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Abstract: Real-time representation of the current performance of structures is an important task
for perceiving potential danger in in-service bridges. Methods driven by the multisource sensing
data of structural health monitoring systems are an effective way to achieve this goal. Due to
the explicit zero-point of signals, the live load-induced response has an inherent advantage for
quantitatively representing the performance of bridges. Taking a long-span cable-stayed railway–
highway combined bridge as the case study, this paper presents a representation method of in-service
performance. First, the non-stationary sections of train-induced response are automatically extracted
by wavelet transform and window with threshold. Then, the data of the feature parameter of
each non-stationary section are automatically divided into four cases of train load according to
the calculational theory of bridge vibration under train effect and clustering analysis. Finally, the
performance indexes for structural deformation and dynamics are determined separately, based on
hierarchical clustering and statistical modeling. Fusing the real variability of massive data from
monitoring and the knowledge of mechanics of theoretical calculations, accurate and robust indexes
of bridge deflection distribution and forced vibration frequency are obtained in real time. The whole
process verifies the feasibility of the representation of bridge in-service performance from massive
multisource sensing data. The presented method, framework, and analysis results can be used as a
reference for the design, operation, and maintenance works of long-span railway bridges.

Keywords: structural health monitoring; live-load response; data-driven deterioration detection;
structural dynamics; bridge

1. Introduction

Perceiving the potential danger to a bridge is the primary reason for installing a
structural health monitoring (SHM) system on a bridge [1–3]. With the development of
testing, communication, and computer technology, multiple types of physical quantities
of bridge input (load) and output (response) can be accurately obtained [4,5]. However,
perceiving the potential danger to a structure is a comprehensive task; it is a process from
measurement to evaluation [6]. After the accurate measurement of the bridge input–output
behavior, the real-time state of the structure should be accurately evaluated to guide bridge
operation and maintenance. The quantitative representation (i.e., description of objects
by one or multiple features) of the bridge in-service performance using the knowledge of
mechanics is the primary task for the evaluation of a bridge’s in-service state.

Traditionally, the representation of bridge performance is a forward problem with
known cases of loading; it is generally based on calculation, simulation, or experiment. In
the early stages, many scholars derive the indexes of the dynamic or capacity performance
of the bridge based on the theory of classical mechanics [6–10]. With the wide application of
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numerical simulation, some scholars investigate the dynamic, capacity, and fatigue perfor-
mance of bridges under load effects based on the results of finite element simulation [11–13].
Scholars who focus on local performance and failure modes study the bending and shearing
capacity of the components and structures of bridges, based on interactive verification by
experiments and simulations [14–17]. In recent years, some scholars have presented the
real-time hybrid simulation method to analyze the performance of the whole structure
of bridges [18–20]. However, due to the scale effect of experiments and the equivalent
simplification of simulations, this research may not reflect the real performance of bridges.

Due to urgent needs for monitoring the current performance of existing bridges, there
has been a renewed focus on the method of performance representation for non-initial state
bridges under real, unknown, or random in-service loads based on field measurements.
These methods involve a typical inverse problem [21], which is proposed to determine the
current state of the bridge structure based on the load-induced response. Modal parameters
of the structure identified by free-vibration without loads are the most common index of
performance for bridge monitoring [22–24], and many frequency-based methods with high
robustness to environmental effects have been proposed for detecting structural damage in
bridges [25,26]. Measured displacement [27,28] and strain [29,30] data have also been used
to assess bridge long-term performance. Because existing bridges are always subject to
in-service loads, the feature parameters of the response under temperature, vehicle, train,
and wind are used to establish the performance index [31–35]. Based on the calculated
index of performance, methods of early warning for the potential danger of bridges in
operation have been proposed [36–40]. Nevertheless, current methods of performance
representation are not real-time and automatic enough for the operation and maintenance
of bridges; their core parameters require experienced professionals’ determination and
adjustment. The advantages of the massive data [41] from bridges’ SHM systems have not
been fully exploited. The mining and evaluation methods using multi-type response data
of bridges under various loading cases need to be studied [42].

The application of a modern SHM system for bridges is a technology involving
fusion perception from multiple input–output parameters; it collaboratively measures
different physical quantities using different types of sensors. This makes feasible the real-
time [43] representation of the structural performance as driven by data. Taking a 1290 m
cable-stayed railway–highway combined bridge as the case study, this paper proposes
a representation method of in-service performance based on multisource sensing data
and theoretical calculation. The advantage of SHM data in the analysis of structural real-
time non-initial performance is exploited, and the knowledge of mechanics on the bridge
vibration under a train’s effects is introduced. The indexes for representing the bridge
deformation and dynamic performances are finally determined based on the massive data
of train-induced non-stationary response.

2. Case Study Bridge and Sensor Deployment

The case study is a long-span cable-stayed railway–highway combined bridge on the
Changjiang river in Anhui, China. As indicated in Figure 1, the total length of the bridge is
1290 m, with a continuous span configuration of (90 + 240 + 630 + 240 + 90) meters; the main
span of the bridge is 630 m. This bridge adopts the structure type of three girder trusses
along the transverse direction and three cable planes along the longitudinal direction. The
center of the three main trusses of the girder is 17.1 m apart along the transverse direction.
The height of the trusses of the girder is 15.5 m, and upper and a lower orthotropic box steel
bridge decks are set for the highway and railway respectively. The lower layer of the girder
consists of two 250 km/h high-speed railway tracks on the downstream and two 160 km/h
fast railway tracks on the upstream. The upper layer of the girder consists of six lanes of
highway. As of the date of the monitoring data, all highway lanes and the downstream
high-speed railway tracks were opened to traffic, while the upstream fast railway tracks
were not. The number of carriages of high-speed trains on these railway lines is only 8 and
16. Two bearings are set on each pier to support the girder; the downstream bearings of
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each pier resist the vertical and transverse motion, while the upstream bearings of each pier
resist the vertical motion. The two towers are both 212 m high. A total of 8 longitudinal
viscous dampers are set between two towers and the girder (near the bearings) to resist
the longitudinal impact of velocity greater than 0.5 mm/s (e.g., earthquake or the braking
force of trains and vehicles). The two towers and four piers of the bridge are set on pile
foundations with different depths.

Sensors 2022, 22, 3247 3 of 24 
 

 

railway tracks were not. The number of carriages of high-speed trains on these railway 
lines is only 8 and 16. Two bearings are set on each pier to support the girder; the down-
stream bearings of each pier resist the vertical and transverse motion, while the upstream 
bearings of each pier resist the vertical motion. The two towers are both 212 m high. A 
total of 8 longitudinal viscous dampers are set between two towers and the girder (near 
the bearings) to resist the longitudinal impact of velocity greater than 0.5 mm/s (e.g., earth-
quake or the braking force of trains and vehicles). The two towers and four piers of the 
bridge are set on pile foundations with different depths. 

 
Figure 1. Deployment of monitoring sensors of the bridge (unit: meters). 

