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Abstract: In this paper, we propose a context-aware multi-scale aggregation network named CMSNet
for dense crowd counting, which effectively uses contextual information and multi-scale information
to conduct crowd density estimation. To achieve this, a context-aware multi-scale aggregation
module (CMSM) is designed. Specifically, CMSM consists of a multi-scale aggregation module
(MSAM) and a context-aware module (CAM). The MSAM is used to obtain multi-scale crowd
features. The CAM is used to enhance the extracted multi-scale crowd feature with more context
information to efficiently recognize crowds. We conduct extensive experiments on three challenging
datasets, i.e., ShanghaiTech, UCF_CC_50, and UCF-QNRF, and the results showed that our model
yielded compelling performance against the other state-of-the-art methods, which demonstrate the
effectiveness of our method for congested crowd counting.

Keywords: dense crowd counting; multi-scale feature learning; convolutional neural network

1. Introduction

The main aim of the crowd-counting task is to calculate the number of people present
in an image or video. This research topic has been receiving much attention due to its
enormous value in practical applications such as video surveillance [1,2], public safety [3,4],
human behavior analysis [5], and traffic control [6].

The goal of crowd-counting tasks has gradually developed from detecting individual
persons in a single image to estimating crowd density. Image or video scenes are often
severely occluded, and crowd scales vary widely, making the task of accurately counting
crowds difficult, especially for dense scenes. Inspired by the great success of convolutional
neural networks (CNNs) in computer vision tasks, researchers have recently proposed
many crowd counting methods based on CNNs [7,8]. These methods attempt to perform
the crowd counting task by utilizing multi-scale feature learning [9,10], multi-task learn-
ing [11,12], and attention mechanisms [13,14]. Most methods do not perform well in scenes
with dramatic crowd scale changes and complex environments. Therefore, designing
a network that can efficiently model large-scale head changes and at the same time en-
hance the ability of crowd recognition for complex scenes is critical to improving crowd
counting accuracy.

The scale and distribution of a crowd vary in an image. On the one hand, because the
distances between the crowd and the camera vary, the people at a longer field of view along
a straight line appear relatively crowded, and the head scales are different (as shown in
Figure 1a). On the other hand, some areas are overcrowded, and the crowd is close together,
which leads to mutual occlusion between human heads (as shown in Figure 1b). In addition
to the crowd distribution, the influence of background objects presents a challenge. Since
the image or video is captured from different and changing environments, the content
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presented in the image or video contains crowd and non-crowd information. Background
objects similar in shape to human heads can be incorrectly recognized by the counting
network as “human heads” (yellow circles in Figure 1c,d). In previous works, multi-column
convolution [15,16] and dilated convolution [17,18] methods were usually used to extract
features for different scales, but these methods do not make full use of the representations
of crowd features in the context information for scale extraction. Moreover, their networks
entail a large number of parameters and floating-point calculations.

(a) (b)

(c) (d)

Figure 1. Visual results of different crowd scenes. Image (a) depicts the scale of the distance from
the camera. Image (b) shows the head-blocking phenomenon caused by crowd congestion. Images
(c,d) show the effects of objects resembling a human head in the background.

To solve the above challenges, we propose a context-aware multi-scale aggregation
network named CMSNet for dense crowd counting. Its purpose is to address the challenge
of inconsistent head scales in crowded scenes and enhance the ability of the method to
recognize the features of crowds in an image. The MSAM adopts different dilation rates to
extract multi-scale features of the feature maps in each channel and then fuses them. In
addition, the CAM is used to enhance the crowd feature information of the initial feature
map in each channel. Then, CMSNet aggregates the multi-scale aggregation information
and the enhanced information for the crowd to generate a density map. As the number of
channels in the network decreases and the feature map is enlarged step by step, a density
map of the original size is generated to predict the number of people. The contributions of
this paper are summarized as follows:

1. We propose a new MSAM. Different dilation rates are used to obtain multi-scale
feature information. In addition to each multi-scale sampling branch, a branch of
the global receptive field (GRF) is added to help the other multi-scale branch sample
features more accurately.

