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Abstract: A mobile edge computing (MEC)-enabled blockchain system is proposed in this study
for secure data storage and sharing in internet of things (IoT) networks, with the MEC acting as an
overlay system to provide dynamic computation offloading services. Considering latency-critical,
resource-limited, and dynamic IoT scenarios, an adaptive system resource allocation and computation
offloading scheme is designed to optimize the scalability performance for MEC-enabled blockchain
systems, wherein the scalability is quantified as MEC computational efficiency and blockchain system
throughput. Specifically, we jointly optimize the computation offloading policy and block generation
strategy to maximize the scalability of MEC-enabled blockchain systems and meanwhile guarantee
data security and system efficiency. In contrast to existing works that ignore frequent user movement
and dynamic task requirements in IoT networks, the joint performance optimization scheme is
formulated as a Markov decision process (MDP). Furthermore, we design a deep deterministic policy
gradient (DDPG)-based algorithm to solve the MDP problem and define the multiple and variable
number of consecutive time slots as a decision epoch to conduct model training. Specifically, DDPG
can solve an MDP problem with a continuous action space and it only requires a straightforward
actor–critic architecture, making it suitable for tackling the dynamics and complexity of the MEC-
enabled blockchain system. As demonstrated by simulations, the proposed scheme can achieve
performance improvements over the deep Q network (DQN)-based scheme and some other greedy
schemes in terms of long-term transactional throughput.

Keywords: blockchain; mobile edge computing; computation offloading; deep deterministic policy
gradient (DDPG)

1. Introduction

With the wide utilization of intelligent mobile devices in the fifth-generation (5G) era
and the advances in wireless communication techniques in the forthcoming sixth-generation
(6G) communication systems [1], the internet of things (IoT) is increasingly attracting
attention from both academia and industry as a versatile technology [2,3]. Nowadays,
more and more intelligent devices get access to IoT networks, where each object with
identifying, sensing, networking, and processing capabilities can communicate with other
nodes. Such ubiquitous interconnections generate massive data to be stored, processed,
and analyzed [4,5].

Recent advances in information and communication technologies are accelerating the
IoT’s transition to the 6G era. As a result, new IoT infrastructures and data processing
architectures are under construction. Currently, a majority of IoT applications depend on
centralized cloud servers to store data and process tasks [6], which necessitates that the
third parties owning the cloud servers are quite trustworthy, otherwise the user data may
be exposed to security concerns [7]. Furthermore, centralized cloud-based applications
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introduce delay and privacy issues [8,9]. Therefore, demands for data security, processing
efficiency, and low operational cost are overgrowing in IoT scenarios [10]. Blockchain [11],
as a decentralized data storage technology, can guarantee that each transaction record
is immutable through an encryption algorithm and distributed structure. As a result,
blockchain has been presented as a promising technique for enhancing the security and
efficiency of data storing/fetching in IoT networks, which can realize tamper resistance
and data availability for IoT networks in a decentralized manner [12–14].

In the current IoT architecture, blockchain technology has been extensively investi-
gated [15]. Kang et al. have proposed a blockchain-enabled internet of vehicles framework
based on an upgraded delegated proof-of-stake (DPoS) consensus mechanism rather than
the native proof-of-work (PoW) or proof-of-stake (PoS) mechanism to improve the security
of vehicle data sharing [16]. Fan et al. presented a blockchain-based strategy for resolving
the security issue associated with time synchronization in IoT networks [17]. W. Li et al.
proposed a data security strategy based on blockchain technology for intelligent applica-
tions in 6G systems [18]. However, these schemes focus on the security of block verification
and block generation while lacking the consideration of emerging applications and services
in IoT networks that require high computational workloads and low latency. Most existing
blockchain-enabled frameworks cannot meet the demand for high transactional throughput
in IoT scenarios with compute-intensive and real-time applications and services. Therefore,
service-oriented blockchain-enabled frameworks are called for to meet the transactional
throughput demands of current and next-generation IoT networks.

New IoT services and applications, such as mobile multimedia, visual sensors, smart
grids, and intelligent vehicles, are computationally intensive and sensitive to latency, chal-
lenging the blockchain-enabled IoT framework design. Conventional cloud computing
systems are confronted with the problems of long latency and overload problems, hin-
dering the blockchain deployment in IoT networks. To address the above challenges, the
mobile edge computing (MEC) [19] technique is considered a potential option. Because
an MEC system is deployed at the edge of IoT networks and near the access network, it
is capable of bridging the divide between the limited resources in the proximity of users
and the ever-increasing computational demand of IoT applications [20]. Therefore, MEC
technology can facilitate the development of low-latency, scalable, and blockchain-enabled
IoT networks. Recently, several studies [21,22] have been proposed to enhance data secu-
rity and transactional throughput for IoT by integrating blockchain technology and MEC
technology. However, most existing schemes focus only on the computational offloading
strategy of MEC or the working mechanism of blockchain and lack a comprehensive and
specific analysis of the MEC-enabled blockchain system. Therefore, they fail to achieve a
joint performance optimization, which leaves room to improve.

The efficient deployment and optimization of MEC-enabled blockchain systems in
IoT networks are challenging from several perspectives: trade-off between latency and
security, joint optimization, and dynamic continuous domain-based optimization. (1) Trade-
off between latency and security: the blockchain-enabled IoT network is confronted with
latency-sensitive challenges and thus requires an efficient blockchain mechanism without
compromising security. Additionally, due to system resource limitations [23] in IoT net-
works, the collaborative design of an efficient resource allocation policy and a lightweight
blockchain consensus mechanism at the edge of wireless networks is challenging. (2) Joint
optimization: the optimization problem formulation in most existing studies [21,22] consid-
ers the blockchain system and MEC system separately, ignoring the coupling relationship
between the blockchain transactional throughput and the MEC computation rate. Due
to the lack of joint optimization consideration, the performance in existing studies can
be improved. (3) Dynamic continuous domain-based optimization: the IoT services arrive in
complicated stochastic patterns, and most computation tasks of IoT services have sensitive
latency requirements, which also pose significant challenges to the joint optimization of
MEC-enabled blockchain systems. Additionally, the parameters of MEC computation
offloading policy or blockchain optimization strategy are continuous domain variables,
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while existing works [21,22] simplify them to discrete variables. Therefore, we resort to con-
tinuous domain-based DRL to realize dynamic and continuous joint control of computation
resource allocation and block generation.