Figures 1 and 2 indicate the deployment of monitoring sensors for the representation 
of bridge performance in this paper. The deformation and dynamic performances are two 
important items for the bridge during operation. Hence, the deflection and acceleration 
responses are selected as study objects to represent the bridge deformation and dynamic 
performance. A hydrostatic leveling instrument is used to measure the deflection (namely 
the quasi-dynamic vertical displacement) of the bridge. In each of Sections A, B, D–F, H–
J, L, and M, one hydrostatic leveling instrument is set at the joint of the middle-truss rod 
and lower bridge deck. In the Section G, two hydrostatic leveling instruments are set at 
the joints of two side-truss rods and the lower bridge deck. Considering that only the two 
downstream high-speed railway tracks were open to traffic before the last day of the data 
used in this paper, all deflection data of Section G take the measured data of the down-
stream hydrostatic leveling instrument of Section G. In Section K, a hydrostatic leveling 
instrument is set on Pier 4 as the datum point for the whole hydrostatic leveling system. 
Two vertical accelerometers are set at the joints of two side-truss rods and the lower bridge 
deck in each of Sections A, B, E, G, I, L, and M. An atmospheric thermometer is set at the 
top of the truss in the Section G to measure the atmospheric temperature and humidity. 
Two radar speedometers are set near the two downstream high-speed railway tracks in 
Sections C and K to measure the speed of each traversing of trains on the bridge; correctly 
setting the measuring angle of the radar speedometer can easily accomplish the task of 
just measuring the speed from the train traversing its installed track. The sensing details 
of the above types of sensors are indicated in Table 1. The data transmission and power 
supply of all sensors uses the wired method. A data room is set for storing data near the 
bridge site. The sensors′ deployment and optimization are the important parts of the SHM 
[44]. The sensor deployment of the case study bridge is optimized by the dual driving of 

 

630 240

Plan

Longitudinal

V
er

tic
al

9024090

Tr
an

sv
er

se

Longitudinal

Wuwei
northwest

Tongling
southeast

Upstream

Downstream

Elevation

Vertical accelerometer (14)

Atmospheric thermometer (1)

A B C D E F G H I J K L M

A B C D E F G H I J K L M

Hydro-static leveling instrument (13)

Vertical accelerometer (14)

Hydro-static leveling instrument (13)Radar speedometer (1) Radar speedometer (1)

Wuwei
northwest

Tongling
southeast

Figure 1. Deployment of monitoring sensors of the bridge (unit: meters).

Figures 1 and 2 indicate the deployment of monitoring sensors for the representation
of bridge performance in this paper. The deformation and dynamic performances are two
important items for the bridge during operation. Hence, the deflection and acceleration
responses are selected as study objects to represent the bridge deformation and dynamic
performance. A hydrostatic leveling instrument is used to measure the deflection (namely
the quasi-dynamic vertical displacement) of the bridge. In each of Sections A, B, D–F,
H–J, L, and M, one hydrostatic leveling instrument is set at the joint of the middle-truss
rod and lower bridge deck. In the Section G, two hydrostatic leveling instruments are
set at the joints of two side-truss rods and the lower bridge deck. Considering that only
the two downstream high-speed railway tracks were open to traffic before the last day
of the data used in this paper, all deflection data of Section G take the measured data of
the downstream hydrostatic leveling instrument of Section G. In Section K, a hydrostatic
leveling instrument is set on Pier 4 as the datum point for the whole hydrostatic leveling
system. Two vertical accelerometers are set at the joints of two side-truss rods and the
lower bridge deck in each of Sections A, B, E, G, I, L, and M. An atmospheric thermometer
is set at the top of the truss in the Section G to measure the atmospheric temperature and
humidity. Two radar speedometers are set near the two downstream high-speed railway
tracks in Sections C and K to measure the speed of each traversing of trains on the bridge;
correctly setting the measuring angle of the radar speedometer can easily accomplish the
task of just measuring the speed from the train traversing its installed track. The sensing
details of the above types of sensors are indicated in Table 1. The data transmission and
power supply of all sensors uses the wired method. A data room is set for storing data
near the bridge site. The sensors′ deployment and optimization are the important parts of
the SHM [44]. The sensor deployment of the case study bridge is optimized by the dual
driving of mechanics′ knowledge and monitoring experience, but it is not the focus of this
paper and is not described here.
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Table 1. Sensing details for multiple types of sensors.

Sensor Type Sampling Frequency Sensing Content Data Unit

Hydrostatic leveling instrument 5 Hz Deflection
(Displacement) mm

Accelerometer 100 Hz Acceleration mm/s2

Atmospheric thermometer 1 Hz Temperature ◦C
Radar speedometer 10 Hz Speed km/h

3. Feature Extraction of Train′s Effects from Multiple Types of Sensing Data

Whether the structural response (output) under the in-service load (input) exceeds
the limit is the intuitive reflection of structural safety. To represent the deformation and
dynamic performance, the input–output mechanism of the bridge under in-service loads
should be investigated. Since some accidental failures (e.g., power cut) of the sensor or SHM
system may cause the drift of signal during long-term monitoring, the initial point (namely
the zero-point) of temperature-induced deflection cannot be determined effectively [34,45].
Hence, the temperature-induced deflection may not be a good index for evaluating the
in-service performance of the bridge. The live load-induced response is more useful for
representing the bridge deformation and dynamic performance.