2. We propose a new CAM, which uses an attention mechanism to identify the features
of the crowd information in an image by relying on the context information.
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3. We propose a novel context-aware multi-scale aggregation network named CMSNet
for dense crowd counting, which utilizes a weighted attention method to strengthen
the expression of crowd information and a multi-scale sampling method to obtain
information at different scales, thus improving the counting accuracy.

Compared with other state-of-the-art methods presented in recent years, our proposed
method shows validity and competitiveness on three challenging crowd datasets, i.e.,
ShanghaiTech, UCF_CC_50, and UCF-QNRF.

The rest of the paper is organized as follows. First, we review traditional crowd-
counting methods and counting methods based on convolutional neural networks (CNNs)
in Section 2. The multi-scale feature learning methods are briefly introduced. Then, we
introduce the method proposed in this paper in Section 3. We present the experimental
results on the datasets and an ablation analysis in Section 4. Finally, we draw conclusions
in Section 5.

2. Related Work
2.1. Traditional Methods

Traditional crowd-counting methods use hand-crafted features for modelling crowds,
and leverage machine learning [19] methods to recognize crowds. These include detection-
based methods [20,21], regression-based methods [22,23], and density map-based meth-
ods [24,25]. Early detection methods mainly designed object detectors to recognize pedestri-
ans in a crowd [26] and they obtained the number of pedestrians in a scene by counting the
number of detection frames. However, such methods usually have low counting accuracy
due to the high pedestrian density in a crowd and mutual occlusion among pedestrians. To
perform crowd estimation in high-density cases, researchers proposed a regression-based
method [27]. The main idea of this method is to extract the crowd features and train the
regressor to construct a nonlinear mapping between the crowd image and the number of
people. Although this method has better detection accuracy than the early detection meth-
ods, it does not provide clear results for the location distribution information of pedestrians
in the crowd. Finally, to obtain the location information of pedestrians in a crowd, Lemp-
tisky et al. [25] first adopted a method based on density estimation. This method mainly
learns a linear mapping relationship between local features and the corresponding density
maps. However, the acquisition of the density map depends on manual extraction, and
different scenes must be manually extracted again, which greatly limits the generalization
ability of the algorithm.

2.2. CNN-Based Methods

Due to the strong feature-learning ability of CNNs, many counting methods based
on CNNs have appeared for crowd counting tasks. Zhang et al. [28] first adopted the
CNN method to design a network model for crowd density estimation. With the emer-
gence of various network structures, the accuracy of the crowd counting task has also
been improved. Li et al. [17] first applied dilated convolution to crowd counting and
greatly improved the calculation accuracy. Shen et al. [11] used the concept of generative
adversarial nets (GAN) [29] to generate density maps using the U-NET structure [30] and
used the consistency of calculation between subimages and general images to improve the
calculation accuracy. The accurate recognition of multi-scale information and the accurate
representation of crowd feature information have attracted the attention of many scholars.

