower impact on its localization error;
therefore, this is the optimal choice for source localization when only one direction of magnetic field
can be measured. For a low number of OPMs, combining multiple field directions greatly improves
the source localization results. Lastly, we showed that MEG sensors that can be placed closer to the
brain are more suitable for localizing deeper sources.

Keywords: magnetoencephalography; optically pumped magnetometers; superconducting quantum
interference device; volume conductor; boundary element method; equivalent current dipole; source
localization; ambient noise; spontaneous brain noise

1. Introduction

Magnetoencephalography (MEG) is a non-invasive imaging technique in neuroscience
which determines activity within the cortex on the basis of measurements of the magnetic
field near the head [1]. It has very good temporal and fair spatial resolution. To achieve
a high spatial resolution, a sophisticated source reconstruction method has to be used,
which considers the geometry of each subject’s head [2] obtained from reconstructed
magnetic resonance images (MRI). The main disadvantage of the standard MEG system is
the requirement for liquid helium to cool the superconducting SQUID magnetometers. In
the last decade, commercial optically pumped magnetometers (OPM) based on alkaline
metal vapor have appeared on the market, which have up to five times lower sensitivity
than the standard SQUID magnetometers but they do not need cooling [3,4]. They are fully
suitable for brain magnetic field measurements [5].

The availability of a new type of sensor triggered the evaluation of source analysis
methods for OPM-MEG [5–7] derived from methods developed for SQUID-MEG. How-
ever, MEG systems with OPM sensors are still under development; therefore, commercial
complete MEG systems are rare, and the current experimental systems all have different
configurations [6,8–10], complicating the evaluation of analysis methods.
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The magnetic fields produced by the brain currents accompanying neural activity
are very weak. Since the OPM sensors do not need cooling with cryogenics, they can be
placed closer to the brain. The latest theoretical and experimental research results show
that this significantly increases the measured magnetic signal and thus the signal-to-noise
ratio (SNR) [6–8]. Currently, there are commercial magnetometers on the market which can
simultaneously measure more than one orthogonal direction of the magnetic field. One
example is the magnetometer QZFM Gen-3, made by QuSpin (https://quspin.com/qzfm-
gen-3/, accessed on 6 April 2022), which can measure all three orthogonal components
of the magnetic fields [4]. The operating principle of the triaxial OPM sensor was nicely
explained in a recent study by Boto et al. [11]. An interesting question is which component
is the most suitable for extracting physiologically relevant information from MEG. A
simulation study by Iivanainen et al. [6] showed that the highest field amplitude is obtained
by the OPM sensor that measures the normal component. They also showed that using
two or three components of the sensor increases the capacity of the captured information.

A recent theoretical study of a triaxial OPM system by Brookes et al. [12] showed that
using all three sensor components increased the ability to differentiate actual brain activity
from sources of magnetic interference when using the beamforming source localization
approach. Additionally, they showed that a triaxial OPM-MEG system is less prone to
artifacts due to head movements in the magnetic fields. Although studies have been
carried out on the impact of noise on OPM-MEG measurements, there are still many open
research questions. MEG measurements are carried out in a variety of environments. The
magnetically shielded rooms vary considerably between research groups, and so does
the noise intensity. Therefore, how the MEG systems (OPM or SQUID) with different
measurement components behave for varying noise levels is an important question. To
explore this, we simulated current dipoles inside a brain for multiple sensor components
of both OPM- and SQUID-MEG. We added two types of noises (spontaneous brain noise
and ambient noise) to the simulated magnetic fields. We tested how their strength affected
the localization error and SNR. Our study differs from [12] because here, we used a more
sophisticated forward model and a different source localization method.

