Comparison of CML Rainfall Data against Rain Gauges and Disdrometers in a Mountainous Environment
Abstract
:1. Introduction
2. Case Study and Experimental Setup
2.1. Commercial Microwave Links
2.2. Disdrometers
2.3. Rain Gauges
3. Methods
3.1. Disdrometer Data Processing
3.2. CML Data Processing
- 1.
- Classification of time intervals as dry or wet;
- 2.
- Baseline (BL) calculation;
- 3.
- Total path attenuation calculation;
- 4.
- Calculation of the attenuation component due to wet antennas;
- 5.
- Calculation of rainfall attenuation;
- 6.
- Conversion of rainfall attenuation into rainfall intensity.
3.3. Calibration of the -R Relationship
3.4. Validation of CML Rainfall Measurements
- 1.
- Each CML is associated with a set of rainfall sensors (RG+DIS) according to a rule based on the distance;
- 2.
- The time axes of CML, RG, and DIS data are synchronized and resampled at the scale of 10-min, i.e., the one of RG;
- 3.
- A CML is flagged as dry or wet during a 10 min time slot, according to the status of the set of associated RG+DIS. If at least one sensor is wet, the time slot is flagged as wet. Moreover, CML return their own dry/wet binary time series according to the procedure in Section 3.2;
- 4.
- The following quantities are calculated: contingency table for dry/wet classification and 10 min rainfall depth.
3.5. Database of Events
4. Results
4.1. Verification of Disdrometer Data
4.2. Optimization of k and Coefficients
4.3. Comparison between CML and RG
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CML | Commercial Microwave Link |
DIS | Disdrometer |
ITU | International Telecommunication Union |
RG | Rain gauge |
RSL | Received Signal level |
TLPM | Thies Clima laser precipitation monitor |
TSL | Transmitted Signal Level |
References
- Rahimi, A.; Holt, A.; Upton, G.; Cummings, R. Use of dual-frequency microwave links for measuring path-averaged rainfall. J. Geophys. Res. Atmos. 2003, 108, 4867. [Google Scholar] [CrossRef]
- Messer, H.; Zinevich, A.; Alpert, P. Environmental monitoring by wireless communication networks. Science 2006, 312, 713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messer, H. Rainfall monitoring using cellular networks [in the spotlight]. IEEE Signal Process. Mag. 2007, 24, 142–144. [Google Scholar] [CrossRef]
- Overeem, A.; Leijnse, H.; Uijlenhoet, R. Measuring urban rainfall using microwave links from commercial cellular communication networks. Water Resour. Res. 2011, 47, W12505. [Google Scholar] [CrossRef]
- Doumounia, A.; Gosset, M.; Cazenave, F.; Kacou, M.; Zougmore, F. Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed. Geophys. Res. Lett. 2014, 41, 6016–6022. [Google Scholar] [CrossRef]
- Fencl, M.; Dohnal, M.; Rieckermann, J.; Bareš, V. Gauge-adjusted rainfall estimates from commercial microwave links. Hydrol. Earth Syst. Sci. 2017, 21, 617–634. [Google Scholar] [CrossRef] [Green Version]
- Rios Gaona, M.F.; Overeem, A.; Raupach, T.H.; Leijnse, H.; Uijlenhoet, R. Rainfall retrieval with commercial microwave links in São Paulo, Brazil. Atmos. Meas. Tech. 2018, 11, 4465–4476. [Google Scholar] [CrossRef] [Green Version]
- van de Beek, R.; Olsson, J.; Andersson, J. Optimal grid resolution for precipitation maps from commercial microwave link networks. Adv. Sci. Res. 2020, 17, 79–85. [Google Scholar] [CrossRef]
- Roversi, G.; Alberoni, P.P.; Fornasiero, A.; Porcù, F. Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy. Atmos. Meas. Tech. 2020, 13, 5779–5797. [Google Scholar] [CrossRef]
- Song, K.; Liu, X.; Zou, M.; Zhou, D.; Wu, H.; Ji, F. Experimental Study of Detecting Rainfall Using Microwave Links: Classification of Wet and Dry Periods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5264–5271. [Google Scholar] [CrossRef]