2.3. Multi-Scale Feature Learning

This method is designed to use multi-scale features or contextual information to
address the challenge of head scale variation in a crowd. The multi-column convolutional
neural network (MCNN) proposed by Zhang et al. [15] used multi-scale filter kernels to
extract features with receptive fields of different sizes. Similarly, Sam et al. [16] proposed
Switching-CNN, which used a switching classifier to select the best classifier from a density-
class classification pool for crowd estimation. The method for generating high-quality
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crowd density maps using contextual pyramid CNN (CP-CNN) proposed by Sindagi
et al. [31] generated high-quality density maps and captured multi-scale information
by combining prior information from global and local contexts. In addition, Sindagi
and Patel et al. [32] proposed a multi-level bottom-top and top-bottom feature fusion
network (MBTTBF), which was elaborately designed to combine multi-scale information
with multiple shallow and deep features. Liu et al. [33] designed an attention map generator
(AMG) module for ADCrowdNet that adopted multi-scale acquisition methods for different
channel dimensions to improve its ability to acquire different scale information. Zhang
et al. [34] proposed the attentional neural field (ANF), which combined a conditional
random field and a nonlocal attentional mechanism to capture multi-scale features and
long-range correlation, enhancing the ability of the network to work with large-scale
changes. Recently, Yang et al. [35] proposed the use of dual-stream ResBlock matching
features of different scales so that the network could automatically learn and aggregate
matching scores of different scales to improve the recognition accuracy of different objects.
In contrast to the above methods, the network presented in this paper uses GRF information
to help express the features of each scale, fuses multi-scale information to generate a density
map, and estimates the number of people. Inspired by Modolo et al. [36], we use a separate
context-aware branch in this network to enhance the feature information identification for
the crowd, in which the attention mechanism is the main measure of this branch. This
method utilizes the visual attention mechanism to make the counting network consciously
focus on useful information to improve the counting performance.

3. Proposed Method
3.1. Overview

Similar to the current mainstream methods [15–17], we treat the crowd-counting prob-
lem as a pixel-level regression task. CMSNet is divided into an encoder and a decoder,
as shown in Figure 2a. The encoder uses the first 10 convolutional layers of VGG16 [37]
to gradually reduce the image size and extract deep features. As the main design of this
study, the decoder adopts multi-scale fusion and feature enhancement methods to decode
and reconstruct the features obtained by the encoder. Features are obtained through convo-
lutional layer narrowing channels, and the features are input into the CMSM (Figure 2b)
to accurately obtain multi-scale feature maps. Then, the enhanced feature map is upsam-
pled by a factor of 2 to obtain the enlarged image. After three repetitions of this step, a
16-channel feature map is obtained. The final predicted density map is obtained through a
1× 1 convolutional layer. The overall operation structure of the network can be described
as extracting the primary features from the deep features by inputting an image Ii and
using Equation (1),

fi = FVGG(Ii), (1)

where FVGG represents the encoder, which is used to extract the deep features. The extracted
features are then fed into the decoding network to produce a density map for prediction Gi,

Gi = Fdecoder( fi), (2)

where Fdecoder represents the main design of this paper, the decoder, which is mainly
composed of the CMSM. The CMSM is used to fuse the enhanced crowd feature information
and multi-scale information.
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Figure 2. Overview of CMSNet. An image is received by the encoder and converted into deep
features, and then the deep features are decoded by the decoder into a density map for crowd
counting. The decoder is composed of three context-aware multi-scale aggregation modules (CMSMs),
and the CMSMs are connected in parallel by a CAM and an MSAM to generate feature maps at each
channel level.

3.2. Context-Aware Multi-Scale Aggregation Module

In the crowd-counting task, enhancing the expression of crowd information is an
essential method. The common method is to use an attention mechanism [38,39] to assign
different weight values to channel or spatial features and then apply the weight values
to the features for learning. In this study, we use the CMSM designed as the parallel
combination of a CAM (Figure 2c) and an MSAM (Figure 2d). The CAM adopts a scaling
and stretching feature mechanism, uses the residual connection to enhance the feature
recognition for the crowd and surrounding information, and performs different feature
weighting processing on the feature maps generated by the convolutional layer of the
decoder network to enhance the crowd feature information. Different dilation rates are
used to sample feature information at different scales in the MSAM, and the branch with
the GRF information is applied to the other four multi-scale branches to assist multi-scale
information learning (as shown in the orange flow line in Figure 2b). Then, the feature
information obtained by the CAM and the MSAM is merged to obtain the feature in the
current channel. The specific formula is as follows:

f CAM
i = FCAM( fi), (3)

f MSAM
i = FMSAM( fi), (4)

f
′
i = f CAM

i ∗ f MSAM
i + fi, (5)

where fi represents the input feature map of the i-th image in the current channel, f MSAM
i

represents the feature of the i-th image in the current channel processed by the MSAM,
f CAM
i represents the weight features of the i-th image in the current channel after the CAM,

and FCAM and FMSAM represent the CAM and MSAM, respectively. A residual connection
is adopted to help stabilize the network, prevent gradient disappearance and better learn
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the features in Equation (5). ∗ represents the multiplication of matrix elements. Finally, the
CMSM inputs the processed feature map into the next stage.