Among the most established approaches used to place individual OPM sensors on
the head is the method of 3D printing a custom sensor holder, which fits the individual
subject’s head surface [8,13]. This allows us to place sensors easily in various locations
around the scalp as required by the user’s specific neuroscience question. Many research
groups are currently limited by the number of OPM sensors. One of the reasons for this
is the cost of several thousand dollars per sensor. Therefore, we explored how lowering
the sensor count affected the source localization results of an equivalent current dipole
(ECD) fit. The most important question is whether combining multiple components lowers
the source localization error in the case of a lower sensor count. This has partly been
explored already in previous works. Matsuba et al. [14] calculated dipole localization errors
in relation to the number of sensors for normal and vector SQUID magnetometers. They
showed that for high sensor counts, the localization error is independent of the number of
sensors. These results do not directly apply to OPM sensors, which are much closer to the
head. The authors of [12] concluded that 50 triaxial sensors have an approximately similar
performance to 80 radial sensors in the absence of interference. An interesting question
remains: how does an OPM-MEG system with a triaxial sensor configuration compare with
dual- or single-sensor configurations for counts lower than 50? We hypothesize that the
localization error for low sensor counts will be much lower for the triaxial configuration
compared with a single-sensor configuration.

Although it is possible to measure deep brain sources with classical SQUID-based
MEG [15–17], one of the proposed advantages of on-scalp MEG is the ability to measure it
more accurately [18,19]. This was briefly explored in [7], where they concluded that OPMs
offer better coverage of deep brain areas due to improved SNR. How the performance of
different MEG systems (OPM and SQUID) varies for different depths is still unexplored.
In our work, we systematically explored how signal strengths and localization errors
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changed for different sensor configurations for varying dipole depths. We are particularly
interested in whether combining multiple components of the OPM-MEG systems offers
any advantages.

In this study, we analyzed the performance of three orthogonal measurement compo-
nents (one normal to the head surface, and two tangential along the lines of latitude and
longitude) of two types of MEG systems (OPM-MEG and SQUID-MEG). We carried out a
simulation of many single sources inside the brain with added noise. We incorporated two
types of noises: spontaneous brain activity [7] and random ambient noise. Preliminary re-
sults [20] showed that the normal component had the highest SNR when spontaneous brain
noise was added to the simulated fields. Here, we checked how the strength of different
noises affects the localization error of dipole fit (the distance between two dipoles, relative
error, and correlation coefficient) [21] and the SNR. Next, we checked how lowering the
sensor count affected the source localization error for different OPM-MEG configurations.
Lastly, we performed simulations for sources at different depths inside the head. Although
the simulations were made with OPM sensors as an example, the results are relevant for any
other MEG sensor which can be placed close to the subject’s scalp, e.g., high-temperature
SQUIDs [22].

2. Materials and Methods

In the simulations, we calculated magnetic field maps for two systems with different
types of sensors: the OPM-MEG system and the SQUID-MEG system. For the OPM-MEG
system, the calculations were made with 4 different combinations of sensor orientations:
normal components relative to the subject’s scalp only (OPM-NOR), tangential components
along the lines of latitude relative to the subject’s scalp or oriented horizontally only (OPM-
TAN-LAT), tangential components along the lines of longitude or oriented “vertically” only
(OPM-TAN-LON), and using all three orthogonal components simultaneously (OPM-ALL).
The OPM sensors were distributed around the head for each subject separately. The number
of sensors was limited by the physical size of typical commercial sensors, with a footprint
in the range of 10 × 15 mm; therefore, we placed more sensors on subjects with bigger
heads. On average, we placed 82 sensors; the highest sensor count was 93 and the lowest
was 71 sensors. For one subject, we show the sensors for all four configurations (Figure 1).
When performing the simulation, we took the geometry of the QuSpin QZFM Gen 2.0
sensors into account [4]. The magnetic field was calculated by integrating over 8 points
inside the sensor (the corners of the cube) with the same weights.