To address the aforementioned issues, we present a DRL-based joint performance
optimization framework for MEC-enabled blockchain systems in IoT networks, which aims
to improve the scalability/throughput while guaranteeing data security and transaction
processing efficiency. In particular, each IoT node can offload a portion of computation
tasks to MEC servers for efficient data processing, wherein the computation tasks include
the IoT application tasks and the tasks for block generation and reaching consensus. Mean-
while, blockchain technology is adopted for secure data storage and sharing inside this
framework, with a consensus mechanism based on practical Byzantine fault tolerance
(PBFT) and DPoS [24] being adopted. Furthermore, the performance optimization of MEC
and blockchain system is jointly formulated as a Markov decision process (MDP) prob-
lem, where state transitions mainly depend on changes in time-varying factors such as
the impact of user movement on wireless transmissions, node workload, etc, which are
unknown a priori. Moreover, the action is selected based on continuous space. As a result,
conventional math models are ineffective in solving the MDP problem. To address this
MDP problem, a novel DRL-based algorithm with continuous action space is developed. It
shows superiority in tackling dynamic and complicated joint optimization problems. The
primary contributions of this paper are listed as follows:

(1) A novel MEC-enabled blockchain framework in IoT networks is developed, consider-
ing the latency and scalability issues that arose from the throughput requirements of
future wireless networks and blockchain systems. We analyze MEC computation effi-
ciency and critical performance indicators of blockchain, i.e., decentralization, latency,
throughput, and adversarial fraction, which can guide the joint optimization of the
framework.

(2) A novel MEC and blockchain joint optimization algorithm is developed for maximiz-
ing the computational efficiency of MEC and the transaction throughput of blockchain
systems, which is formulated as an MDP problem. In contrast to most existing
research [15–17] in which the modeling and optimization of MEC and blockchain
systems are carried out independently, the block interval, block size, data transac-
tion throughput, power allocation for local execution and task offloading, latency,
and security constraints are jointly considered in the proposed algorithm. Therefore,
we propose a more comprehensive scheme and address the blockchain deployment
challenges in IoT scenarios.

(3) The MDP problem is solved using a deep deterministic policy gradient (DDPG)-based
learning algorithm to tackle the dynamic and large-dimensional properties of IoT
networks that are intractable using classic learning approaches such asQ-learning [25].
In particular, the DDPG-based algorithm enables the joint resource allocation for MEC
and blockchain systems in a continuous domain so as to solve the MDP problem with
better convergence.

(4) Extensive simulation findings demonstrate that the presented performance optimiza-
tion framework has the capacity to enhance the transaction processing efficiency
of MEC-enabled blockchain networks significantly. The superiority of the DDPG-
based algorithm over the deep Q network (DQN)-based algorithm [26] and other
conventional schemes is verified.

The remainder of this paper is structured as follows. Section 2 introduces the re-
lated works. Section 3 provides the preliminaries of blockchain technology and a basic
introduction of the consensus protocol based on DPoS and PBFT. Section 4 describes the
system model. In Section 5, the DDPG-based joint performance optimization framework
is proposed, wherein the joint optimization problem is formulated and solved using a
DDPG-based approach. Section 6 evaluates the proposed algorithm in detail and discusses
the simulation results. At last, Section 7 summarizes this paper and looks forward to
future work.
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2. Related Works

In this section, we first introduce the existing works on blockchain-enabled IoT net-
works. Then, existing works which utilize the MEC technology to improve the transaction
throughput of blockchain-enabled IoT networks are introduced, and the main distinguish-
ments between our proposed scheme and closely related works are discussed.

2.1. Blockchain-Enabled IoT Networks

Due to the properties of blockchain technology such as stability, privacy protection,
and security, integrating blockchain technology into IoT systems for supporting IoT future
development has received considerable attention recently [27]. Yang et al. present a
blockchain-based system for IoT devices and a tailored smart contract to enable the holistic
transactive energy management [28]. Nguyen et al. design a blockchain-based model for
IoT data trading which ensures security and privacy [29]. Although blockchain provides
security and privacy benefits for IoT networks, there remains a barrier to its adoption in
IoT networks due to the resource constraints of IoT devices.

2.2. MEC-Enabled Blockchain for IoT Networks

MEC technology has been widely utilized to perform massive, parallel, and complex
computations [30]. The MEC system enables resource-constrained IoT devices to offload
computing tasks to edge MEC servers, therefore resolving the resource-intensive issues
that blockchain-enabled IoT networks confront. There are some works that use the MEC
technology to improve the transaction throughput of blockchain-enabled IoT networks,
which are closely related to our study. Zhao et al. proposes a computation resource
allocation strategy of a public blockchain network in MEC systems [21], which is designed
for a one-time slot and would involve a huge computation cost for long-term performance
optimization that edge devices cannot afford. Nguyen et al. presents a secure deep
reinforcement learning (DRL)-based computation offloading approach and a trustworthy
blockchain access control mechanism for the mobile blockchain-based IoT networks [22].
Qiu et al. develops an adaptive genetic algorithm (AGA)-based computation offloading
scheme for MEC-enabled blockchain systems [31]. Guo et al. proposes a resource allocation
and block generation scheme based on a double-dueling DQN algorithm [32]. However,
both [22,31] perform the optimization of blockchain and MEC systems independently,
resulting in inferior performance. Additionally, both [22,32] are discrete action space-
based and incapable of handling continuous action cases. Therefore, we develop a DDPG-
based joint performance optimization algorithm for blockchain and MEC systems while
considering the decentralization, security, latency, and power consumption constraints.

In summary, Table 1 shows distinguishments between our proposed scheme and some
existing research. Specifically, for the ‘Blockchain Agent’ column, we can find that the
deployment of the blockchain agent in the proposed scheme differs from [31,32], which
results in distinct system model designs. For the ‘State Space Design’ column, A considers
system offloading cost, system computation resources, and system bandwidth resources; B
considers task queue length, computation resources of users, network identification, and
available server resources; C considers channel condition between users and BSs, channel
condition between different BSs, computation resources of BSs, primary node; D considers
channel condition between users and BSs, computation resources of users, task buffer of
users, and stake distribution. All in all, the blockchain agent deployment and state space
design in this paper differ from existing ML-based schemes and therefore leads to different
system model and problem formulation.
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Table 1. A comparison with related works.

Work Long-Term Reward Joint Optimization Blockchain Agent State Space Design ML Approach

[21] × × × / ×
[22] X × × A DQN
[31] X × IoT Community B AGA
[32] X X Base Station (BS) C Double-Dueling DQN
Our proposed scheme X X IoT Device D DDPG

3. Preliminaries on Blockchain

This section will begin with an overview of blockchain technology, followed by an
introduction to the fundamentals of the consensus protocol based on DPoS and PBFT.

3.1. Overview of Blockchain

A blockchain is an encrypted and distributed database that maintains an ordered
collection of transaction records. Blockchain has many security performance advantages
over traditional centralized databases [33]. Firstly, the primary objective of blockchain
technology is to prevent the database’s data from being maliciously tampered with or stolen.
Furthermore, the decentralized nature of the blockchain system distributes and stores blocks
that contain transaction records across a large number of network nodes during the block
generation process. Due to the fact that the block generation process involves a large
number of network nodes, data transactions are only recorded on a block after it has been
confirmed by other nodes. Therefore, data storage is not dependent on a single centralized
database. As a result, blockchain technology outperforms traditional centralized databases
in terms of reliability and resistance to the single point of failure attacks.