During operation of railway–highway combined bridges, in-service loads such as
temperature, trains, vehicles, and wind act on the structure at the same time. If it is a
cross-sea bridge whose girder is a steel box girder, the high-frequency response may also
come from the effect of wind [46]. However, the girder of the case study bridge of this
paper is a steel truss girder, and the effect of wind is not obvious. To accurately analyze
and discuss the live load′s effects on the deflection, the temperature′s effects should be
normalized. The measured deflection signal can be decomposed to different deflection parts
in different frequency bands by a packet of multiple wavelet transform. The temperature-
induced deflection is in the relatively low frequency band, and the live load-induced
deflection (including the vehicle-induced and train-induced deflection) is in the relatively
high frequency band. The decomposition scale of the wavelet transform can be determined
by the frequency spectrum of the signal [37,47]. Assume that the signal frequency of the
temperature data is mainly concentrated at [0, f t], and the relatively low and high frequency
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bands can be determined. According to the definition of Nyquist frequency, the frequency
band available for the deflection signal with a sampling frequency of f d is [0, f d/2]. As
indicated in Figure 3a, the 0th decomposed sequence of the Jth layer using the J-scale
wavelet packet belongs to [0, f d/2J+1]. The optimal decomposition scale of the wavelet
transform can be determined by selecting an appropriate J, which makes f d/2J+1 slightly
larger than f t and f d/2J+2 smaller than f t. Then, the temperature-induced deflection (the
low-frequency part of deflection) can be considered as the decomposed part of the lowest
frequency band from the obtained results by the decomposition of the wavelet transform.
Taking the data of January 6 in one year as an example, Figure 3 indicates the decomposition
processes of the temperature-induced deflection of Section G based on the above steps;
the mother wavelet utilized is Symlets 6. Figure 3a indicates the decomposition tree of the
signal using the J-scale wavelet packet. Figure 3b indicates the temperature data of this day.
The parameter J is determined to be 11 according to the frequency spectrum of temperature
data of this day shown in Figure 3c. As indicated in Figure 3d, the temperature-induced
deflection can be accurately obtained. Comparing Figure 3b,d, it can be found that the
signal trend of temperature-induced deflection presents negative correlation with the signal
trend of atmospheric temperature on the same day; when one value is taken for every
five values of temperature-induced deflection data, the correlation coefficient between the
temperature-induced deflection data of compressed sampling frequency and temperature
data is −0.8537.
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When the temperature-induced deflection is obtained, the live load-induced deflection
(namely the high-frequency part of the deflection) can be gained, which equals the raw
measurement deflection minus the temperature-induced deflection. Figure 4 indicates the
live load-induced deflection and acceleration at the middle of the main span of the bridge
(Section G) on January 6 in one year. The acceleration data in Figure 4 are from the down-
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stream vertical accelerometer of Section G, and considering that only the two downstream
high-speed railway tracks are open to traffic, all acceleration data in the following text of
this paper are the measured data of the downstream vertical accelerometers. As indicated
in Figure 4, the time series signal of the live load-induced deflection and acceleration
consists of the stationary section and the non-stationary section. The non-stationary section
is the bridge response under each traversing of train or vehicle, which characterizes the
feature of live-load response. In Figure 4, the dotted boxes are train-induced responses, and
the dash-dotted boxes are vehicle-induced responses. Compared with the non-stationary
section of vehicle-induced deflection, the non-stationary section of train-induced deflection
has a higher amplitude; minimum values of all non-stationary sections of train-induced de-
flection of Section G are over−16 mm, while minimum values of all non-stationary sections
of vehicle-induced deflection of Section G do not reach −14 mm. The train′s effect on the
deflection is more significant than the vehicle′s effect on the deflection. Compared with the
non-stationary section of vehicle-induced acceleration, the non-stationary section of train-
induced acceleration has shorter length, which is 0.7 to 0.9 times that of the non-stationary
section of vehicle-induced acceleration. For representing of bridge in-service performance,
the matching relationship between the non-stationary section of train-induced deflection,
the non-stationary section of train-induced acceleration, train speed, and temperature on
the time coordinate should be established, which requires the time of measurement for the
data from various sensors to be recorded.
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Based on the characteristics of the signal of train-induced and vehicle-induced re-
sponse, the train-induced response and the vehicle-induced response can be effectively
distinguished; then, the corresponding non-stationary sections can be automatically ex-
tracted. First, the sections of the time series signal of live load-induced deflection are cut
out automatically using sliding windows, checking whether the absolute value of the mini-
mum of each cut-out section of live load-induced deflection is higher than the empirical
threshold of height. Then, if the absolute value of the minimum of some cut-out sections
of live load-induced deflection is higher than the empirical threshold of height, we check
whether the data on train speed at the same time period is at the normal range of speed of
the high-speed train (the data of train speed will equal zero when no train traverses the
bridge); which radar speedometer the train speed data belongs to needs to be recorded.
Finally, if the data of train speed from one of the radar speedometers is at the normal
range of speed of the high-speed train (each radar speedometer only records the speed
of train in its installed track), the corresponding cut-out sections of the live load-induced
deflection, acceleration, train speed, and temperature at the same periods can be judged as
the train-induced sections. Each cut-out section records its time; if several adjacent sections
are judged to be non-stationary sections, and they have the repeated minimum value of the
train-induced deflection, only the middle one is extracted.
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After the computer automatically extracts non-stationary sections of the train-induced
response, it can be spot-checked manually based on the above characteristics of signal of
train-induced and vehicle-induced deflection and acceleration shown in Figure 4. Heavy
vehicles over 55 tons are not permitted on the bridge; the weight of each vehicle on the
bridge is less than the weight of one train carriage. What is more, if a heavy vehicle
traverses at the same time of a passing heavy train, the proposed method of performance
presentation based on massive monitoring data can eliminate the influence of the small
amount of individual randomness as presented in this situation.

The amplitude of the train-induced non-stationary deflection in Sections A, B, L, and M
is mostly below 15 mm, which is much smaller than that in Sections D–J. Hence, monitoring
data in Sections A, B, L, and M will not be presented and discussed in this paper.

Figure 5 indicates the amplitude of each non-stationary section of train-induced
response arranged by order of the traversing of the train at Section G in one year. In
this paper, the amplitude of train-induced deflection is defined as the maximum minus
minimum of each non-stationary section of train-induced deflection, and the amplitude
of train-induced acceleration is defined as the maximum of absolute value of each non-
stationary section of train-induced acceleration. It can be found in Figure 5 that both the
amplitude of train-induced deflection and the amplitude of train-induced acceleration
present characteristics that the intermediate data (i.e., the data in summer) are slightly
higher than the data at both ends (i.e., the data in winter). Based on the track information
from radar speedometers, the amplitude data of each non-stationary section of train-
induced response can be divided into two cases: the case of outside track and the case of
inner track; the scatter plots of the amplitude of train-induced non-stationary response
versus the temperature at Section G in the two cases are indicated in Figure 6. The amplitude
of train-induced acceleration and the amplitude of train-induced deflection of the outside
track case shows slightly positive correlation with temperature (the correlation coefficients
are 0.2422 and 0.2025, respectively). However, the amplitude of train-induced deflection of
the inner track has no correlation with temperature (the correlation coefficient is 0.0666).
The differences of the train-induced deflection amplitude′s temperature correlation in
the two cases of outside and inner tracks may be because the train-induced deflection
amplitude in the outside track case consists of the torsion behavior of the girder, while the
inner track does not. It should be noted that, as indicated in Figures 5a and 6a, whether it is
the outside track case or the inner track case, the amplitude data of train-induced deflection
naturally divide into two clusters, which are in different heights. This phenomenon should
be deeply investigated by the mechanism of the bridge vibration under the train′s effects.
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Figure 6. Amplitude of train-induced non-stationary response versus temperature at Section G:
(a) deflection; (b) acceleration.

4. Knowledge of Train-Induced Response from Theoretical Calculation

The classical theory of calculation for the vibration of short- and medium-span bridges
under a train′s effect has been deeply investigated [7–9]. For bridges whose length is
near or longer than the length of trains (e.g., the case study bridge; its first order of the
vibration mode is the symmetrical vertical bending vibration of the girder with the natural
frequency of 0.33 Hz [48]), their amplitude of train-induced response under high-speed
trains is derived here to explain the phenomenon at the end of the previous section.

Lb is the length of the main span of the bridge, and Lc is the length of a single train
carriage. The loading model of the train traversing the bridge can be simplified as shown
in Figure 7. N is the total number of train carriages, K − 1 is the last load leaving the bridge,
and M is the last load on the bridge. K − 1 should be greater than or equal to 0, and M
should less than or equal to N.
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Figure 7. Simplified schematic diagram of the bridge subjected to a moving train.