For the SQUID-MEG system, we tested 4 different configurations. The geometry of the
SQUID-MEG system was based on a commercial SQUID system with 125 first-order axial gra-
diometers, produced by the company Yokogawa (Tokyo, Japan) [23] (SQUID-AXI-GRAD).
Since the OPM-MEG configurations use magnetometers only, we created SQUID layouts
with three orthogonal magnetometers located close to the head from the gradiometer pair in
SQUID-AXI-GRAD: normal components (SQUID-NOR), and tangential components along the
lines of latitude (SQUID-TAN-LAT) and along the lines of longitude (SQUID-TAN-LON). All
SQUID-MEG layouts are shown in Figure 2. For the SQUID-AXI-GRAD layout, we took the
real sensor geometry of the Yokogawa MEG system into account [23]. The magnetic field
was calculated by integrating over 4 points for each pickup coil of the gradiometer. For
the magnetometer layouts, the calculation was the same, but we integrated over only one
pickup coil.
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(OPM-TAN-LON) and (a) all three components combined (OPM-ALL). The gray surfaces show in-
dividual BEM mesh model layers. The center of the black dots represents the center of the OPM 
sensors, and the green arrows show the sensors’ sensing directions. The sensor count for this subject 
is 93. 
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gradiometer pair in SQUID-AXI-GRAD: normal components (SQUID-NOR), and tangen-
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gitude (SQUID-TAN-LON). All SQUID-MEG layouts are shown in Figure 2. For the 
SQUID-AXI-GRAD layout, we took the real sensor geometry of the Yokogawa MEG sys-
tem into account [23]. The magnetic field was calculated by integrating over 4 points for 
each pickup coil of the gradiometer. For the magnetometer layouts, the calculation was 
the same, but we integrated over only one pickup coil.  

Figure 1. Different configurations of OPM-MEG for one selected subject: (b) normal components
(OPM-NOR), (c) tangential components along lines of latitude (OPM-TAN-LAT), (d) longitude
(OPM-TAN-LON) and (a) all three components combined (OPM-ALL). The gray surfaces show
individual BEM mesh model layers. The center of the black dots represents the center of the OPM
sensors, and the green arrows show the sensors’ sensing directions. The sensor count for this subject
is 93.

For the sensor layouts listed above, we calculated the magnetic fields of current dipoles
located inside the subject’s head. The forward model used a 3-layer BEM model [24].
The layers and the conductivities are as follows: scalp, 0.3 S/m; skull, 0.006 S/m; brain
compartment, 0.3 S/m. For each layer, the outer BEM mesh consisted of 2562 vertices and
5120 triangles. All the geometries needed were reconstructed from the MRI image using
the Freesurfer and MNE software package [25,26]. For one time sample, we simulated
one dipole inside the brain. An example of one subject is shown in Figure 3a. Dipoles
were chosen randomly for 100 time samples, each with a strength of q = 100 nAm [27]
and a random direction in the 3-dimensional Cartesian space. Each location was chosen
randomly from a predefined source space, which was located on the outer mesh of the
white matter (see Figure 3c). The simulations were performed for the head geometries
(reconstructed MRI images) of 8 healthy subjects using the built-in functions of the software
package MNE-Python [28].
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Figure 2. Different configurations of the SQUID measurement components for one selected subject:
(a) the original Yokogawa system with 125 axial gradiometers magnetometers (SQUID-AXI-GRAD),
(b) normal magnetometers (SQUID-NOR), (c) tangential magnetometers along the lines of latitude
(SQUID-TAN-LAT) and (d) longitude (SQUID-TAN-LON). In the gradiometer system, the individual
sensor pairs which form a gradiometer have the same color.
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Figure 3. Examples of dipole locations and directions inside the brain. (a) Location and direction of
one dipole for one sample time frame. The size of the red arrows does not represent the strength of
the dipoles. (b) Locations and directions of 100 dipoles for simulated spontaneous brain activity for
one sample time frame. (c) Example of the reconstructed brain surface (white matter) and all possible
locations from which we chose the dipoles for the simulation (red dots).

We added two types of noise to each simulated magnetic field map (MFM). The first
represents random ambient noise. The ambient noise (Bambient

i (t)) for one time frame (t)
was calculated as:

Bambient
i (t) = σξi, (1)
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where σ represents the strength of the noise and ξi is a Gaussian random number with a
zero mean and a standard deviation equal to 1. The index i represents an individual sensor.

The other type of noise represents spontaneous brain activity, which originates inside
the head. The noise for one sample was generated with 100 dipoles on the cortical mantle
with randomly chosen locations and directions [20]. The strength of each “noisy” dipole
was the same and was set with the parameter qspont. An example of 100 “noisy” dipoles for
one subject and one time sample is shown in Figure 3b.