The general architecture of blockchain technology consists of six layers [34] as shown
in Figure 1. A blockchain-enabled system is comprised of the following components: an
encryption method, peer-to-peer (P2P) transmission, a consensus protocol, a distributed
ledger, a smart contract, and the application scenario [35]. In particular, the consensus
protocol is a critical component of the blockchain. A blockchain system based on the
consensus protocol can validate data transaction records without the involvement of a
trusted third party. In the following, the consensus protocol adopted in this study will
be introduced.

Figure 1. General architecture of blockchain.
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3.2. Consensus Protocol Based on DPoS and PBFT

This subsection focuses on the consensus protocol, which is an important component
of the blockchain system. Different blockchain systems handle the consensus problem by
adopting different protocols that require validators to demonstrate their neutrality [36].
The most widely used consensus protocols include PoW, PoS, DPoS, and PBFT. The DPoS
protocol, derived from the PoS protocol, involves the voting and electing mechanisms so
as to classify participating nodes as different roles to perform different functions in the
consensus process. In comparison to the PoW and PoS protocols, the DPoS protocol enables
faster block validation [37].

PBFT is a widely used and well-studied consensus algorithm, and the whole consensus
process of it consists of five steps: Request, Pre-prepare, Prepare, Commit, and Reply [38].
Existing research has demonstrated the effectiveness of the PBFT consensus algorithm for
deployment on resource-constrained IoT devices [39]. To further adapt to large-scale IoT
networks with a huge number of device nodes, the consensus protocol adopted in this
study is a combination of PBFT and DPoS, called the BFT-DPoS consensus protocol, and it
inherits the delegate election mechanism in DPoS [24]. In contrast to PBFT, the BFT-DPoS
consensus protocol only involves a subset of delegate nodes (i.e., validation nodes) rather
than all device nodes during the voting process. For example, there is one client, one
primary node, and three other validation nodes. Once the consensus is triggered, the
primary node broadcasts a Pre-prepare proposal to other validation nodes. During Prepare
and Commit phases, all validation nodes exchange messages to check the reliability and
validity of received messages. A node steps into the subsequent phase after receiving more
than 2

3 acknowledgments that include its own.
According to the BFT-DPoS consensus protocol, each general node in the framework

can store/fetch transaction data into/from the blockchain system. At the same time, only
a part of the nodes can be elected as validation nodes in terms of the number of stakes
and available computation resources each node holds. Therefore, when one new block is
formed, the new block proposal needs to be broadcasted to other validation nodes. Only if
this block has been verified and most of the validation nodes have reached consensus, will
it be appended to the main blockchain. Additionally, the communication complexity of
PBFT increases exponentially with the number of participating nodes, so there is a trade-off
between the communication complexity and security [40].

4. System Model

In this section, the system model adopted in this work is introduced. As illustrated
in Figure 2, we propose an MEC-enabled blockchain framework for IoT networks, which
comprises three parts, i.e., the IoT network including various smart devices, an MEC system
including the BS and MEC servers, and a blockchain system based on the DPoS mechanism.

In the IoT network, smart devices, e.g., vehicles, cell phones, security surveillance,
etc., collect some ambient data that must be securely stored/processed or shared with
other IoT smart devices. As a result, we consider two types of data transactions among
smart devices: (1) data storage/processing and (2) data sharing, both of which are stored in
the blockchain system for distributed and secure data storage/retrieval. The nodes in the
blockchain system are classified into three categories: (1) general nodes (GNs) that consist
of all IoT devices, (2) validation nodes (VNs) that are selected out of GNs based on a specific
stake distribution according to the DPoS mechanism, and (3) one primary node (PN) that
is selected from VNs and authorized to produce blocks at a specific decision epoch. The
blockchain system is mainly responsible for the secure storage/retrieval of transaction data
from the IoT network. To achieve this goal, the blockchain system must generate blocks
and reach consensus, where GNs receive/transmit transaction data from/to other nodes,
VNs conduct the blockchain consensus process, and the PN is authorized to generate blocks
within a specific time period. Moreover, the MEC system is responsible for sharing the
computational pressure in the IoT network and blockchain system to achieve efficient data
processing and blockchain consensus. In the following subsections, we will detail the
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network model, MEC model, and blockchain model, respectively. The notations used in
this paper are summarized in Table 2.

Block Block Block Block Block

Block

  

General Node（GN）

Validation Node (VN)

Reach Consensus

Primary Node (PN)

Manufacturing

Smart City
Smart Devices

Security 
Surveillance

Smart Grid

Intelligent Connected Vehicle

Transaction:
data sharing

Transaction:
data sharing

IoT Network

Blockchain System

Smart House

BS MEC Server

MEC

Transaction:
data sharing

Transaction 
Records

Computation 
Offloading

Figure 2. MEC-enabled blockchain system in the heterogeneous IoT networks.

Table 2. Notation definitions.

Notation Description

ΦG The set of GNs.
ΦV The set of VNs.
M The number of GNs.
K The number of VNs.
Ln The number of time slots included in decision epoch n.
hm(τ) Channel vector between GN m and the BS at time slot τ.
y(τ) Received signal of the BS at time slot τ.
ρm Normalized temporal channel correlation coefficient of GN m.
H(τ) Channel matrix from all the nodes to the BS at time slot τ.
γm(τ) The receiving SINR of GN m at time slot τ.
φm(n) ZF detection vector for GN m at time slot τ.
λm Task arrival rate of GN m.
Um(n) Queue length of GN m’s task buffer at decision epoch n.
am(n) Number of task arrivals of GN m at decision epoch n.
fm(τ) CPU frequency scheduled for local execution of GN m at time slot τ.
Cm(Fm) CPU cycles required per one task bit (allowable CPU-cycle frequency) at GN m.
po,m(n) Transmission power of GN m for computation offloading at decision epoch n.
do,m(τ)(Do,m(n)) Data transmitted by GN m for computation offloading at time slot τ (decision epoch n).
pl,m(n) Power consumption of GN m for local execution at decision epoch n.
dl,m(τ)(Dl,m(n)) Data processed by GN m via local execution at time slot τ (decision epoch n).
Po,m(Pl,m) Maximum transmission power (local execution power) of GN m.
νm(τ) Computation rate of GN m during time slot τ.
Υ(n) The set of stakes IoT nodes hold at decision epoch n.
Im(n)(IP(n)) Block interval of GN m (PN) at decision epoch n.
TF(n) Latency time to finality at decision epoch n.
SB(n) Block size at decision epoch n.
Ξ(n) Blockchain transaction throughput at decision epoch n.
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4.1. Network Model

In this paper, we assume that the blockchain system has M GNs denoted by ΦG
and K VNs. For each IoT node m ∈ ΦG, it conducts data storage/processing and data
sharing within the IoT network. Meanwhile, it acts as a part of the blockchain system.
Specifically, K VNs, denoted by ΦV , ΦV ⊆ ΦG, are selected out of ΦG in terms of particular
rules [41]. These VNs are responsible for collecting, validating, and packaging the transac-
tions generated by smart devices into a block. Furthermore, this new block is appended to
the blockchain after the PN broadcasts the block proposal to other VNs and a consensus
is reached.