The analysis of the bridge vibration includes the first-order mode shape (vertical
vibration) alone. It would be reasonable to expect the displacement of a point along the
length of the bridge to vary with x and t as distinctly separate functions. We shall therefore
assume that

y(x, t) = φ(x)q(t) (1)

where y(x,t) is the vertical displacement, φ(x) = sin(nπx/Lb) is the first-order mode shape of
the bridge vertical vibration, q(t) are the generalized co-ordinates that define the amplitude
of vibration with time, x is the distance between the point and one of bridge ends, and t is a
certain moment of bridge vibration.
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Let the first and the last moving loads on the bridge be PK and PM at time t (Figure 7).
If the first-order mode shape of the bridge vertical vibration is considered alone, the
equation of vibration motion in generalized co-ordinates under a series of moving loads at
a constant speed can be expressed as follows [7]:

..
q(t) + 2ξω

.
q(t) + ω2q(t) =

2
mLb

M

∑
i=K

sin
π(vt− ai)

Lb
Pi (2)

where m is the mass per unit length, ω is the first natural frequency (circular), ξ is the
damping ratio, v is the velocity of moving loads (trains), Pi is the ith moving load, ai =
Lc (i − 1), which is the distance between moving loads P1 and Pi,

.
q(t) denotes the first

derivative of q(t) with respect to time, and
..
q(t) denotes the second derivative of q(t) with

respect to time. The solution of q(t) may be sought by first examining the steady vibration
of the bridge under a single moving load and the transient vibration after the passage of the
single load and subsequently using the principle of superposition. For the convenience of
the superposition operation, consider the single moving load as the ith load in the moving
load series, and let t = 0 be the time when the first moving load enters the bridge. Thus, the
steady vibration caused by the ith moving load takes place when ai/v ≤ t ≤ ai/v + Lb/v.
Specializing Equation (2) for the ith single moving load only, the solution can be expressed
as the combination of a steady term and a transient term, as follows:

q(t) =
β

1− β2 sin
π(vt− ai)

Lb
− ystβ

1− β2 e−ξω(t−ai/v) sin ω(t− ai
v
) (3)

where yst = PL3 b/48EI is static midspan deflection with moving load P acting on the
midspan, β = πv/ωLb with ω being the bridge natural frequency (circular), E denotes the
elastic modulus of the bridge material and I denotes the second moment of area of the
bridge cross section.

For the time t ≥ t
′

= at/v + Lb/v, the transient vibration after the passage of the single
(ith) moving load is

q(t) = e−ξω(t−t′)

[ .
qi(t
′) + ξωqi(t′)

ω
sin ω(t− t′) + qi(t′) cos ω(t− t′)

]
(4)

where qi(t′) and
.
qi(t
′) are the displacement and velocity excited by the ith load. Substituting

Equation (3) into the qi(t′) and
.
qi(t
′) in Equation (4), Equation (4) can now be expressed as

q(t) = e−ξω(t−ai/v−Lb/v) ystβ

1− β2 sin ω(t− ai
v
− Lb

v
)− e−ξω(t−ai/v) ystβ

1− β2 sin ω(t− ai
v
) (5)

According to Equations (3) and (5), the bridge response under a series of moving loads
can be established using superposition. Consider a generic scenario of (K − 1), for which
moving loads have traversed the bridge, while (M − K + 1) moving loads are acting on
the bridge, and the bridge response at the time aK−1/v + Lb/v ≤ t ≤ aK/v + Lb/v can be
expressed as

q(t) = yst
1−β2 ×

M
∑

i=K
sin π(vt−ai)

Lb
− ystβ

1−β2 ×
M
∑

i=K
e−ξω(t−ai/v) sin ω(t− ai

v )

− ystβ

1−β2 ×
K−1
∑

i=1
e−ξω(t−ai/v−Lb/v) sin ω(t− ai

v −
Lb
v )

− ystβ
1−β2 ×

K−1
∑

i=1
e−ξω(t−ai/v) sin ω(t− ai

v )

(6)

In the Equation (6), the first two terms represent the bridge vibration caused by the
acting of (M − K + 1) moving loads; the first one is a steady vibration term and the second
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one is a transient vibration term. The last two terms are the bridge transient vibration
caused by the preceding (K − 1) moving loads.

Analyze the first term (the steady vibration response neglecting damping) of Equation (6)
as follows:

qsv(t) =
yst

1− β2 ×
M

∑
i=K

sin
π(vt− ai)

Lb
(7)

Analyze the last three terms (the transient vibration response neglecting damping) of
Equation (6) as follows:

qtv(t) = −
ystβ

1− β2 ×
M

∑
i=1

sin ω(t− ai
v
)− ystβ

1− β2 ×
K−1

∑
i=1

sin ω(t− ai
v
− Lb

v
) (8)

The acceleration response of the transient vibration of bridge can be expressed as the
second derivative of Equation (7):

..
qtv(t) =

ystω
2β

1− β2 ×
M

∑
i=1

sin ω(t− ai
v
) +

ystω
2β

1− β2 ×
K−1

∑
i=1

sin ω(t− ai
v
− Lb

v
) (9)

To facilitate the derivation, two expansions of the triangular series must be given:

m

∑
i=1

sin(a− ix) =
m

∑
i=1

[sin a cos ix− cos a sin ix] (10)


m
∑

i=1
sin ix = sin mx

2 sin (m+1)x
2 csc x

2
m
∑

i=1
cos ix = sin mx

2 cos (m+1)x
2 csc x

2

(11)

Rewrite Equation (7) as

qsv(t) =
yst

1− β2 ×
[

M

∑
i=1

sin
π(vt− ai)

Lb
−

K

∑
i=1

sin
π(vt− ai)

Lb

]
(12)

Substitute Equations (10) and (11) into Equation (12), and ai = Lc (i − 1); then,
Equation (12) can be expressed as

qsv(t) =
yst

1−β2 ×
sin MLc

2Lb
sin

[
πvt
Lb
− (M−1)Lc

2Lb

]
sin Lc

2Lb

− yst
1−β2 ×

sin KLc
2Lb

sin
[

πvt
Lb
− (K−1)Lc

2Lb

]
sin Lc

2Lb

(13)

Merge the two terms in Equation (13), and it can be expressed as Equation (14).

qsv(t) = Asv sin(πv
Lb

t− (M+K−2)Lc
4Lb

+ θsv),

Asv = yst

(1−β2) sin Lc
2Lb

√
A2

sv1 + A2
sv2 − 2Asv1 Asv2 cos (M−K)Lc

2Lb
,

tan θsv = − Asv1+Asv2
Asv1−Asv2

tan( (M−K)Lc
4Lb

), Asv1 = sin MLc
2Lb

, Asv2 = sin KLc
2Lb

.

(14)

Substitute Equations (10) and (11) into Equation (9), and ai = Lc (i− 1); then, Equation (9)
can be expressed as

..
qtv(t) =

ystω
2β

1−β2 ×
sin MLcω

2v sin
[
ωt− (M+1)Lcω

2v

]
sin Lcω

2v

+ ystω
2β

1−β2 ×
sin (K−1)Lcω

2v sin
[
ωt− ωLb

v −
KLcω

2v

]
sin Lcω

2v

(15)
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Merge the two terms in Equation (15), and it can be expressed as Equation (16).