To evaluate how the noise affects the performance of different OPM-MEG layouts, we
calculated the values of the signal-to-noise ratio (SNR) in units of dB [29]:

SNR = 20 log10

(RMSsignal

RMSnoise

)
, (2)

where RMSnoise is the root mean square of the generated noise and RMSsignal is the
root mean square of the data when we simulated the “expected” sources without the
added noise.

To localize the source from the simulated magnetic fields, we performed an equivalent
current dipole (ECD) fit for each time sample. We used the functions implemented in
the MNE-Python software package [26,28,30]. For the forward model, we applied the
same model as we used for generating the magnetic fields (the 3-layer BEM model). After
obtaining the location and orientation for all time samples, we calculated the average
distance between the simulated and fitted ECD (ds,f).

As a last measure, we calculated the average relative error (RE) and the average
correlation coefficient (CC) between the reconstructed MFM (Br) and the simulated MFM
(Bs) with added noise. For one time frame (t), these two values were calculated as:

RE =
(Bs − Br)2

(Br)2
, (3)

and

CC =
∑
(

Br
i − Br

)(
Bs

i − Bs
)

√
∑
(

Br
i − Br

)2
√

∑
(

Bs
i − Bs

)2
, (4)

where B is an n-dimensional vector of magnetic fields and B = (B1, B2, ..., Bn); n is the
number of sensors.

3. Results

As the first result, we show the MFMs as contour plots and color-coded values of
magnetic fields at the sensors’ locations. Brighter colors represent higher values of B. An
example of one simulated dipole for all three OPM configurations on one subject for one
time sample is shown in Figure 4a. MFMs for two different types of noise (ambient noise
and spontaneous brain noise) for the same subject and for one time sample are shown in
Figure 4b,c. We can see that for this example, the highest amplitude range for one dipole
is for the OPM-NOR configuration. When we compare both noises, the ambient noise
has higher heterogeneity, and we can see many local minima and maxima. The values for
spontaneous brain noise are much more homogeneous.
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Figure 4. MFMs for one sample time frame for three cases: the simulated dipole without noise (a),
simulated ambient noise (b), and spontaneous brain noise (c).

As the next result, we present the average root mean square (RMSsignal) values for
all simulated MFMs without added noise. The RMSsignal for different OPM-MEG con-
figurations are presented in Table 1 and those for different SQUID-MEG configurations
are in Table 2. For both systems, we obtained the results in two steps. First, we calcu-
lated RMSsignal for all 100 time samples for each subject. We then calculated the average
RMSsignal and the standard deviation (SD) for all eight subjects. These two tables show that
the RMSsignal was highest for the normal component for both the OPM- and SQUID-MEG.
The OPM-MEG system has, on average, much higher RMSsignal values.

Table 1. The average RMSsignal of the simulated MFM without noise for four different OPM-MEG con-
figurations.

Configuration OPM-ALL OPM-NOR OPM-TAN-LAT OPM-TAN-LON

RMSsignal ± SD 375 fT ± 30 fT 459 fT ± 37 fT 277 fT ± 30 fT 284 fT ± 26 fT
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Table 2. The average RMSsignal of the simulated MFM without noise for four different SQUID-
MEG configurations.

Configuration SQUID-AXI-GRAD SQUID-NOR SQUID-TAN-LAT SQUID-TAN-LON

RMSsignal ± SD 132 fT ± 13 fT 189 fT ± 9 fT 100 fT ± 14 fT 109 fT ± 10 fT

As the next result, we changed the strength of both noises and checked how the
evaluation parameters (RE, CC, SNR, and ds,f) changed for both MEG systems. First, we
changed the strength of the ambient noise from σ = 0 to σ = 375 fT. Each dipole’s strength
of spontaneous brain noise was set to qspont = 0. The results in Figure 5 show that the RE,
CC, and SNR were the best when using the normal component only. The reason for this is
that the largest generated fields are in the normal direction. However, the noise level is the
same for all configurations. On the other hand, the localization accuracy (ds,f) is the best
when using all three components of the OPM-MEG system combined.
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Figure 5. Evaluation parameters (RE, CC, SNR, and ds,f) averaged over all 100 time samples and eight
subjects in relation to the strength (σ) of the ambient noise for four different OPM-MEG configurations.
The dipoles’ strength of spontaneous brain noise was qspont = 0. Vertical lines represent the standard
deviation between subjects.