- Cazzaniga, G.; De Michele, C.; D’Amico, M.; Deidda, C.; Ghezzi, A.; Nebuloni, R. Hydrological response of a peri-urban catchment exploiting conventional and unconventional rainfall observations: The case study of Lambro catchment. Hydrol. Earth Syst. Sci. Discuss. 2021, 2021, 1–26. [Google Scholar] [CrossRef]
- Overeem, A.; Leijnse, H.; Uijlenhoet, R. Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci. USA 2013, 110, 2741–2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overeem, A.; Leijnse, H.; Uijlenhoet, R. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network. Atmos. Meas. Tech. 2016, 9, 2425–2444. [Google Scholar] [CrossRef] [Green Version]
- Uijlenhoet, R.; Overeem, A.; Leijnse, H. Opportunistic remote sensing of rainfall using microwave links from cellular communication networks. WIREs Water 2018, 5, e1289. [Google Scholar] [CrossRef] [Green Version]
- Graf, M.; Chwala, C.; Polz, J.; Kunstmann, H. Rainfall estimation from a German-wide commercial microwave link network: Optimized processing and validation for 1 year of data. Hydrol. Earth Syst. Sci. 2020, 24, 2931–2950. [Google Scholar] [CrossRef]
- Graf, M.; El Hachem, A.; Eisele, M.; Seidel, J.; Chwala, C.; Kunstmann, H.; Bárdossy, A. Rainfall estimates from opportunistic sensors in Germany across spatio-temporal scales. J. Hydrol. Reg. Stud. 2021, 37, 100883. [Google Scholar] [CrossRef]
- Gosset, M.; Kunstmann, H.; Zougmore, F.; Cazenave, F.; Leijnse, H.; Uijlenhoet, R.; Chwala, C.; Keis, F.; Doumounia, A.; Boubacar, B.; et al. Improving Rainfall Measurement in Gauge Poor Regions Thanks to Mobile Telecommunication Networks. Bull. Am. Meteorol. Soc. 2016, 97, ES49–ES51. [Google Scholar] [CrossRef]
- Leijnse, H.; Uijlenhoet, R.; Stricker, J. Microwave link rainfall estimation: Effects of link length and frequency, temporal sampling, power resolution, and wet antenna attenuation. Adv. Water Resour. 2008, 31, 1481–1493. [Google Scholar] [CrossRef]
- Ostrometzky, J.; Messer, H. Comparison of Different Methodologies of Parameter-Estimation from Extreme Values. IEEE Signal Process. Lett. 2017, 24, 1293–1297. [Google Scholar] [CrossRef]
- Nebuloni, R.; D’Amico, M.; Cazzaniga, G.; De Michele, C. On the Use of Minimum and Maximum Attenuation for Retrieving Rainfall Intensity through Commercial Microwave Links. URSI Radio Sci. Lett. 2020, 2. [Google Scholar] [CrossRef]
- Schleiss, M.; Berne, A. Identification of dry and rainy periods using telecommunication microwave links. IEEE Geosci. Remote Sens. Lett. 2010, 7, 611–615. [Google Scholar] [CrossRef]
- Ostrometzky, J.; Messer, H. Dynamic Determination of the Baseline Level in Microwave Links for Rain Monitoring From Minimum Attenuation Values. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 24–33. [Google Scholar] [CrossRef]
- Kharadly, M.; Ross, R. Effect of wet antenna attenuation on propagation data statistics. IEEE Trans. Antennas Propag. 2001, 49, 1183–1191. [Google Scholar] [CrossRef]
- Valtr, P.; Fencl, M.; Bareš, V. Excess attenuation caused by antenna wetting of terrestrial microwave links at 32 GHz. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1636–1640. [Google Scholar] [CrossRef]
- Schleiss, M.; Rieckermann, J.; Berne, A. Quantification and modeling of wet-antenna attenuation for commercial microwave links. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1195–1199. [Google Scholar] [CrossRef]
- Oguchi, T. Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proc. IEEE 1983, 71, 1029–1078. [Google Scholar] [CrossRef]
- Ulbrich, C. Natural variations in the analytical form of the raindrop size distribution. J. Appl. Meteorol. 1983, 22, 1764–1775. [Google Scholar] [CrossRef] [Green Version]
- ITU-R P.838-3. Specific Attenuation Model for Rain for Use in Prediction Methods. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-3-200503-I!!PDF-E.pdf (accessed on 10 April 2022).