..
qtv(t) = Atv sin(ωt− θtv),

Atv = ystω
2β

(1−β2)×sin α

√
A2

tv1 + A2
tv2, tan θtv = Atv1

Atv2
, α = Lcω

2v ,

Atv1 = sin Mα sin(M + 1)α + sin(K− 1)α sin(ωLb
v + Kα),

Atv2 = sin Mα cos(M + 1)α + sin(K− 1)α cos(ωLb
v + Kα).

(16)

According to Equations (14) and (16), the baseline of theoretical calculation for the
correlation of train-induced deflection amplitude (Asv in Equation (14)) versus train speed
and train-induced acceleration amplitude (Atv in Equation (16)) versus train speed can
be obtained. Figure 8 indicates the results of the theory of calculation for the correlation
of train-induced response amplitude versus train speed, and the corresponding data of
monitoring is the same as in Figures 5 and 6. The value of train speed of each point in
Figure 8 takes the maximum of the train speed traversing the bridge (the train speed is
basically constant in each traversing time). Due to the speed control during the operation
of the high-speed train, the data of real speed of the train traversing the bridge are mainly
at the three ranges of 120–160, 175–215, and 235–265 km/h. As seen in Figure 8, according
to the length of the main span of the case study bridge and the size parameters of the
electric multiple units of the China Railways High-Speed 3 [37], Lb (the length of bridge
span) and Lc (the length of train carriage) take 630 and 24 m, respectively; the value of
ω equals 0.33 Hz, which references the first vertical natural frequency of the bridge from
the frequency spectrum analysis of the stationary section of the acceleration data, as well
as design documents of the bridge [48]; dashed and dash-dotted curves in Figure 8a,b
take M = 16 and K = 1, and M = 8 and K = 1, respectively; the equivalent E and I of the
generalized beam depend on the design documents of the case study bridge, and the P
depends on the weight of the fully loaded train carriage.
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As indicated in Figure 8, the trend′s characteristic of the amplitude data of monitoring
is basically in line with the theory of calculation; however, some variability exists in the
monitoring results, which may be due to the randomness of the train carriage′s weight,
track irregularities, difference in parameters of the train′s suspension system, or any
other variation. It should be noted that the results of theoretical calculation well explain
the phenomenon of two naturally different height clusters of train-induced deflection
amplitude; this is due to the difference between 8 carriages and 16 carriages of the train
traversing the bridge. Furthermore, the train-induced deflection amplitude will increase
with the increasing of the number of the train carriages; readers can verify this using
Equation (14). The critical speed of resonance will become higher as the span becomes
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shorter, and the resonance effect will be more obvious. This is why scholars studying bridge
engineering [7,8] are generally concerned about the resonance performance of short- and
medium-span railway bridges. The study object of this paper is the long-span bridge, so
the critical speed of resonance will be not discussed here; readers can self-verify using
Equation (16).

Based on the theory of calculation in this section, it can be found that the amplitude of
train-induced deflection mainly depends on the steady vibration term of the bridge under
the effect of trains, while the amplitude of train-induced acceleration mainly depends on
the transient vibration term of the bridge under the excitation of trains. According to
structural dynamics [49], transient vibration will be dissipated within a short period of
time when the excitation disappears; the amplitude of train-induced acceleration may not
be suitable for representing the dynamic performance of the bridge. The calculation model
in this section is highly simplified, and it is only used for offering knowledge of mechanics
to the data analysis. To investigate the dynamic behavior of the train-bridge system under
the action of high-speed trains, a three-dimensional train-bridge coupled finite element
model is more useful.

5. Representation of Bridge Deformation and Dynamic Performance

Combining the analysis results of Sections 3 and 4, it can be found that the ampli-
tude of train-induced deflection is a good feature parameter to represent the deformation
performance of in-service bridges. On the other hand, considering that the frequency
of train-induced forced vibration is always the focus of the design and maintenance for
railway–highway combined bridges and high-speed-railway bridges [50], the frequency of
train-induced forced vibration is chosen as the feature parameter to represent the dynamic
performance of the bridge. The analysis in this section is based on the monitoring data
within one year, but corresponding methods also can be used for data in the longer term.

5.1. Framework for Representation of Bridge In-Service Performance

According to the above analysis, the right source of sensing data and feature parame-
ters for representing the bridge deformation and dynamic performance was determined,
and their representation methods based on multisource sensing data and theoretical calcula-
tion can thus be determined. An effective and practicable method is proposed as indicated
in Figure 9. The framework of the proposed method consists of three layers, as follows.

In the pre-processed data layer (the first layer): Monitor the atmospheric temperature,
train speed, deflection, and acceleration data of the bridge. Based on the frequency spectrum
analysis of the temperature data, normalize the temperature′s effect of the deflection by
wavelet transform. According to characteristics of the time series signal of live load-
induced deflection, train speed, and acceleration, the train-induced non-stationary sections
of deflection and acceleration are automatically distinguished and extracted. Establish
the matching relationship of the time coordinate between the non-stationary section of
train-induced deflection, the non-stationary section of train-induced acceleration, train
speed, and temperature on the time coordinate.

In the feature parameter layer (the second layer): Calculate the train-induced deflection
amplitude, the frequency of train-induced forced vibration, and the corresponding train
speed. Based on track information from radar speedometers and the theory of calculation
of the influence of 8 or 16 carriages, the feature parameters are divided into four cases of
train load. Obtain the data of train-induced deflection amplitude of distributed sensors
in each case of train load; obtain the correlation scatters of train-induced forced vibration
frequency and train speed in each case of train load; and establish the matching relationship
of the time coordinate between different feature parameters and different sensors.



Sensors 2022, 22, 3247 13 of 23Sensors 2022, 22, 3247 14 of 24 
 

 

 
Figure 9. Framework of representation of in-service performance for cable-stayed railway-highway-
combined bridge. 

Considering that the vibration in each cross section of the girder of the bridge is the-
oretically synchronized and coordinated [49], this paper only analyzes the frequency of 
train-induced forced vibration at the middle of the main span of the bridge (Section G). In 
contrast, the amplitude of train-induced deflection of the girder is at different level in each 
monitoring section, this paper chooses to analyze the distribution of the amplitude of 
train-induced deflection. It should be noted that the proposed method is not limited to 
use on cable-stayed railway–highway combined bridges; it can be promoted to any long-
span railway bridge, with some adjustments and adaptations. 

5.2. Classification of Feature Parameter about Different Cases of Train Load 
Before obtaining the performance index, the feature parameters for the train-induced 

response of the bridge must be divided into four cases according to outside or inner track 
and 8 or 16 carriages. Then, the internal mechanism between the feature parameters of the 
bridge train-induced response and the performance indexes of in-service bridge can be 
linked. The data in the cases of the outside or inner track can be clearly distinguished by 
radar speedometers. However, the data in the cases of 8 or 16 train carriages can only be 
distinguished by fuzzy clustering. 