Next, we changed the strength of the spontaneous noise from qspont = 0 to qspont = 7 nAm
for both MEG systems. The strength of the ambient noise was σ = 0. The results in Figure 6
show that the normal component does not have better results, as occurred in the previous
case, because this component also has higher generated noise than the other two. If we look
in detail, the localization accuracy (ds,f) is also the best when using all three components.
We expanded the results of ds,f by making calculations for different pairs of both noises
qspont and σ; the results are presented in Figure 7.
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four different OPM-MEG configurations: (a) OPM-ALL, (b) OPM-NOR, (c) OPM-TAN-LAT and
(d) OPM-TAN-LON.
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We checked how the number of sensors influenced the localization error ds,f when us-
ing seven different OPM-MEG configurations. In addition to the four OPM configurations
presented in Figure 1, we also used three configurations in which we combined two or-
thogonal components: both OPM-NOR and OPM-TAN-LAT (OPM-NOR,TAN-LAT), both
OPM-NOR and OPM-TAN-LON (OPM-NOR,TAN-LON), and both tangential components
(OPM-TAN,LAT-LON). The simulation was performed for two cases: when we applied
the ambient noise only (σ = 75 fT, qspont = 0) and when we applied the spontaneous brain
noise only (σ = 0, qspont = 3 nAm). For each case, we gradually removed the sensors
and performed the dipole fitting; the results are presented in Figure 8. Since the number
of sensors for different subjects is not the same, we used the measure of the percentage
of sensors we removed from the total number. We can see that for low sensor counts
(a high percentage of sensors removed), multiple components yielded noticeably lowered
the localization errors (ds,f).
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Figure 8. Distance between simulated and fitted dipoles (ds,f) averaged over all 100 time samples
and eight subjects in relation to the number of sensors for seven different OPM-MEG configurations.
The strength of the ambient noise and the spontaneous brain noise was (a) σ = 75 fT and qspont = 0,
and (b) σ = 0 and qspont = 3 nAm.

Lastly, we tested how the depth of a simulated dipole affected the measured signal
and the performance of a dipole fit for different sensor configurations (both OPM- and
SQUID-MEG). For the previous simulations in this work, we picked 100 random dipoles
from all possible locations (see Figure 3c), but for this case, we picked only dipoles that
were at a certain depth (h). We defined the depth as the shortest Euclidean distance between
the chosen dipole and the closest vertex of the outermost BEM mesh (the scalp layer). To
evaluate the results, we calculated three measures: RMSsignal, SNR, and ds,f. The results
are presented in Figure 9. Note that the value of h on the x-axis means that the dipoles
were chosen at a depth of h± dh; in our case, dh = 0.5 cm. For example, for the value
h = 1.5 cm, we chose 100 dipoles for which the shortest distance from the outer scalp layer
was between 1.0 cm and 2.0 cm. The simulations were performed for two cases: when we
added the ambient noise only (Figure 9a, σ = 75 fT, qspont = 0) and when we added the
spontaneous brain noise only (Figure 9b, σ = 0, qspont = 3 nAm).
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Figure 9. Calculated values of RMSsignal, SNR, and ds,f in relation to the depth of the simulated
dipoles (h). The strength of the ambient noise and the spontaneous brain noise was (a) σ = 75 fT and
qspont = 0, and (b) σ = 0 and qspont = 3 nAm. Note that the value of h on the x-axis means, that the
dipoles were chosen at a depth of h± dh; in our case, dh = 0.5 cm.