3.2.1. Multi-Scale Aggregation Module

To explore an appropriate multi-scale structure for feature recognition and learning of
the head region in the feature map, this study adopts a multi-scale aggregation method
designed similarly to atrous spatial pyramid pooling (ASPP) [40]. For the crowd in an
image, each head is different in size. The dilation rates should consider the “small” heads
in the edge areas as well as the “large” heads near the camera. Compared with that of [40],
the structure designed in this study adopts more reasonable dilation rates and padding
rates for different head sizes in an image, as shown on the bottom line of Figure 2d. In
crowded scenarios, dilation rates and padding rates are set to be relatively small to better
measure the number of heads. In contrast, larger dilation rates are used to detect heads
close to the camera.

The network has an added branch that enables the MSAM to obtain the GRF. The GRF
first compresses all information into a feature map with a size of 1× 1, then restores it to
the original size and sets a probability within (0, 1) to improve the multi-scale detection
capability of the other four branches. Finally, all scale information is fused and output.
With the help of the GRF, the other four dilated branches can better learn different feature
representations. The details are shown in the following formulas:

Pi = Sigmoid(Upsample(Conv1(Favg( fi)))), (6)

fi,j = Pi ∗Convd
i,j, d = 1, 2, 3, 6, (7)

f MSAM
i = Conv3(Concat( fi,j)) + fi, (8)

where fi represents the input feature map of the i-th image in the current channel. Favg
compresses the feature map to features of size (1, 1). After a 1× 1 convolution operation on
layer Conv1, Upsample is used to restore the feature map to its original size, and Sigmoid is
used to set it to the probability interval of (0, 1) to obtain Pi and ensure that it has a GRF. d
in Convd

i,j represents the dilation rate, and i and j represent the i-th image and j-th branch of
the current channel, respectively (j = 1, 2, 3, 4). Conv3 is represented by a 3× 3 convolution
operation. f MSAM

i is the final feature generated by the MSAM of the current channel.

3.2.2. Context-Aware Module

In this paper, the CAM performs enhanced feature recognition on the feature maps
received by each channel of the decoder to improve the ability to recognize the crowd. This
module adopts an attention mechanism similar to that of SENet [38] and adds a residual
connection on this basis to assist the network in recognizing crowd features by relying on
context information. Then, the module uses Sigmoid to set probabilities within (0, 1) to
perform preliminary overall crowd recognition for the initial feature map in each channel (as
shown on the right in Figure 2c). The specific operation is shown in the following formula:

PCAM
i = Sigmoid(Sigmoid(W2

FC(ReLU(W1
FC(Favg( fi))))) + fi), (9)

where W1
FC and W2

FC represent the first and second fully connected layers, respectively.
Through the residual connection, CAM can stabilize the values in the feature map and
increase the weight from the channel level to help the network use the surrounding infor-
mation to learn the feature information of the crowd.
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3.3. Density Map Generation and Loss Function

Similar to mainstream methods [15,16,41,42], the generation method of the density
map adopts an adaptive Gaussian kernel [25]; that is, each head anchor point in the image
is processed by the Gaussian kernel function:

F(x) =
N

∑
i=1

δ(x− xi) ∗ Gσi , σi = βd̄i, (10)

where Gσi represents the two-dimensional standard Gaussian kernel function, δ() denotes
the Dirac delta function, σ represents the standard deviation, and N is the total number of
people in image Ii. β is a constant, and d̄i is the diameter of a head in the image, which is the
average distance between the k nearest-neighbor heads (k = 7). Similar to Zhang et al. [15],
this study sets β as 0.3. The processed images and the corresponding ground-truth density
maps are reversed, mirrored, and cropped to expand the existing dataset. In this way, the
mapping between the input image Ii and the corresponding crowd density map F(x) can
be obtained.