As shown in Figure 3, the MEC-enabled blockchain framework is implemented using
a discrete-time model in which time is partitioned into multiple decision epochs, and the
n-th epoch, n ∈ {0, 1, · · · , Nmax}, has Ln basic time slots which has an identical duration τ0
and is indexed by τ ∈ {0, 1, · · · }. Thus, each decision epoch n has a dynamic duration Lnτ0,
where Ln ∈ {1, 2, · · · , L̇n} varies for each decision epoch n and is determined by the block
interval of PN IP(n). For each decision epoch t ∈ T , the wireless channel condition, task
arrival, and power allocation policy of each GN are varied. Therefore, aiming to balance
data processing efficiency, security, and average energy consumption, each VN needs to
determine the block size, block interval, and task offloading policy in each epoch. Assume
that the PN produces a new block with block size SB(n) and block interval IP(n) in turns
within the n-th epoch. Specifically, block size SB(n) indicates the number of bits included in
a new block produced by the PN at the end of epoch n, while block interval IP(n) indicates
the time required for the VN to generate a new block in each epoch n.
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Figure 3. The relationship between time slot τ and decision epoch n.

In the proposed framework, we analyze a 5G macro-cell base station (BS) having Na
antennas that handle the uplink communications of numerous IoT nodes with a single
antenna using linear zero-forcing (ZF) detection [42], which is simple and efficient [43]. In
this study, we assume that the number of antennas at the BS exceeds the number of mobile
nodes, i.e., Na > M. For each time slot τ, we denote the channel vector of each GN m as
hm(τ) ∈ CNa×1, and therefore the nearest BS’s received signal can be represented by:

y(τ) =
M

∑
m=1

hm(τ)
√

po,m(τ)sm(τ) + nG(τ), (1)
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where po,m(τ) ∈ [0, Ṗo] denotes the uplink power for GN m to offload transaction tasks
with the upper bound Ṗo, sm(τ) denotes the complex data symbol. In addition, nG(τ) ∼
CNa(0, σ2

R INa) is a noise vector where σ2
R denotes the variance and INa is a Na × Na iden-

tity matrix. Furthermore, we adopt the following Markov block fading auto-regressive
model [44] to define the temporal relation between decision epochs and movement for each
GN m:

hm(τ + 1) = ρmhm(τ) +
√

1− ρ2
me(τ + 1), (2)

where ρm = J0
(
2π f d

mτ0
)

denotes the normalization of correlation function between time slots
τ + 1 and τ in terms of Jake’s fading spectrum, and the error vector e(τ) ∼ CN (0, σ2

R INa) is
complex Gaussian and independent identically distributed with hm(τ). It is worth noting
that f d

m and J0(·) denote the Doppler frequency of GN m and first-order Bessel function,
respectively.

The N × M channel matrix between the considered 5G macro-cell BS and M GNs
is represented by H(τ) =

[
h1(τ), h2(τ), · · · , hM(τ)

]
. The linear zero-forcing detection is

derived by H†(τ) =
(

HH(τ)H(τ)
)−1HH(τ). After applying the ZF detector, each node’s

signal to interference-plus-noise ratio (SINR) is calculated by [43]:

γm(τ) =
po,m(τ)

σ2
R

[(
HH(τ)H(τ)

)−1
]

mm

, (3)

where [I]m1m2 denotes the (m1, m2)-th item in matrix I.
For each decision epoch n, we assume that the channel condition and the power allo-

cation (i.e., po,m(n) and pl,m(n)) is consistent throughout one decision epoch and updated
at the first time slot of each epoch.

4.2. MEC Model

In this subsection, we will show how each GN m makes use of an adaptive compute
offloading policy to support blockchain-enabled IoT networks. am(n) (bit) is the number
of computing tasks during the decision epoch n, which is assumed to be processed since
decision epoch n + 1. In addition, we consider that am(n) is independent and identically
distributed throughout different decision epochs and there is an average task-arrival rate
λm = E

[
am(n)

]
based on Poisson distribution. In general, am(n) is considered as ordinary

application tasks, while for the node elected as PN at decision epoch n we consider aP(n)
as block-generation tasks. Furthermore, the processing of computation tasks is considered
fine-grained [45]. Therefore, within the n-th decision epoch , Dl,m(n) = Lndl,m(τ) denotes
partial bits of computation tasks that are allocated to be processed locally, while Do,m(n) =
Lndo,m(τ) represents some other bits that are transferred to and processed by the edge
server. We denote Um(n) as the queue length of the GN m’s task buffer at decision epoch
n’s commencement, and then Um(n + 1) can be expressed by:

Um(n + 1) =
[
Um(n)−

(
Dl,m(n) + Do,m(n)

)]+
+ am(n), (4)

where [x]+ = max(0, x) and Um(0) = 0.

4.2.1. Local Computation

This section demonstrates the number of data bits handled locally in relation to the
power allocated for local computing pl,m(τ) ∈ [0, Ṗl ]. By chip voltage adjustment based
on the dynamic voltage and frequency scaling technology [46], the central processing unit
(CPU) frequency (Hz) scheduled for the time slot τ is expressed as:

fm(τ) =
3
√

pl,m(τ)/ι, (5)
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in which ι denotes the effective switching capacitance of the chip, which varies according to
its architecture [46]. Additionally, we have 0 ≤ fm(τ) ≤ Fm and Fm = 3

√
Ṗl/ι, which is the

highest permitted CPU frequency of GN m depending on system capability. Consequently,
the number of locally processed bits during the time slot τ is calculated by multiplying the
time (s) by the computation rate of the device CPU (bit/s). Specifically, the computation rate
of the device CPU (bits/s) is derived by multiplying the device CPU frequency (cycles/s)
by the number of task bits that the CPU can process per cycle (bits/cycle). That is,

dl,m(τ) = τ0 fm(τ)C−1
m , (6)

where Cm (cycles/bit) denotes the number of CPU cycles necessary for GN m to compute
one data bit and it is measured and determined with offline measurement [47].