Hierarchical clustering [51] is used for the fuzzy clustering task; the principle of hi-
erarchical clustering based on agglomerative logic is to first treat all data points as inde-
pendent data clusters; then, agglomerate the two clusters with the smallest distance until 
all data points are agglomerated to the same data cluster. In this paper, the Euclidean dis-
tance is used to define the distance between any two data points: 

2
, ,

1
( )

F

pq p q p j q j
j

d c c
=

= − = −C C
 

(17)

 Multiple types of sensing data of cable-stayed railway-highway-combined bridge

Atmospheric 
temperature

Train speed & 
belonged track

Live load-induced 
deflection Acceleration

normalize 
temperature’s

effect 

Train-induced non-
stationary section 

of deflection 

Train-induced non-
stationary section 

of acceleration
Temperature

matching 
of time 

coordinate 

matching 
of time 

coordinate 

matching 
of time 

coordinate 

Frequency of train-
induced forced vibration

FFT

Amplitude of train-
induced deflection

Data of train-induced deflection amplitude of 
distributed sensors in each train load case

Correlation scatters of train-induced forced 
vibration frequency and train speed in each 

train load case
matching 
of time 

coordinate 

track information

 Knowledge in 
theory of calculation

cross-  
corroboration clustering

clustering

Centroid and band range of clusters about 
main orders of train-induced forced vibration 

frequency in each train load case

Distribution and its residual of train-induced 
deflection amplitude in each train load case

Time-varying distribution of train-induced 
deflection amplitude in each train load case

statistical analysis

threshold 
of normal 

range
 detection of abnormal data

Guidance for real-time monitoring

representation of bridge   deformation performance
Reference for design, operation, and 

maintenance

representation of bridge 
dynamic performance

peak of frequency 
spectrum

reference
for

Pre-processed 
data layer

Feature
parameter 

layer

Performance
index layer

curve fitting

Train speed
wavelet 

transform

Figure 9. Framework of representation of in-service performance for cable-stayed railway-highway-
combined bridge.

In the performance index layer (the third layer): On the one hand, obtain clusters
about the main orders of the frequency of train-induced forced vibration with the stability
of temperature and train speed via clustering; calculate the centroid and band range of
each cluster as the representation index of dynamic performance of the bridge. On the
other hand, calculate the fitting curve of the distribution of the train-induced deflection
amplitude in each case of train load from the data of multiple sensors; then, calculate
the distribution residual between the fitting curve and the data of each traversing train;
determine the statistical threshold of the normal range of the distribution of the amplitude
of train-induced deflection to detect or clean the data with the signal abnormal; use a time-
varying fitting curve to represent the long-term deterioration of deformation performance
of the bridge.

Considering that the vibration in each cross section of the girder of the bridge is
theoretically synchronized and coordinated [49], this paper only analyzes the frequency
of train-induced forced vibration at the middle of the main span of the bridge (Section G).
In contrast, the amplitude of train-induced deflection of the girder is at different level in
each monitoring section, this paper chooses to analyze the distribution of the amplitude of
train-induced deflection. It should be noted that the proposed method is not limited to use
on cable-stayed railway–highway combined bridges; it can be promoted to any long-span
railway bridge, with some adjustments and adaptations.

5.2. Classification of Feature Parameter about Different Cases of Train Load

Before obtaining the performance index, the feature parameters for the train-induced
response of the bridge must be divided into four cases according to outside or inner track
and 8 or 16 carriages. Then, the internal mechanism between the feature parameters of the
bridge train-induced response and the performance indexes of in-service bridge can be
linked. The data in the cases of the outside or inner track can be clearly distinguished by
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radar speedometers. However, the data in the cases of 8 or 16 train carriages can only be
distinguished by fuzzy clustering.

Hierarchical clustering [51] is used for the fuzzy clustering task; the principle of
hierarchical clustering based on agglomerative logic is to first treat all data points as
independent data clusters; then, agglomerate the two clusters with the smallest distance
until all data points are agglomerated to the same data cluster. In this paper, the Euclidean
distance is used to define the distance between any two data points:

dpq = ‖Cp − Cq‖ =

√√√√ F

∑
j=1

(cp,j − cq,j)
2 (17)

where Cp and Cq denote the vector of the data point p and q (the vector can be a one-
dimensional or multi-dimensional vector), F denotes the dimension of the data point vector,
and cp,j and cp,j denote the values of the jth dimension of the vectors Cp and Cq. As data
points continue to be agglomerated, each data cluster will contain multiple data points.
Hence, clusters in the process of hierarchical clustering also need a method of distance
calculation, and this paper uses the Ward (incremental sum of squares) distance to calculate
the distance between clusters:

D(r, s) =

√
2nrns

(nr + ns)
‖xr − xs‖2 (18)

xr =
1
nr

nr

∑
i=1

Cri (19)

where xr and xs denote the centroid of cluster r and cluster s, respectively (the calculation of
centroid is defined as Equation (19)), nr denotes the number of data points in cluster r, Cri
denotes the vector of ith data point in cluster r, and ‖·‖2 denotes the calculation of Euclidean
distance. Through the above processes, a hierarchical cluster tree that includes a series of
binary trees can be determined; a (Num − 1)-by-3 linkage matrix is calculated, where Num
is the numbers of data points. In each row of the linkage matrix, the first two elements are
cluster indices linked in pairs to form a binary tree; the leaf nodes are numbered from 1 to
Num; leaf nodes are the singleton clusters from which all higher clusters are built. Each
newly formed cluster, corresponding to row (I, :), is assigned the index Num + I; the third
element of the row is the distance of the clusters (I, 1) and (I, 2); the order of the rows in
the linkage matrix are arranged in ascending order of (I, 3). In the hierarchical clustering,
the output of the clustering results is controlled by calculating the inconsistency coefficient
between each cluster:

IC(k) = (LM(k)−MD(k))/SD(k) (20)

where, LM(k) denotes the (kth, 3) elements of the linkage matrix, MD(k) denotes the mean of
the distance values of all the linked clusters included in the calculation, and SD(k) denotes
the standard deviation of the distance values of all the linked clusters included in the
calculation. The calculation of MD(k) and SD(k) can not only include the links of row k, but
also a specified depth of levels in the hierarchical cluster tree. For example, if the depth is
10, there will be a maximum of 210 clusters participating in the calculation of MD(k) and
SD(k). The higher the depth is, the higher the nonlinear degree of hierarchical clustering is.
When IC(k) is larger than the preset threshold, the output of the clustering results stops.