Moreover, the loss function of the network uses L2 loss to measure the difference
between the output density map and the corresponding ground truth. The loss function is
defined as follows:

L(λ) =
1

2N

N

∑
i=1
‖ŷ(Ii; λ)− yi‖2

2, (11)

where λ represents the learning parameter of the crowd-counting network and ŷ(Ii; λ) is
the output of the crowd-counting network. yi is the ground truth. N represents the number
of training images.

4. Experiments
4.1. Datasets

ShanghaiTech [15]: This dataset consists of two parts, ShanghaiTech Part_A (SHHA) and
ShanghaiTech Part_B (SHHB). SHHA contains 482 crowd images from Internet searches.
300 images were used for the training set and 182 for the test set. In this dataset, the
population size ranges from 33 to 3139 people, which is a large scope and can provide
a good test of the network’s ability to handle variations in the population size. SHHB
includes 716 crowd images taken from Shanghai’s busy streets and scenic spots. A total of
400 images were used for the training set, and 316 images were used for the test set.
UCF_CC_50 [22]: This dataset contains many images of very crowded scenes, mostly from
FLICKR. The number of images in this dataset is very limited (only 50 images), but the
variation range of the number of people is very large (the number of people in one image
reaches 4543), which brings great challenges for training and testing of the network. Similar
to other mainstream test methods, we use 5-fold cross-validation for evaluation.
UCF-QNRF [43]: This dataset contains 1535 crowd images, of which 1201 images were
used for training and 334 for testing. In addition, the number of people in the images in
this dataset varies from 49 to 12,865, so it is a great option for testing the performance of
the network.

Table 1 is the summary information for these three datasets.

Table 1. Summarizations of crowd counting datasets.

Datasets Resolution Number of Images Max Min Total

SHHA different 482 3139 33 241,677
SHHB 768 × 1024 716 578 9 88,488

UCF_CC_50 different 50 4543 94 63,974
UCF-QNRF different 1535 12,865 49 1,251,642
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4.2. Evaluation Metrics and Implementation Details

In this study, as the measurement standards for the density maps generated by the
network compared to the ground truth maps, we adopted the mean absolute error (MAE)
and mean square error (MSE) evaluation standards, consistent with mainstream methods,
to measure the evaluation performance of the network.

MAE =
1
N

N

∑
i=1
|ŷi − yi|, (12)

MSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2, (13)

where N represents the number of test images, yi represents the ground truth maps, and ŷi
represents the predicted density maps.

We used the first 10 convolutional layers of VGG16 pretrained in the ImageNet com-
petition as the feature extractor, namely, the encoder. The initial learning rate was set to
7× 10−6. Meanwhile, Adam with momentum was selected as the optimizer. All exper-
iments were performed on a PC with a single GeForce RTX 2080Ti GPU and an Intel(R)
I9-9900K CPU. The data preprocessing was set according to the C-3 framework struc-
ture [44]. In addition, the batch size of the ShanghaiTech dataset was set to 8, and those
of the remaining datasets were set to 1. For simplicity, we used SHHA&B to represent the
ShanghaiTech_part A&B dataset in our experiments.

4.3. Ablation Study

This section examines the ablation experiments between network modules to better
prove the rationality and effectiveness of the network design presented in this paper.

4.3.1. Ablation for the MSAM

We explored some sampling methods for the MSAM. Due to the different sizes of
human heads in an image, the MSAM should handle extremely large human heads, very
small human heads, and partial human heads blocked by crowd congestion. In terms
of scale setting, a small dilation rate of “1–3” should still be taken for the subject as the
sampling bottom line. Additionally, for heads with larger scales, a larger dilation rate in a
single column should be used to obtain information on them. We also explored stepped
dilation rates (1, 4, 7, 9) to obtain information on different head scales. However, in the
crowd-counting task, the images of existing datasets contain a very wide range of head
scales. Therefore, small-scale human heads were taken as the main body in the image, so if
the dilation rate was set too large, then the sampling information would not be accurate.
This can also be seen from the experimental results in Table 2 and Figure 3. In addition,
when the number of module parameters was increased (as seen from Table 2), the counting
performance did not improve, but decreased. Therefore, (1, 2, 3, 6) were chosen as the
default parameters of the network.