4.2.2. Edge Computation

To start with, we assume that the MEC server can handle different computation tasks
with a minimal processing delay due to adequate computational resources such as a high-
frequency multicore CPU. In addition, as a result of the small-sized computation output, it
can be assumed that the feedback delay between BS and node can be ignored. Based on (3)
and with the uplink communication power po,m(τ), the number of task bits offloaded by
GN m within the time slot τ is calculated by:

do,m(τ) = τ0Wlog2
(
1 + γm(τ)

)
, (7)

where W denotes the system bandwidth.
Therefore, the computation rate (bits/s) of GN m during time slot τ is calculated by:

νm(τ) = fm(τ)C−1
m + Wlog2

(
1 + γm(τ)

)
. (8)

According to the MEC computation model, each IoT node with stochastic task arrivals
can utilize the nearby MEC server to process the compute-intensive tasks efficiently and
adjust the ratio of computation offloading dynamically.

4.3. Blockchain System

In this subsection, we present the considered blockchain system. The blockchain
system can provide data security and privacy guarantee to the IoT networks as an overlaid
system. Each node inside the blockchain system is capable of collecting data transactions
from the IoT networks, while only a few with a large number of stakes are elected as VNs
for packaging and validating blocks. We assume that Υ(n) = {Υ1(n), Υ2(n), · · · , ΥM(n)}
denotes the set of stakes IoT nodes hold based on the BFT-DPoS consensus algorithm [24]
during the t-th decision epoch. The stake of each GN is updated when consensus is reached
on a new block, and the latest stake distribution is aggregated to the BS. For the start of
each decision epoch n, the BS distributes the latest stake distribution Υ(n) it has recorded
to all GNs.

In the following part, the details of the most significant criteria for evaluating the
blockchain system performance are described.

4.3.1. Decentralization

To prevent block packaging and verification power from being monopolized, it is
necessary to quantify the degree of decentralization to ensure the long-term fairness of the
blockchain system [41]. We make use of Gini coefficient, which has been widely used to
measure wealth or income inequality [48], evaluate “contrast intensity” [49] and capture
“system inequality” [50] in existing works. Focusing on the decentralization of VNs, we
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take the stake distribution of VNs into account in this study. Therefore, the Gini coefficient
of stake distribution can be derived to characterize the decentralization:

G(Υ(n)) =
∑i,j∈ΦV ,i 6=j

∣∣Υi(n)− Υj(n)
∣∣

K ∑i∈ΦV
Υi(n)

. (9)

G(Υ(n)) is within [0, 1] in which the extremes 0, 1 denote the perfect uniformity and
maximal inequality among stake values, respectively. Hence, to guarantee that VNs’ stake
distribution of a blockchain system is decentralized, the Gini coefficient G(Υ(n)) should
satisfy the constraint:

G(Υ(n)) ≤ η, (10)

where we have η ∈ [0, 1]. For simplicity, we assume that G(Υ(n)) ≤ η is always satisfied in
this work.

4.3.2. Latency Time to Finality and Throughput

The concept of latency time to finality (LTF) is adopted to characterize the latency
of the blockchain system, which is the latency that one data transaction record becomes
irreversible once it has been committed to the blockchain system [15]. For latency-sensitive
applications, it is important to guarantee that the latency is within the user’s tolerance.
The LTF TF(n) including the time cost for block validation Tc(n) and generation IP(n) is
expressed as:

TF(n) = Tc(n) + IP(n), (11)

where Tc(n) denotes the consensus latency which includes the time cost for packet trans-
mission Ttr(n) and packet verification Tv(n) that includes message authentication codes
(MACs) generation, request signature, and MACs verification [51]. Note that the latency
required for one consensus process in the simulation of this paper is in the order of millisec-
onds. The majority of real-world mobile IoT devices (e.g., cell phones, smartwatches, etc.)
generally have a small displacement within 10 ms. Therefore, we assume that the primary
node and consensus nodes usually can provide stable services in one consensus process.

As introduced in Section II, each decision epoch n has a dynamic duration Lnτ0. We
assume that the duration of decision epoch n is determined by the LTF TF(n), and thus
we have

Ln =
⌈TF(n)

τ0

⌉
(12)

As in [52], the blockchain transaction throughput of the proposed framework within
the n-th decision epoch is derived by:

Ξ(n) =
bSB(n)/χc

TF(n)
, (13)

where χ denotes average transaction size. SB(n) is the block size and derived by:

SB(n) = Dl,P(n) + Do,P(n). (14)

where P denotes the PN.

4.3.3. Adversarial Fraction

To ensure the blockchain system’s security performance, it is vital to prevent transac-
tions from being unilaterally tampered with or reversed. The adversarial fraction of hashing
power that an adversary can control without endangering system security is one kind of
fundamental performance measurement of a blockchain system [52]. For the PBFT-based
consensus protocols, unambiguous finality can be reached under the assumption that less
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than a 1
3 fraction of the nodes are adversarial [24]. Therefore, the following constraint needs

to be satisfied:
f ≤

⌊K− 1
3

⌋
, (15)

in which f denotes the number of adversarial VNs. For simplicity, in this work, when there
are K VNs involved in the consensus process, we assume that K ≥ 3 f + 1. In other words,
it is assumed that the above constraint is always met in this work.

5. DDPG-Based Performance Optimization Framework

In the following part, we investigate the optimal block generation and computation
offloading policies to maximize the transaction throughput of the proposed framework
under the constraints of latency and system resources. The joint optimization problem is
formulated as an MDP. Moreover, in order to deal with the dynamic and large-dimensional
properties of the above-mentioned systems, we develop a DRL-based scheme. Specifically,
elements included in the action space (i.e., power allocation and block interval) are continu-
ous variables, which motivates us to employ the DDPG algorithm so as to achieve better
performance than the DQN-based approach with a discrete action space [53].

The architecture of the DDPG-based framework is shown in Figure 4 and the DDPG
agent is implemented in each GN. To deploy the framework, we first define the problem
formulation and construct the state space, action space, and reward function. Then, we
design a DDPG-based algorithm to solve it as follows.

Figure 4. The architecture of the DDPG-based framework.

5.1. Problem Formulation

Due to the difficulty of obtaining the state transition probabilities and reward values in
advance which are related to user mobility, node workload, etc., the optimization problem
is constructed as an MDP. As mentioned above, to learn the resource-aware dynamic block
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generation and computation offloading strategies, we propose maximizing the blockchain
transactional throughput and node computation rate while guaranteeing the security and
decentralization of data storing/processing with the constraints of computation resources
and latency. In other words, each GN m needs to solve the following optimization problem
in each decision epoch:

P1 : max
{pl,m(n),po,m(n),IP(n)}

E
[

Tmax

∑
n=1

[
ωΞ(n) + (1−ω)ξ

M

∑
m=1

νm(n)
]]

C1 : TF(n) ≤ L̇n × τ0

C2 : 0 ≤ po,m(n) ≤ Ṗo, 0 ≤ pl,m(n) ≤ Ṗl

(16)

where L̇n is the upper bound of Ln, ω(0 < ω < 1) denotes the weight factor for inte-
grating the two objective components, and ξ is a mapping factor which ensures that the
blockchain transactional throughput and the MEC total computation rate are of the same
order of magnitude.