Figure 10 indicates the clustering results of the train-induced deflection amplitude
by hierarchical clustering, and a comparison is made by the k-means clustering [39]; the
process of clustering only uses the data of train-induced deflection amplitude, but for
cross-corroborating with the results of theoretical calculation in Figure 8a, the data for train
speed is also given. The data of the outside track and inside track is clustered respectively,
and the depth of hierarchical clustering is set to 10. As indicated in Figure 10, the data in
the cases of the outside track and inside track are both divided into two sub-clusters; they
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can accurately describe the theoretical characteristics of the two types of cases of 8 and
16 carriages, and the clustering results by hierarchical clustering are consistent with the
results of k-means clustering. For data points close to the boundary of the two clusters, a
small amount of data may be misclassified, and as the amount of data accumulates, this
error will be reduced to a low level.
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According to the clustering results and the track information from radar speedometers,
data of the feature parameter of bridge train-induced deflection can be automatically
classified into four cases of train load. Combining the matching relationship of the time
coordinate between the non-stationary section of train-induced deflection and the non-
stationary section of train-induced acceleration, data of the feature parameter of bridge
train-induced acceleration can be automatically classified into four cases of train load. The
details of the four cases of train load are indicated in Table 2. Then, the performance index
of the bridge can be accurately calculated based on each case of the feature parameter of
the bridge train-induced response.

Table 2. Four cases of train load for data classification.

Case 1 Case 2 Case 3 Case 4

Outside track and 8
carriages

Outside track and 16
carriages

Inner track and 8
carriages

Inner track and 16
carriages

5.3. Obtainment and Application of Performance Index for Representation
5.3.1. Dynamic Performance of In-Service Bridges

Regarding the dynamic performance of in-service bridges, we establishes an index of the
dynamic performance of the bridge based on the frequency of train-induced forced vibration.

Figure 11 indicates the frequency value of the peak points of the power density
spectrum for each train-induced non-stationary acceleration, namely the main frequency
of train-induced forced vibration, as well as its corresponding data of temperature and
train speed. As indicated in Figure 11, in each case of train load, the identified frequencies
of train-induced forced vibration are concentrated in 6 to 7 main frequency bands, and
the data distribution of each band of frequency is relatively discrete, which is due to the
randomness of the train carriage′s weights, track irregularities, difference in parameters
of the train′s suspension system or any other variation; this phenomenon is similar to the
characteristics of frequencies of traffic-induced forced vibration in the study of Ref. [52].
Accurate identification of each dense mode of the train-induced forced vibration of the
bridge may be meaningless, because each variation of the dynamic parameters in the
train–bridge system make the frequency of train-induced forced vibration different; it



Sensors 2022, 22, 3247 16 of 23

may be more appropriate to use the concept of data clusters to describe the frequencies of
train-induced forced vibration. According to Figure 11a, the frequency of train-induced
forced vibration has a slight correlation with temperature; the frequency will slightly
decrease as the temperature rises. It should be noted that, as indicated by the dotted
circle in Figure 11b,c, in the range of 230–270 km/h and 20.60–23.94 Hz in the cases of the
inner track, the frequency of train-induced forced vibration and the train speed presents a
nonlinear positive correlation.
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Figure 11. Frequency stability of the train-induced forced vibration: (a) influence of temperature;
(b) influence of train speed in the cases of 8 carriages; (c) influence of train speed in the cases of
16 carriages.

Via the method of hierarchical clustering, the data of the frequency of train-induced
forced vibration in Figure 11 is clustered, and the data clusters of the main frequency of
train-induced forced vibration in the four cases of train load can be obtained. Considering
that the cases of the inner track show a correlation between the frequency of train-induced
forced vibration and train speed, the clustering of the cases of the inner track uses the
two-dimension data of frequency–train speed, while the clustering of the cases of the
outside track uses the one-dimension data of frequency. Since temperature has little
influence on the frequency of train-induced forced vibration, the two-dimension data of
frequency–temperature are not used in hierarchical clustering here; the clustering result of
the one-dimension data of frequency and the clustering result of the two-dimension data of
frequency–temperature are the same. The depth of the hierarchical clustering of the cases
of the inner track is set to 12, and the depth of the hierarchical clustering of the cases of
the outside track is set to 10. In order to obtain better results of clustering and reduce the
influence of train speed on clustering, the data value for train speed used for clustering is



Sensors 2022, 22, 3247 17 of 23

uniformly divided by 500. It should be noted that the clustering parameters of hierarchical
clustering require calibration for different bridges.

In Table 3 and Figure 11b,c, the estimated value of the centroid for the main orders of
the frequency of train-induced forced vibration after hierarchical clustering is indicated;
the dashed line is the centroid of the main orders of the frequency of train-induced forced
vibration from the cases of the outside track, while the dash-dotted line is the centroid of
the main orders of the frequency of train-induced forced vibration from the cases of the
inner track. The centroid can be calculated from each cluster by Equation (19). Table 4
indicates the estimated value of the band range for the main orders of the frequency of
train-induced forced vibration after hierarchical clustering. The band range of each cluster
takes value of the 0.05 and 0.95 quantile of the cumulative distribution function (CDF) of
the Gaussian from each cluster. The estimated value of the bands for the fifth order of the
frequency of train-induced forced vibration from the cases of the inner track is also shown
in Figure 11b,c by the dotted line; the data in the corresponding cluster is in the range
of 19.60–23.94 Hz. As indicated in Figure 11 and Tables 3 and 4, it can be found that the
centroid of the obtained data clusters can effectively represent the average characteristic
of the main frequencies of train-induced forced vibration; the band range can effectively
envelop most data, including most of the frequency data with the nonlinear correlation of
train speed in Figure 11b,c (it cannot be achieved by the k-means clustering). If the CDF
quantile is closer to 0 and 1, each order′s band range can envelop more of the data in each
cluster, but the data of the outlier should be eliminated in engineering. The data of train-
induced forced vibration frequency are relatively discrete and reflect the randomness and
variability from the excitation of train loads; these data cannot be neglected. The results and
obtaining process of the whole method can provide references for the design, operation, and
maintenance of long-span cable-stayed railway–highway combined or high-speed-railway
bridges.

Table 3. Centroid estimation for the main orders of the frequency of train-induced forced vibration.

Case
Centroid (Unit: Hz)

1st Order 2nd Order 3rd Order 4th Order 5th Order 6th Order 7th Order

Outside track and
8 carriages 3.18 7.19 15.74 17.78 21.41 24.82 26.89

Outside track and
16 carriages 3.09 7.20 15.37 17.59 20.96 24.90 26.99

Inner track and 8 carriages 3.12 6.71 15.77 18.37 21.77 25.81 /

Inner track and
16 carriages 3.11 6.86 16.17 18.51 21.66 26.09 /

Table 4. Band range estimation for the main orders of the frequency of train-induced forced vibration.

Case Item
Lower and Upper Limits of the Band Range (Unit: Hz)

1st Order 2nd Order 3rd Order 4th Order 5th Order 6th Order 7th Order

Outside track and
8 carriages

lower 1.75 6.28 14.69 17.21 20.56 23.92 25.92

upper 4.61 8.10 16.79 18.37 22.27 25.73 27.87

Outside track and
16 carriages

lower 1.56 6.32 14.60 16.79 19.98 23.72 26.10

upper 4.63 8.09 16.14 18.40 21.91 26.07 27.89

Inner track and
8 carriages

lower 1.82 5.69 14.69 17.60 20.60 24.84 /

upper 4.42 7.73 16.86 19.11 22.94 26.79 /

Inner track and
16 carriages

lower 1.32 6.05 15.10 17.87 20.46 24.80 /

upper 4.91 7.68 17.25 19.16 22.85 27.39 /
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5.3.2. Deformation Performance of In-Service Bridges

Regarding the deformation performance of in-service bridges, we established the index
of the deformation performance of the bridge based on the distribution of the amplitude of
train-induced deflection.