- Guyot, A.; Pudashine, J.; Protat, A.; Uijlenhoet, R.; Pauwels, V.; Seed, A.; Walker, J.P. Effect of disdrometer type on rain drop size distribution characterisation: A new dataset for south-eastern Australia. Hydrol. Earth Syst. Sci. 2019, 23, 4737–4761. [Google Scholar] [CrossRef] [Green Version]
- Fenicia, F.; Pfister, L.; Kavetski, D.; Matgen, P.; Iffly, J.F.; Hoffmann, L.; Uijlenhoet, R. Microwave links for rainfall estimation in an urban environment: Insights from an experimental setup in Luxembourg-City. J. Hydrol. 2012, 464–465, 69–78. [Google Scholar] [CrossRef]
- Thurai, M.; Bringi, V.N. Drop Axis Ratios from a 2D Video Disdrometer. J. Atmos. Ocean. Technol. 2005, 22, 966–978. [Google Scholar] [CrossRef]
- Holt, A.; Uzunoglu, N.; Evans, B. An integral equation solution to the scattering of electromagnetic radiation by dielectric spheroids and ellipsoids. IEEE Trans. Antennas Propag. 1978, 26, 706–712. [Google Scholar] [CrossRef]
- Eshel, A.; Messer, H.; Kunstmann, H.; Alpert, P.; Chwala, C. Quantitative analysis of the performance of spatial interpolation methods for rainfall estimation using commercial microwave links. J. Hydrometeorol. 2021, 22, 831–843. [Google Scholar] [CrossRef]
- Campos, E. On measurements of drop size distribution. Top. Meteor. Oceanog. 1999, 6, 24–30. [Google Scholar]
- Leijnse, H.; Uijlenhoet, R. The effect of reported high-velocity small raindrops on inferred drop size distributions and derived power laws. Atmos. Chem. Phys. 2010, 10, 6807–6818. [Google Scholar] [CrossRef] [Green Version]
CML | Length (km) | Frequency (GHz) | Terminals Altitude (m a.s.l.) | Elevation (°) | Data Format |
---|---|---|---|---|---|
1 | 3.0 | 17.98, 18.09, 18.99, 19.10 | 289, 822 | 10.45 | 15 min MIN-MAX |
2 | 3.0 | 18.03, 18.25, 19.04, 19.26 | 289, 822 | 10.45 | 15 min MIN-MAX |
3 | 3.0 | 18.47, 18.58, 19.48, 19.59 | 289, 822 | 10.45 | 15 min MIN-MAX |
4 | 3.0 | 18.19, 18.30, 19.20 , 19.31 | 289, 822 | 10.45 | 15 min MIN-MAX |
5 | 4.2 | 18.03, 18.14, 19.04, 19.15 | 289, 773 | 6.71 | 15 min MIN-MAX |
6 | 4.2 | 17.98, 18.09, 18.99, 19.10 | 289, 773 | 6.71 | 15 min MIN-MAX |
7 | 6.1 | 22.02, 23.03 | 280, 822 | 5.12 | 15 min MIN-MAX |
8 | 2.7 | 22.02, 23.03 | 295, 822 | 11.27 | 15 min MIN-MAX |
9 | 14 | 10.74, 10.82, 11.23, 11.31 | 822, 1176 | 1.46 | 10 s |
10 | 8.4 | 17.76, 18.77 | 777, 822 | 0.31 | 10 s |
11 | 3.8 | 18.09, 18.20, 19.10, 19.21 | 1178, 2293 | 17.21 | 10 s |
12 | 3.8 | 22.02, 23.03 | 977, 2293 | 20.35 | 15 min MIN-MAX |
13 | 7.0 | 17.76, 18.77 | 2019, 2293 | 2.25 | 10 s |
14 | 6.8 | 17.98, 18.09, 18.99, 19.10 | 289, 666 | 3.19 | 15 min MIN-MAX |
15 | 6.8 | 18.03, 18.14, 19.04, 19.15 | 289, 666 | 3.19 | 15 min MIN-MAX |
16 | 3.2 | 22.02, 23.03 | 666, 702 | 0.65 | 15 min MIN-MAX |
17 | 6.9 | 17.76, 18.77 | 421, 773 | 2.93 | 15 min MIN-MAX |
18 | 9.0 | 17.76, 18.77 | 421, 773 | 2.39 | 15 min MIN-MAX |
Outcome | ||
---|---|---|
Wet | ||
Wet | ||
Uncertain | ||
Not available | Wet | |
Wet | ||
Dry | ||
Not available | Uncertain | |
Uncertain | ||
Not available | Dry | |
Not available | Wet | |