The constraints C1 and C2 specify latency and power consumption limits, respectively.
Note that, for satisfying the latency requirement of IoT applications, it is assumed that each
block should be published and validated within L̇n(Ln ≥ 1) consecutive time slots.

A decentralized dynamic performance optimization strategy will be learned separately
at each node, which determines the block interval and power allocation for both local
computing and edge computing, depending on the local observation of the environment.
Note that the DDPG-based online learning process is totally model-free, which means
this algorithm does not require each node to have prior knowledge of the blockchain and
MEC systems.

5.2. State Space

It is worth noting that collecting a full observation of the system for all nodes and then
distributing them to each node requires high system overheads. Therefore, it is assumed
that each node’s state is decided by the observation of the system from its own perspective
to avoid high system overheads and make the framework more scalable.

For each decision epoch n, the workload of each GN’s task buffer Um(n) is updated
in terms of (4). Meanwhile, GN receives one message from the BS conveying the stake
distribution Υ(n) and the latest SINR of GN to BS γm(n− 1). In addition, hm(n) for the
forthcoming uplink communication is calculated according to (2). As a result, the state
space is defined as:

sm,n =
[
Um(n), Υ(n), φm(n− 1), hm(n)

]
, (17)

in which the projected power ratio after ZF detection φm(n) is calculated by:

φm(n) =
γm(n)σ2

R
po,m(n)‖hm(n)‖2

=
1

‖hm(n)‖2
[(

HH(n)H(n)
)−1
]

mm

.
(18)

In addition, ZF detection projects the received signal y(n) into a space orthogonal to
the one spanned by channel vectors of other nodes so that GN m’s offloaded symbols can
be decoded without inter-stream interference [54].

5.3. Action Space

According to the state sm,n, each GN m will independently select an action am,n which
includes block interval Im(n), the allocated power for local computing pl,m(n) and the
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allocated power for computation offloading po,m(n). Consequently, the action space in
decision epoch n can be defined as:

am,n =
[
pl,m(n), po,m(n), Im(n)

]
, (19)

where we have pl,m(n) ∈ [0, Ṗl ], po,m(n) ∈ [0, Ṗo] and Im(n) ∈ [0, İ]. Note that the output
action of the DDPG algorithm directly maps the states to the optimal power allocation
and block generation policy in a continuous action space, which is different from other
conventional DRL algorithms where the output is the probability distribution across a
discrete action space. Therefore, the dimensional disaster can be avoided in the DDPG
algorithm [53].

5.4. Reward Function

Considering that each node agent’s behavior is incentive driven, the reward function
is important to the convergence of DDPG algorithm. According to the objective of our joint
performance optimization problem defined in (16), we construct the reward function rm,n
which GN m receives after decision epoch n as:

rm,n =

{
ωΞ(n) + (1−ω)ξ ∑M

m=1 νm(n), if C1− C2 are satisfied
0, otherwise

(20)

Furthermore, note that the value function of node agent m starting from a random
initial state sm,1 under the policy µm can be expressed by

Vµm(sm,1) = Eµm

[ ∞

∑
n=1

γn−1rm,n
∣∣sm,1

]
= Eµm

[
rm,n + γn−1 ·Vµm(sm,n+1)

∣∣sm,1

]
,

(21)

where γ ∈ [0, 1] is the discounting factor in the Bellman equation. The value function
Vµm can be used to quantify the performance of the policy µm via an infinite horizon and
discounted MDP [55] at node agent m. The following average transactional throughput

Ōm(sm,n) = E
[

lim
T→∞

1
T

T

∑
i=t

rm,i
∣∣sm,n

]
, (22)

will be maximized by implementing the optimal block generation and computation offload-
ing policy µ∗m.

5.5. DDPG-Based Algorithm Design

To solve this problem, we provide a model-free and DRL-based approach for finding
the optimal block generation and computation offloading strategies jointly. Moreover,
owing to the continuous action space of our MDP model, which is intractable by using
traditional learning methods, we suggest a DDPG-based approach to address this problem.
The DDPG algorithm is a widely used model-free and off-policy algorithm for continuous
action spaces. This subsection first introduces the basic mechanism of the DDPG algorithm
and then describes the approach to solve the considered problem.

5.5.1. DDPG Background

As shown in Figure 5, DDPG is a DRL framework that includes two main networks:
(1) the actor network and (2) the critic network. Specifically, the actor network is trained
for generating the current policy, whereas the critic network is trained for evaluating the
advantages and disadvantages of the current policy.
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Figure 5. The DDPG algorithm: a model-free, off-policy, and actor–critic algorithm.

Specifically, the critic network uses neural networks to simulate real Q-table to cir-
cumvent the curse of dimensionality. Given the current state sn, the action an and the
deterministic policy µ, we can write the action-value function as:

Qµ(sn, an) = Esn+1,rn∼Ψ

[
r(sn, an) + γQµ(sn+1, an+1)

]
(23)

where Ψ represents the expectation distribution for rn and sn+1.
Similar to the DQN algorithm [26], the critic function Q(sn, an|θQ) is updated by

minimization of the loss function that can be written by:

L(θQ) = Esn∼ψs ,an∼ψa ,rn∼Ψ

[(
Q(sn, an|θQ)− εn

)2]
(24)

where ψs and ψa represent the distribution of state sn and action an, respectively. εn is
given by:

εn = rn + γQ
(
sn+1, µ′(sn+1)|θQ), (25)

where µ′ represents the deterministic policy at epoch n + 1.
The actor function µ(s|θµ) can map a state s to a deterministic action a in a continuous

space. Based on the critic function, the policy’s updating gradient of the actor is calculated
using the chain rule:

∇θµ J = Esn∼ψs

[
∇aQ(sn, a|θQ)|a=µ(sn)∇θµ µ(sn|θµ)

]
. (26)

Therefore, based on (24) and (26), the actor and critic networks’ parameters are softly
updated in terms of θµ′ ← τθµ + (1− τ)θµ′ and θQ′ ← τθQ + (1− τ)θQ′ where τ is the
soft update rate.

5.5.2. The Proposed Algorithm

The detailed DDPG-based optimization algorithm is demonstrated in Algorithm 1
which is implemented in Tensorflow [56]. The algorithm terminates after a preset maximal
number of steps Tmax every episode. For each training episode, the beginning state sm,1 is
initialized randomly. For each decision epoch n, each GN will accumulate and preserve
a transition (sm,n, am,n, rm,n, sm,n+1) into its own experience memory Bm. Meanwhile, a
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random sample of Z transitions {(sz, az, rz, s
′
z)}Z

z=1 from Bm will be utilized to update the
node’s own actor and critic networks. After the predefined maximum episodes Kmax,
each GN will autonomously learn the resource-aware adaptive block generation and
computation offloading policy.