4. Discussion

The use of OPM sensors in MEG solves many disadvantages of the standard SQUID-
MEG. Since these sensors do not require cooling with cryogenics, they can be placed directly
on the scalp and thus allow the subject to move during measurements. This opens up a
plethora of new applications for studying neural activity where the subject’s movement
is required. In addition, the lower distance between the sensors and the head increases
the strength of the measured signal, which, in theory, increases the SNR. This was already
shown in a couple of previous works [6,7], and it was also confirmed by our results in
Tables 1 and 2, where we show that the OPM-MEG configurations have an RMSsignal
around 2.5 higher than that of the SQUID-MEG configurations with magnetometers if we
compare the same components from both MEG systems. The component with the highest
magnetic fields is the normal component in both the OPM-MEG and in SQUID-MEG
configurations; it had an RMSsignal almost two times higher compared with that of both
tangential components. When we compared both tangential components, the component
along the lines of longitude had, on average, a slightly higher RMSsignal than the component
along the lines of latitude.

Next, we evaluated how noise affected different configurations of the measurement
components of SQUID- and OPM-MEG. We added two different noises to each measure-
ment component: ambient and spontaneous brain noise. The ambient noise represented
sources from the outside environment; therefore, the amplitude of the noise was equal for
both MEG systems and all components. This was simulated by adding a random field
value to each channel. Spontaneous brain noise represented the subject’s spontaneous
brain activity, i.e., sources inside the head. This noise was also used by Boto et al. [7], who
simulated five noisy ECDs. In our work, we simulated 100 of them. This was simulated
by distributing many dipoles randomly in the region of the cortex. Since it depends on
the distance between sources and sensors, the noise level was higher for more closely
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positioned sensors. The effect of noise was checked by adding noise to the simulated
MFMs and calculating the inverse problem (ECD fit), and by calculating the SNR. The
goodness of fit was evaluated by calculating three measures: relative error (RE) and the
correlation coefficient (CC), which were calculated between the noisy simulated MFMs and
the fitted MFMs, and the distance between the simulated and fitted dipoles ds,f. For solving
the inverse problem, other methods could be used, such as minimum norm estimation, a
music algorithm, or beamformers [31–33], the latter being the most popular in recent years.
Although the beamformer approach has many advantages over more simple approaches,
we consider that in our case, where we simulated data with single dipolar-like sources
with added noise, the approach of fitting an ECD was the most appropriate. The results in
Figure 5 show that adding ambient noise impacts each component and MEG system differ-
ently. OPM-MEG configurations yielded substantially lower localization errors compared
with SQUID-MEG configurations (lower RE and ds,f; higher CC and SNR). This is because
the OPM sensors are closer to the sources inside the brain and therefore have a higher
RMSsignal, but the ambient noise level is equal for all sensors. When we compared different
components, the lowest impact was on the normal components of the magnetometers for
both MEG systems. When we compared both tangential components, the results were
very similar. For the OPM-MEG system, we additionally show that combining all three
components lowered the value of ds,f even further. The finding that the radial component
has a larger SNR than the tangential component on average was most likely the reason for
the results observed in our recent study, where we transformed the data between OPM-
and SQUID-MEG devices [13]. We obtained higher errors when transforming tangential
components than when transforming the normal components of the OPM-MEG to the
SQUID-MEG system, which measures the normal component of the magnetic field only.

Next, we added the spontaneous brain noise only (Figure 6). The SNRs of the SQUID-
MEG configurations were not noticeably worse than the SNRs of OPM-MEG. This is because
the OPM sensors are closer to the noisy sources inside the brain and therefore, the higher
amplitude of the targeted brain source of interest does not increase the SNR. However,
when we compare the parameter ds,f, the results show that the OPM-MEG system is better.
The same applies when we compare different OPM orientations, although the normal
component has the largest field-generated RMSsignal; it has also higher values of RMSnoise.
Therefore, the calculated SNR is very similar between configurations. This result is very
interesting: although all configurations yielded almost identical SNRs, some configurations
provided lower ds,f (OPM-NOR and OPM-ALL).