Table 2. Performance comparisons of different dilation rate settings of the MSAM on SHHA.

Dilation Rates MAE MSE

1, 2, 3, 4 67.1 110.3
1, 2, 3, 5 66.5 113.4
1, 2, 3, 8 65.3 112.3
1, 4, 7, 9 65.5 108.1

1, 2, 3, 6 64.9 111.2
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GroundTruthInput Image rate 1

GT:818 Pre:684 Pre:721

GT:500 Pre:417 Pre:426

GT:960 Pre:1007 Pre:946

GT:1174 Pre:1092 Pre:1071

GT:583

Pre:732

Pre:445

Pre:970

Pre:1129

Pre:572

Pre:706

Pre:431

Pre:1050

Pre:1109

Pre:607Pre:556Pre:562

rate 2 rate 3 rate 4 rate 5

Pre:740

Pre:448

Pre:557

Pre:976

Pre:1112

Figure 3. Visual results of the MSAM with different dilation rates on SHHA. From left to right: input
image, ground truth, {1,2,3,4}, {1,2,3,5}, {1,2,3,8}, {1,4,7,9}, {1,2,3,6}.

In addition, a GRF branch was added separately to the MSAM of this network. This
branch helped every other scale branch better use the surrounding information to sam-
ple the crowd feature information. The experimental results are shown in Table 3 and
Figure 4. The experimental results show that the GRF branch was effective in detecting
multi-scale features.

Table 3. Ablation study of the GRF on SHHA.

Model MAE MSE

w/o GRF 66.8 115.9
w. GRF 64.9 111.2

We also explored the effect of the residual connection on this module. The experimental
results are shown in Table 4. It can be proved that the residual connection can be used
to provide the counting network with more feature information from before and after
regression learning of crowd information to obtain better results.

Table 4. Ablation study of the residual connection in the MSAM on SHHA.

Model MAE MSE

w/o residual 67.2 118.6
w. residual 64.9 111.2
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GroundTruthInput Image w. GRFw/o GRF

GT:800 Pre:826Pre:874

GT:1231 Pre:1185Pre:1400

GT:1602 Pre:1506Pre:1745

GT:1208 Pre:1204Pre:1352

Figure 4. Visual results of effect of the GRF. From left to right: input image, ground truth, w/o GRF
and w. GRF.

4.3.2. Ablation for the CAM

In the CAM, this network adopts the structure of SENet [38], with some parts modified
according to the objectives and tasks of our research. In the dataset images, there are large-
scale variations in the crowd features. Obtaining features of different crowd scales in the
training stage is difficult. We added a residual connection to the [38] structure to help the
network learn the features of the crowd context while maintaining the consistency of the
network learning before and after. The specific experimental results are shown in Table 5.

Table 5. Ablation study of the residual connection in the CAM on SHHA.

Model MAE MSE

w/o residual 66.4 115.2
w. residual 64.9 111.2

The experimental results show that the increased residual connection can effectively
help the network learn crowd features from context.

4.3.3. Ablation for the CMSM

In this part, the network separates the MSAM and the CAM from the CMSM. Then,
the corresponding ablation experiments verify whether these two modules play a role. The
experimental results are shown in Table 6, Figures 5 and 6. In the third row of Table 6, we
replace the MSAM module with ordinary 3× 3 convolution.