Furthermore, at the testing phase, each node agent will directly load the model learned
during the previous training phase, and then interact with the environment, beginning with
an empty data buffer Um(0). Similarly, its current state is determined by local observations
of the environment and the corresponding action is selected in terms of the output of the
actor network.

Algorithm 1 DDPG-based Optimization Framework for MEC-enabled Blockchain IoT
Systems.

1: for each GN m ∈ ΦG do
2: Initialization: replay memory Bm, critic network Q(s, a|θQ

m), actor network µ(s|θµ
m)

and corresponding target networks Q′ and µ′ with weights θ
µ′
m ← θ

µ
m and θQ′

m ← θQ
m ;

3: end for
4: for each episode ∈ {1, 2, . . . , Kmax} do
5: Initialization: state sm,1 for each GN m ∈ ΦG;
6: for each decision epoch n = 1, 2, . . . , Tmax do
7: for each GN m ∈ ΦG do
8: Select action am,n = µ(sm,n|θµ

m)+∆µ based on the exploration noise ∆µ to decide
block interval and power allocation;

9: Observe reward rm,n and next state sm,n+1;
10: Store transition data (sm,n, am,n, rm,n, sm,n+1) into replay memory Bm;
11: Sample a mini-batch of Z transition tuples {(sz, az, rz, s′z)}Z

z=1 from memory Bm
at random;

12: Update critic network by minimizing the loss L:

L=
1
Z

Z

∑
z=1

(
Q(sz, az|θQ

m)− εz

)2
;

13: Update actor policy based on the sampled policy gradient:

∇θ
µ
m

J ≈ 1
Z

Z

∑
z=1
∇aQ(sz, a|θQ

m)|a=µ(sz)∇θ
µ
m

µ(sz|θµ
m);

14: Update target networks:
θ

µ′

m ← ζθ
µ
m + (1− ζ)θ

µ′

m

θQ′
m ← ζθQ

m + (1− ζ)θQ′
m

15: end for
16: end for
17: end for

6. Simulation Results and Discussions

We compare the proposed distributed DDPG-based scheme to some other baseline
schemes in different simulation scenarios in this part. Additionally, simulation results are
provided to demonstrate the proposed DDPG-based framework for performance optimiza-
tion in the MEC-enabled blockchain IoT system. For the software environment, all code is
implemented in Tensorflow Version 1.15.0 with Python 3.7 in a Windows 10 system. The
main simulation parameters are summarized in Table 3.
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Table 3. Simulation parameters.

Parameter Value

The number of action levels in DQN, L 8
The path-loss constant in channel vector, h0 −30 dB
The reference distance in channel vector, d0 1 m
The length of one time slot, τ0 10 ms
The pass-loss exponent in channel vector, α 3
The channel correlation coefficient, ρm 0.95
The Doppler frequency of GN m, f d

m 70 Hz
System bandwidth, W 1 MHz
Average transaction size, χ 200 B
The maximum transmission power, Ṗo 4 W
The maximum power available for local execution, Ṗl 4 W
The maximum number of time slots for one epoch, L̇n 20
The noise power, σ2

R 10−9 W
The effective switched capacitance, ι 10−27

The required CPU cycles for each task bit, Cm 500 cycles/bit
The maximum allowable CPU-cycle frequency, Fm 1.26 GHz
The weight factor, ω 0.5
The soft update rate for the target networks, ζ 0.001
The number of episodes, Kmax 1000
The maximum steps of each episode, Tmax 1000
The task arrival rate, λm 2.5 Mbps
The thresholds of decentralization, ηs, ηl 0.2, 0.3

6.1. Simulation Setup

At the start of each episode, each GN m’s channel vector can be predefined as hm(0) ∼
CN (0, h0(d0/dm)α INa). Specifically, h0, d0, α, and dm denote path-loss constant, reference
distance, path-loss exponent, and distance between GN m and BS, respectively. During the
following decision epochs, hm(n) is updated in terms of (2) [44].

For the implementation of the DDPG algorithm, we have an actor network learning
the policy network approximation µ(s|θµ

m) and a critic network predicting the Q-function
network approximation Q(s, a|θQ

m) concurrently. Specifically, the DDPG algorithm is con-
structed with a fully connected neural network that includes one input layer, two hidden
layers, and one output layer. In our simulations, we assume that there are 400 and 300
hidden neurons in these 2 hidden layers, respectively. In addition, the activation function
for the two hidden layers is chosen to be f (x) = max(0, x), and a sigmoid layer is used to
bound the output actions. The discounting factor γ = 0.99 is used. Moreover, we utilize
the adaptive moment estimation (Adam) method to learn the neural network parameters,
and meanwhile, the learning rates for the actor and critic networks are set as shown in
Table 3 [57]. Similar to [53], the final output layer weights and bias of both the actor
network and critic network are initialized from a uniform distribution [−0.003, 0.003] and
[−0.0003, 0.0003], while the layer weights of other layers are based on the fan-in of the layer.
We adopt the Ornstein–Uhlenbeck process (θ = 0.15, σ = 0.15) to introduce the temporally
correlated noise to explore the action space more efficiently [58].

For comparison, three baseline schemes are introduced in the simulation section:

(1) Greedy local-execution-first scheme (GD-Local): For each decision epoch n, each node
agent m attempts to execute buffered data bits locally first, and then offloads the
remainder of computation tasks to the MEC server.

(2) Greedy computation-offloading-first scheme (GD-Offload): For each decision epoch n, the
node agent m attempts to offload buffered task bits to the MEC server first, and then
the remaining computation tasks are processed locally.
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(3) DQN-based dynamic offloading scheme (DQN): DQN is a DRL algorithm with a discrete
action space [26]. Specifically, for each node agent m, we tune the power allocated
for local computing and computation offloading from limited candidate sets Pl,m =

{0, Ṗl
L−1 , · · · , Ṗl} and Po,m = {0, Ṗo

L−1 , · · · , Ṗo}, respectively, in which L denotes the
total number of discrete levels.

6.2. Performance of the Proposed Scheme

As seen in Figure 6, the convergence performance of the proposed DDPG-based
performance optimization scheme and three baseline schemes is presented, respectively.
In Figure 6, as the number of episodes increases, the average reward increases as well.
The average reward becomes stable after about 800 episodes, which verifies that effective
performance optimization strategies can be learned without prior knowledge. In addi-
tion, the DDPG-based scheme can achieve about 92.86% of the optimal performance after
training 100 episodes. Guo, F. et al. [32] showed that the double-dueling DQN-based
scheme required 60 episodes of training to achieve 90.48% of the optimal performance.
Feng, J. et al. [59] shows that the A3C-based scheme achieves about 91.86% of the optimal
performance after training 150 episodes. Therefore, the DDPG-based scheme does not lead
to more system overhead than other schemes.