In real measurements, one deals with a combination of several noise sources. Here,
we calculated the impact on the calculated parameter ds,f for a combination of spontaneous
brain and ambient noise. We changed the parameters σ and qspont for different sensing
components of the OPM-MEG system (Figure 7). We observed that the distance ds,f began
to increase the fastest for both tangential components (OPM-TAN-LAT and OPM-TAN-
LON). The results are better and very similar for the OPM-MEG configurations OPM-NOR
and OPM-ALL. This indicates that the addition of tangential components to the normal
components of sensors does not significantly affect the dipole fitting results. Successful
measurements with triaxial OPM sensors on subjects were performed in a recent study
by Boto et al. [11]. In addition to the measurements, they performed a simulation for a
triaxial OPM-MEG system with three head geometries (two children and one adult). They
concluded that using triaxial sensors offers improved cortical coverage, especially in infants
and children.

Adding additional tangential components also improves the performance of some
methods which remove external disturbances, such as the signal space separation (SSS). In
a study by Nurminen et al. [34], they added tangential SQUID sensors to a complete whole-
head SQUID system. This increased the SSS shielding factor and reduced the reconstruction
noise. The SSS method can also be used in OPM-MEG measurements. In [35], the authors
hypothesized that using triaxial OPM sensors will result in the better performance of SSS
and other spatial filter techniques.
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Currently, commercial OPM-MEG systems with full-head coverage are rare. Although
some companies offer viable solutions (Fieldline Inc., Boulder, CO, USA and Cerca Mag-
netics Limited, Nottingham, UK), many research groups buy the OPM sensors separately.
Since the cost of these sensors is high, many use lower sensor counts. This approach re-
duces the initial investment and allows for future upgrades. In this work, we checked how
lowering the number of sensors affected the distance between simulated and fitted dipoles
(ds,f) when using different components; additionally, we checked if combining multiple
components lowered the error (Figure 8). Simulations were performed for two cases, where
we used either ambient noise (Figure 8a) or spontaneous brain noise (Figure 8b). For the
case with ambient noise and only one component, the worst results were obtained for
the OPM-MEG configurations OPM-TAN-LAT and OPM-TAN-LON, and the best were
for the OPM-NOR component. On the other hand, when we added spontaneous brain
noise, the OPM-NOR component was not better compared with the other two, as all
three components were inside the bounds of standard deviation. For a low percentage of
sensors removed, the results were similar, as shown in Figure 5. For a high percentage
of sensors removed, combining two or all three components significantly improved the
result (lowered the ds,f) compared with configurations with single components. The result
was very interesting for the case with ambient noise: the configurations OPM-TAN-LAT
and OPM-TAN-LON were very bad on their own, but combined (OPM-TAN-LAT, LON),
they had a much lower ds,f than OPM-NOR. Combining all three components (OPM-ALL)
yielded the best result (the lowest ds,f). A similar finding was observed in [12], where
they calculated the Frobenius norm of the forward field vector; the higher this norm, the
lower the error in the beamformer projection. They showed that this value was higher
for 50 triaxial sensors compared with 50 radial sensors. The main finding of the results
shown in Figure 8 is that combining several components does not have a significant effect
on the ECD fit localization result if one has many OPM sensors available. On the other
hand, combining several components greatly improves the source localization results if one
is limited by the sensor count (around 20 sensors or less). This can be utilized to greatly
reduce the initial investment when building an OPM-MEG system. When we removed
sensors, they were arranged equidistantly; it would be interesting to see how these results
would change if the sensors were distributed optimally for a given ROI using an algorithm
such as the one presented by Beltrachini et al. [36].