Sensors 2022, 22, 3233 11 of 16
CA:
22-122-8

GroundTruthInput Image w.CAMw/o CAM

GT:567
Pre:209Pre:204GT:211

GT:1152 Pre:874Pre:792

GT:1325 Pre:711Pre:660

Figure 5. Ablation study of the CAM on SHHA. From left to right: input image, ground truth, result
of w/o CAM, and result of w. CAM.

w. MSAMw/o MSAMInput Image GroundTruth

GT:270 Pre:235Pre:226

Pre:76GT:68 Pre:71

GT:440 Pre:425Pre:388

GT:1231 Pre:1185Pre:1400

Figure 6. Ablation study of the MSAM on SHHA. From left to right: input image, ground truth,
result of w/o MSAM, and result of w. MSAM.
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Table 6. Ablation study of the CAM and the MSAM in the CMSM on SHHA.

Model MAE MSE

w/o CAM 68.2 118.8
w/o MSAM 71.0 117.6

w. CAM & MSAM 64.9 111.2

As seen from the experimental results, the CAM branch and the MSAM branch in the
network structure can improve the counting accuracy in learning contextual features and
acquiring accurate multi-scale features, respectively. With the MSAM branch, the counting
performance of the network is obviously improved. The results prove their effectiveness.

In addition, the CMSNet we propose has a relatively small number of arguments
and floating-point calculations compared to other advanced network architectures. The
comparison results are shown in Table 7. The experimental performance results were
obtained for the UCF-QNRF dataset, and the number of parameters and floating-point
calculations were both determined based on images with an input of [1, 3, 224, 224]. From
the comparison results, although our counting network is not optimal in terms of technical
performance, it has much fewer parameters and floating-point computations than other
advanced network structures. Therefore, in practical applications, the demand for hardware
is low, and the scope of application is wide.

Table 7. Comparison of the number of parameters and floating-point calculations on the UCF-
QNRF dataset.

Network Model Year Parameter (K) FLOPs(G) MAE MSE

CSRNet [17] 2018 16,263 20.74 111.8 198.1
CAN [45] 2019 18,103 21.99 107.0 183.0

S-DCNet [46] 2019 14,979 15.36 104.4 176.1
ASNet [47] 2020 30,398 31.33 91.6 159.7

Ours 2022 9668 16.67 102.3 176.5

4.4. Comparison with State-of-the-Art Methods

In this section, we evaluate our approach against several approaches [2,15–17,41,42,48–58]
proposed to date. The experimental results of these methods were based on the Shang-
haiTech_part A&B dataset, UCF_CC_50 dataset, and UCF-QNRF dataset. During the
test, each complete image in the test sets of the three datasets was directly sent to our
CMSNet model. Following the standard scheme adopted in [22], we carried out 5-fold
cross-validation for the UCF_CC_50 dataset. We first calculated the MAE for each test
scenario and then averaged all MAEs to evaluate the performance of CMSNet in different
test scenarios.

As shown in Table 8, our CMSNet achieved competitive results. Moreover, our
method achieved the best experimental results on the UCF-QNRF dataset. Our method
also achieved good results on the most widely used SHHA&B dataset. For the UCF_CC_50
and UCF-QNRF datasets, with high crowd density, the experimental results were more
obvious. Additionally, our method achieved better performance in calculating the number
for dense crowds, which is what it was designed to do. That is, the crowd features could
be more effectively obtained and identified based on different head scale information in a
dense crowd. Although the results of our model are not optimal on the SHHA&B datasets,
our model achieves the best performance on the UCF-QNRF dataset, which has a wider
range of crowd features and more complex scene changes.



Sensors 2022, 22, 3233 13 of 16

Table 8. Comparison of the different state-of-the-art methods on the SHHA, SHHB, UCF_CC_50, and UCF-QNRF datasets. The red and green numbers are the
performance gains of different methods relative to CSRNet.