Not available | Uncertain | |
Not available | Dry | |
Not available | Not available | Not available |
ID | Start Time (UTC+1) | End Time (UTC+1) | No of Episodes | Rainy Time (min) | Min–Max Rainfall Depth RG+DIS (mm) | Max Rainfall Intensity DIS (mm h−1) |
---|---|---|---|---|---|---|
1 | 14 Jul 2019 | 15 Jul 2019 | 1 | 500 | 15–31 | 17 |
2 | 25 Jul 2019 | 26 Jul 2019 | 5 | 500 | 8–85 | 118 |
3 | 1 Aug 2019 | 2 Aug 2019 | 4 | 440 | 7–15 | 17 |
4 | 6 Aug 2019 | 7 Aug 2019 | 5 | 770 | 25–48 | 45 |
5 | 11 Aug 2019 | 13 Aug 2019 | 5 | 380 | 8–20 | 83 |
6 | 18 Aug 2019 | 22 Aug 2019 | 8 | 1120 | 50–68 | 122 |
7 | 25 Aug 2019 | 26 Aug 2019 | 3 | 260 | 2–24 | 42 |
8 | 30 Aug 2019 | 2 Sep 2019 | 3 | 210 | 5–15 | 15 |
9 | 5 Sep 2019 | 8 Sep 2019 | 6 | 1490 | 26–57 | 22 |
10 | 22 Sep 2019 | 23 Sep 2019 | 2 | 570 | 13–24 | 22 |
11 | 1 Oct 2019 | 2 Oct 2019 | 3 | 310 | 10–18 | 59 |
12 | 6 Oct 2019 | 7 Oct 2019 | 1 | 290 | 1–7 | 19 |
13 | 9 Oct 2019 | 9 Oct 2019 | 1 | 230 | 2–9 | 13 |
14 | 15 Oct 2019 | 16 Oct 2019 | 6 | 260 | 11–36 | 15 |
15 | 19 Oct 2019 | 24 Oct 2019 | 12 | 3900 | 54–176 | 118 |
Event ID | RMSE (mm h−1) | (%) | (%) | ||||
---|---|---|---|---|---|---|---|
PRI | CAG | ALB | PRI | CAG | ALB | ||
1 | 0.5 | 0.3 | - | 19 | 13 | - | 8 |
2 | 1.9 | 1.6 | - | 29 | 27 | - | 15 |
3 | 0.4 | 0.1 | 0.2 | 21 | 12 | 12 | 14 |
4 | 0.5 | 0.3 | 0.3 | 14 | 14 | 13 | 11 |
5 | 0.7 | 0.8 | - | 15 | 19 | - | 7 |
6 | 0.7 | 0.5 | - | 19 | 10 | - | 7 |
7 | 0.5 | 0.5 | - | 17 | 8 | - | 22 |
8 | 0.3 | 0.1 | - | 19 | 12 | - | 16 |
9 | 0.3 | 0.3 | - | 11 | 10 | - | 17 |
10 | 0.5 | 0.5 | - | 35 | 32 | - | 9 |
11 | 0.5 | 0.7 | - | 18 | 17 | - | 11 |
12 | 0.2 | 0.1 | 0.2 | 17 | 12 | 20 | 44 |
13 | 0.6 | 0.3 | 0.4 | 32 | 23 | 29 | 4 |
14 | 0.4 | 0.3 | - | 16 | 16 | - | 21 |
15 | 0.4 | 0.2 | 0.1 | 19 | 12 | 20 | 13 |
CML | Valid | Wet | Wet + above | Wet + | Wet + above + |
---|---|---|---|---|---|
9 | 5907 | 1201 | 300 | 30 | 25 |
10 | 5911 | 867 | 409 | 182 | 141 |
11 | 5894 | 1104 | 278 | 19 | 16 |
13 | 4743 | 1103 | 406 | 15 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nebuloni, R.; Cazzaniga, G.; D’Amico, M.; Deidda, C.; De Michele, C. Comparison of CML Rainfall Data against Rain Gauges and Disdrometers in a Mountainous Environment. Sensors 2022, 22, 3218. https://doi.org/10.3390/s22093218
Nebuloni R, Cazzaniga G, D’Amico M, Deidda C, De Michele C. Comparison of CML Rainfall Data against Rain Gauges and Disdrometers in a Mountainous Environment. Sensors. 2022; 22(9):3218. https://doi.org/10.3390/s22093218
Chicago/Turabian StyleNebuloni, Roberto, Greta Cazzaniga, Michele D’Amico, Cristina Deidda, and Carlo De Michele. 2022. "Comparison of CML Rainfall Data against Rain Gauges and Disdrometers in a Mountainous Environment" Sensors 22, no. 9: 3218. https://doi.org/10.3390/s22093218
APA StyleNebuloni, R., Cazzaniga, G., D’Amico, M., Deidda, C., & De Michele, C. (2022). Comparison of CML Rainfall Data against Rain Gauges and Disdrometers in a Mountainous Environment. Sensors, 22(9), 3218. https://doi.org/10.3390/s22093218