For Figure 6, it is worth noting that DRL-based schemes outperform both greedy
schemes as they cannot dynamically and adaptively allocate computing resources, which
verifies the superiority of DRL-based schemes. Even though the DQN-based scheme
enables the performance of MEC and blockchain systems in IoT networks to be optimized
concurrently, the policy learned by the DQN-based scheme may not be the global optimum
as the spaces of power allocation and block interval are continuous. However, the DDPG-
based scheme with a continuous action space enables discovering the globally optimum
policy. It can be found that the performance of the strategy derived from the DDPG-based
scheme is superior to the other three baselines, demonstrating the benefit of our suggested
framework for continuous control problems.
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Figure 6. Convergence performance based on different schemes in the training process.

In the training process, the parameters of the critic and actor networks are updated
continuously. After Kmax = 1000 episodes, we can obtain the trained c for the dynamic block
generation and computation offloading in the testing process. Considering a set of task
arrival rates λm = 1.5 ∼ 4.0 Mbps, we train these four considered schemes independently
with the same system parameters for different task arrival rates. As shown in Figures 7–9,
as the task arrival rate increases, all schemes achieve a greater average reward, implying
that a larger computation demand requires a larger computation cost. Meanwhile, due
to the growing computation cost, the average power consumption and buffering delay
increase progressively. Furthermore, the suggested DDPG-based scheme can consistently
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achieve better average rewards than other schemes, which implies that higher blockchain
system throughput and MEC computational efficiency can be obtained under the DDPG-
based scheme. Moreover, from Figure 9, it is noted that the DDPG-based scheme slightly
compromises the average block interval to obtain the lowest power consumption.
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Figure 7. Average reward versus task arrival rate.
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Figure 8. Average power consumption versus task arrival rate.

Furthermore, we analyze the testing results of the MEC-enabled blockchain system
by setting different threshold values of LTF or local power consumption. Specifically, the
effect of the block interval limit is depicted in Figure 10. It has been shown that the average
reward increases gradually when the threshold of LTF and task arrival rate grow. An
explanation is that each node can process more data transactions over one block under a
more relaxed latency constraint. However, at a fixed task arrival rate, the long-term reward
value increases and reaches a stable state as the threshold of LTF increases, because the
allocable time gradually becomes abundant. As the task arrival rate gets larger, the time to
reach saturation is gradually delayed. Moreover, we can see that the DDPG-based scheme
can consistently achieve a much higher average reward than the greedy and DQN-based
schemes. Figure 11 examines the average reward with different thresholds of local power
consumption ṗm = ṗo,m + ṗl,m. Additionally, one observation is that the MEC-enabled
blockchain system can process more data transactions when the threshold of the local
power consumption increases. However, the average reward does not grow infinitely in
Figure 11, because the latency constraint and task arrival rate restrict the maximum amount
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of data transactions in one block. These numerical results can help with the design of the
MEC-enabled blockchain systems in real-world situations.
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Figure 9. Average block interval versus task arrival rate.
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Figure 11. Average reward versus threshold of local power consumption.
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Figure 12 illustrates the variation of the average reward as the number of nodes
increases, demonstrating the scalability of the proposed framework and its ability to adapt
to dynamic changes in the user profile. As the number of participating nodes grows, the
number of data transactions that need to be packaged increases, and thus the average
reward gradually increases. Furthermore, as the number of mobile users increases, the
superiority of the DDPG-based scheme over other schemes grows and the performance
GD-local scheme declines after the number exceeds 20. Therefore, as long as the size of
the computational task is within the processing power of the MEC server, the size of the
block generated and validated after one epoch also becomes larger, and meanwhile, the
LTF constraint can be satisfied. Based on the proposed joint optimization scheme of local
execution power, computation offloading power, block size, and block interval, the DDPG-
based algorithm can achieve a better performance than the other considered schemes.
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Figure 12. Average reward versus the number of mobile users.

Figure 13 shows the effect of different weight factors on the average reward. We can
observe that the overall average reward slightly increases as the weight factor ω decreases.
That is because the overall performance of the considered framework mainly depends on
the MEC computation rate, and a smaller weight factor indicates a greater emphasis on MEC
optimization. The simulation performance of four schemes under different parameters is
summarized in Table 4.
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Figure 13. The effect of different weight factors on average reward.
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Table 4. Performance comparison in terms of average reward.

DDPG DQN GD-Offload GD-Local

Traning episodes
100 3856.02 3381.07 2784.23 2371.89
500 4156.14 3414.74 2885.67 2357.42
1000 4177.97 3445.40 3012.81 2519.65

Task arrival rate / Mbps
1.5 1742.25 1683.47 1460.23 1310.20
2.5 3950.14 3430.28 2955.37 2621.09
3.5 6940.87 5687.55 4554.54 3989.32

Threshold of LTF / ms
2.0 3761.19 3289.24 2691.85 2478.72
7.5 4443.35 3644.41 3250.13 2799.44
12.5 4857.52 4228.17 3569.60 3070.02

Local power consumption limit / watt
2 3444.58 2954.47 2686.43 2219.36
5 4133.25 3471.36 3053.31 2684.68
8 4317.63 3698.01 3223.30 2916.34

The number of mobile users
10 3950.56 3430.09 2955.40 2621.34
20 7461.89 6862.15 6110.04 4630.71
30 10,006.53 8553.49 8742.11 4621.98

7. Conclusions

In this paper, we studied an MEC-enabled blockchain system for future wireless
IoT networks and investigated the joint performance optimization problem of blockchain
transaction throughput and MEC computational efficiency. The joint problem of MEC
computation offloading and block generation policy was formulated, where the power
allocation and block interval were optimized. As a result of the time-varying properties of
wireless channels in this system, we modeled the joint optimization problem as an MDP.
A DDPG-based algorithm was proposed to solve the MDP problem, which can cope with
the problem under continuous action space and learn the optimal strategy without prior
knowledge of the environment.

The simulation results have demonstrated the proposed scheme outperforms DQN-
based and some other greedy (non-joint optimization) schemes under different task arrival
rates, thresholds of LTF, and weight factors. The joint optimization scheme can achieve
better performance than other schemes with a high convergence rate. Meanwhile, we
evaluated its performance in terms of power consumption and block interval, and the
simulation results have shown that the joint optimization scheme slightly compromises the
average block interval to obtain the lowest power consumption. Additionally, we discussed
the impact of the number of mobile users on the convergence performance and the joint
optimization scheme always has an advantage over other schemes.

In conclusion, the proposed scheme paves the road for the efficient deployment of
blockchain technology in IoT networks, which can be applied in latency-sensitive and
security-sensitive IoT applications (e.g., internet of vehicles, virtual reality, smart health-
care, etc.).
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DDPG Deep Deterministic Policy Gradient
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IoT Internet of Things
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MEC Mobile Edge Computing
PBFT Practical Byzantine Fault Tolerance
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