Another proposed advantage of OPMs compared with SQUIDs is the ability to mea-
sure signals from deep brain sources, such as the hippocampus [18,19]. In this simulation
study, we tested this hypothesis and checked whether combining multiple OPM compo-
nents had an advantage for deep brain sources. We simulated dipoles only at a specific
depth (Figure 9); to the simulated MFMs, we added two types of noises (ambient noise
and spontaneous brain noise) and performed ECD fitting. Even though the dipoles were
randomly chosen for both noises, we obtained similar values for the RMSsignal. The highest
values of RMSsignal for all depths were calculated for the OPM-NOR configuration, fol-
lowed by OPM-TAN-LAT and OPM-TAN-LON. The values for OPM-ALL were the mean
values for all three OPM single components. The SQUID-MEG system had much lower
values of RMSsignal compared with OPM-MEG; however, for the OPM-MEG configurations,
they dropped more noticeably with an increasing h. For the ambient noise (Figure 9a) and
for high values of h, the ds,f was lowest for the configuration OPM-ALL, followed very
closely by OPM-NOR. The worst result was obtained by SQUID-TAN-LAT and SQUID-
TAN-LON. This was expected, since SNR < 0. For the deepest simulated sources (h = 5.5),
SQUID-NOR had a similar ds,f to OPM-TAN-LAT. The calculated SNRs for the spontaneous
brain noise (Figure 9b) were different from those for the ambient noise, and the values
between the configurations are much more similar. This lack of a difference was observed
for spontaneous brain noise (Figure 6) as well, since the amplitude ratio between brain
noise and the brain source of interest stays the same irrespective of the distance between
the sensor and the sources. For low values of h, the OPM configurations had slightly higher
values of SNR; on the contrary, for high values of h, SQUIDs had a higher SNR. For this
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noise, OPM-ALL also had the lowest ds,f, but this was significant only for the middle values
of h. For low values of h, the OPM-MEG configurations had lower values of ds,f than
SQUID-MEG, but for high values of h, SQUID-MEG had slightly lower values of ds,f, except
for OPM-ALL and SQUID-TAN-LON

In this simulation study, we assumed that both types of sensors had equal sensitivities.
An actual SQUID MEG system has a typical sensitivity of 3 fT/

√
Hz [37], and the OPMs

produced by QuSpin (https://quspin.com/products-qzfm/, accessed on 6 April 2022) have
sensitivities of 7–10 fT/

√
Hz and 15 fT/

√
Hz for operating in dual and triple axis mode,

respectively. This intrinsic sensor noise could be considered as an additional uncorrelated
contribution to the random ambient noise. Consequently, the variance (σ2) of the combined
ambient and intrinsic noises can be determined by the sum of the variances of both noises.
Therefore, one can conclude that for ambient noise levels above 30 fT (σ > 30 fT), the
addition of the intrinsic noise would not significantly change the outcome, which was
confirmed by our results displayed in Figure 5. The same conclusion could be drawn from
the results in Figures 8a and 9a, where σ = 75 fT was considered. For deeper brain sources,
the relative distances between the sensors and sources are not so much in favor of OPMs
in comparison with SQUIDs anymore. The gain in the RMSsignal is only about a factor of
2. However, one can estimate, through simple calculus, that in the presence of combined
intrinsic and ambient random noises, the SQUIDs would outperform the OPMs in terms of
a better SNR only for very low levels of random ambient noise (σ < 8 fT).

5. Conclusions

In this study, we performed a numerical simulation to test the performance of differ-
ent measurement components of both SQUID- and OPM-MEG systems. The sensors in
the OPM-MEG system were closer to the source than those in the SQUID-MEG system;
therefore, they measured higher magnetic fields. For this reason, the SNR and the source
localization accuracy was higher for the OPM-MEG system when we introduced ambient
noise. For both systems, the normal direction of the sensors yielded the lowest source local-
ization error compared with the other two orthogonal directions. When we combined all
three directions, the error was even lower. Since SQUID-MEG rarely has access to all three
directions of magnetic fields, tri-axial OPM-MEG has a clear advantage over SQUID-MEG.

When introducing the spontaneous brain noise, the SNR for all the sensor configura-
tions was almost the same, within the range of error. Nevertheless, for OPM, the normal
components and all components combined had slightly lower localization errors. We
showed that for low sensor counts, which are relevant, given the currently high costs
of OPMs, combining multiple components significantly improves the source localization
results compared with single-component OPMs.

Lastly, we performed simulations for different dipole depths. When we added the
ambient noise, the OPM-MEG performed much better than the SQUID-MEG configurations,
while this was not the case for spontaneous brain noise. Combining all three components
improved the localization results for both types of noise. This finding would be worth
verifying in future work with actual measurements of the signals from deep brain sources.
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