Network Model Year
SHHA SHHB UCF_CC_50 UCF-QNRF

MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [15] 2016 110.2 −61.6% 173.2 −50.6% 26.4 −149.1% 41.3 −158.1% 377.6 −41.9% 509.1 −28.1% 277 −130.2% 426 −104.3%
MSCNN [48] 2017 83.8 −22.9% 127.4 −10.8% 17.7 −67.0% 30.2 −88.8% 363.7 −36.7% 468.4 −17.8% - - - -
Switching-CNN [16] 2017 90.4 −32.6% 135.0 −17.4% 21.6 −103.8% 33.4 −108.8% 318.1 −19.5% 439.2 −10.5% 228 −90.0% 445 −113.4%
CSRNet [17] 2018 68.2 - 115.0 - 10.6 - 16.0 - 266.1 - 397.5 - 120.3 - 208.5 -
SANet [49] 2018 67 1.8% 104.5 9.1% 8.4 20.8% 13.6 15.0% 258.4 2.9% 334.9 15.7% - - - -
ASD [50] 2019 65.6 3.8% 98 14.8% 8.5 19.8% 13.7 14.4% 196.2 26.3% 270.9 31.8% - - - -
PACNN [51] 2019 66.3 2.8% 106.4 7.5% 8.9 19.1% 13.5 15.6% 267.9 −0.7% 357.8 10.0% - - - -
LSC-CNN [52] 2020 66.4 2.6% 117.0 −1.7% 8.1 23.6% 12.7 20.6% 225.6 15.2% 302.7 23.8% 120.5 −0.2% 218.2 −4.7%
C-CNN [53] 2020 88.1 −29.2% 141.7 −23.2% 14.9 −40.6% 22.1 −38.1% - - - - - - - -
DUBNet [54] 2020 64.6 5.3% 106.8 7.1% 7.7 27.4% 12.5 21.9% 243.8 8.4% 329.3 17.2% 105.6 12.2% 180.5 13.4%
LA-Batch [55] 2021 65.8 3.5% 103.6 9.9% 8.6 18.9% 13.6 15.0% 203 23.7% 230.6 42.0% 113 6.1% 210 −0.7%
MSCANet [42] 2021 66.5 2.5% 102.1 11.2% - - - - 242.8 8.8% 329.8 17.0% 104.1 13.5% 183.8 11.8%
SRNet [41] 2021 66.0 3.2% 96.7 15.9% - - - - 184.1 30.8% 232.7 41.5% 108.2 10.0% 177.5 14.9%
HADF-Crowd [2] 2021 71.1 −4.3% 111.6 3.0% 9.7 9.3% 15.7 1.9% - - - - - - - -
SRN[56] 2021 64.4 5.6% 100.2 12.9% 8.4 20.8% 13.4 16.3% 242.3 8.9% 320.4 19.4% - - - -
PDD-CNN [58] 2021 64.7 5.1% 99.1 13.8% 8.8 17.0% 14.3 10.6% 205.4 22.8% 311.7 21.6% 115.3 4.2% 190.2 8.8%
IA-MFFCN [57] 2022 62.9 7.8% 100.8 12.3% 9.8 7.5% 13.2 17.5% 242.7 8.8% 320.4 19.4% - - - -

Ours 2022 64.9 4.8% 111.2 3.3% 8.5 19.8% 13.3 16.8% 203.9 23.4% 259.9 34.6% 102.3 15.0% 176.5 15.3%
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5. Conclusions

In this paper, we propose a novel network structure named CMSNet to enhance the
feature representations of the crowd in an image and improve the accuracy in obtaining
information for different head scales. To this end, we propose a context-aware module
(CAM) to assist the network in using surrounding information to learn the features of
the crowd before and after the difference is determined. We propose a new multi-scale
aggregation module (MSAM) to address the different scales of human head information in
an image. By aggregating head information of different scales, the counting network can
learn the feature information of different scales to calculate the number of people more
accurately. Moreover, the GRF branch in the MSAM can help other multi-scale branches
better learn feature information. Finally, the information from multiple modules is merged
into a final density map. Extensive experiments on three challenging datasets prove that
the proposed method is very competitive with the current state-of-the-art methods.
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