Based on the classified results of the train-induced deflection amplitude data in the four
cases of train load, and the one-to-one matching relationship between several deflection
sensors along the girder of the main span, Figure 12 indicates the distribution lines of
train-induced deflection amplitude along the main span of the bridge based on one year′s
data of train-induced deflection amplitude in the four cases of train load. The fitting curve
of the distribution for the centroid of the data from each sensor is established using the
Fourier series:

DCtdf(x) = b0/2 +
∞

∑
i=1

[bi cos(ωfx) + ci sin(ωfx)] (21)

where b0, bi, ci, and ωf are the fitting parameters. All the fitting curves use the first order
Fourier series in this paper. The calculation of fitting parameters adopts the least squares
method. The centroid of the data from each sensor is shown as the star icon in Figure 12, and
the fitting curve of the distribution for the centroid of the data from each sensor is shown
as the dash-dotted curve in Figure 12. The number of traversing trains in Figure 12a–d are
3792, 1798, 3283, and 1601, respectively.
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Figure 12. Distribution of train-induced deflection amplitude in each traversing of trains: (a) outside
track and 8 carriages; (b) outside track and 16 carriages; (c) inner track and 8 carriages; (d) inner track
16 carriages.

After the DCtdf of the bridge main span from each deflection sensor in a certain period
(in this paper, it is one year) is obtained, the distribution residual of deflection amplitude
in each traversing of trains should be analyzed to represent the train loads′ randomness
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and variability. For each traversing of trains, the distribution residual between the multiple
monitoring sections′ train-induced deflection amplitude and the DCtdf can be expressed as

DRtd =
1
S

S

∑
j=1

(AMDj − DCtdfj) (22)

where AMDi denotes the amplitude of the measured train-induced deflection data of the
jth monitoring section in each traversing of the trains, DCtdfi denotes the value of the fitting
curve of Equation (21) at the location of the jth monitoring section, S denotes the number
of used deflection monitoring sections. Figure 13a,b indicates the fitting function of the
probability density of DRtd using the mixture Gaussian distribution [34]:

f (x) =
l

∑
i=1

ϕi
1√

2πσi
exp(− (x− µi)

2

2σ2
i

) (23)

where µi, σi, and ϕi denote the mean, standard deviation, and combined weight of each
degree of single Gaussian distribution, respectively. As indicated in Figure 13a,b, the
DRtd for the outside track and 8 carriages case obeys the second-order mixture Gaussian
distribution, and the DRtd for the outside track and 16 carriages case obeys the first order
mixture Gaussian distribution. The DRtd for the two cases of the inner track also obeys the
first-order mixture Gaussian distribution; it is not presented here.
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Figure 13. Characteristics and discussion of the distribution of train-induced deflection amplitude: 
(a) probability density analysis of typical DRtd of the outside track and 8 carriages case; (b) proba-
bility density analysis of typical DRtd of the outside track and 16 carriages case; (c) normal range of 
the outside track and 8 carriages case; (d) DCtdf of one year and the distribution of the centroid from 
each sensor′s 12 single-month data. 
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13c), the upper threshold of the normal range equals the DCtdf plus the 0.95 quantile of the 
CDF of DRtd plus three times the standard deviation of DRtd, while the lower threshold 
equals the DCtdf plus the 0.05 quantile of the CDF of DRtd minus three times the standard 
deviation of DRtd. Here, the multiple of three of the standard deviation can be changed ac-
cording to different bridges or different deterioration states of bridges; it needs to be dy-
namically updated when using the proposed method. The calculated upper and lower 
thresholds (dotted curves in Figure 13c) of the normal range of the distribution of the train-
induced deflection amplitude during the bridge operation can be used to detect the abnor-
mal signals (data missing, etc.) or extreme traffic load. For example, dashed lines in Figure 

  

  

Figure 13. Characteristics and discussion of the distribution of train-induced deflection amplitude:
(a) probability density analysis of typical DRtd of the outside track and 8 carriages case; (b) probability
density analysis of typical DRtd of the outside track and 16 carriages case; (c) normal range of the
outside track and 8 carriages case; (d) DCtdf of one year and the distribution of the centroid from
each sensor′s 12 single-month data.
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Based on DCtdf and a certain quantile of the CDF of DRtd, the normal range of the
distribution of the train-induced deflection amplitude during the bridge operation can
be determined. Taking the outside track and 8 carriages case as an example (as indicated
in Figure 13c), the upper threshold of the normal range equals the DCtdf plus the 0.95
quantile of the CDF of DRtd plus three times the standard deviation of DRtd, while the
lower threshold equals the DCtdf plus the 0.05 quantile of the CDF of DRtd minus three
times the standard deviation of DRtd. Here, the multiple of three of the standard deviation
can be changed according to different bridges or different deterioration states of bridges; it
needs to be dynamically updated when using the proposed method. The calculated upper
and lower thresholds (dotted curves in Figure 13c) of the normal range of the distribution
of the train-induced deflection amplitude during the bridge operation can be used to detect
the abnormal signals (data missing, etc.) or extreme traffic load. For example, dashed
lines in Figure 13c present the characteristics of the distribution of train-induced deflection
amplitude under the situation that part of sensors′ data are missing and part of sensors′ data
are collected normally; the abnormal data is out of the lower threshold of the normal range.

Due to the randomness, variability, and uncertainty of traffic loads, the threshold
of the normal range of the distribution of the train-induced deflection amplitude cannot
accurately and effectively represent the deformation performance of the bridge. Compared
with the threshold of the normal range, the DCtdf is more suitable as a performance index
of bridge long-term deformation. Based on Equation (14), the DCtdf (corresponding to the
Asv in Equation (14)) will increase with the decrease of the stiffness of the bridge girder. In
addition, DCtdf can avoid the dilemma that the raw data of measured deflection cannot find
a starting point (the baseline) of the stress-free state. Hence, we believe that the DCtdf is a
suitable index to represent the deformation performance of the bridge. Figure 13d indicates
the comparison between the DCtdf of one year and the distribution of centroid from each
sensor′s 12 single-month data; it can be found that the lines of the distribution of the
centroid of 12 months surround the DCtdf of one year in the two cases of the outside track;
the two cases of the inner track have the same characteristic, so it is not presented here.
Based on the analysis of Figures 5a, 6a and 13d, the robustness of DCtdf for the ambient
temperature and long-term period is validated. Hence, based on the foregoing analysis,
the DCtdf can be used for the representation index of the long-term deterioration of the
deformation performance of the bridge, which serves for the evaluation, early-warning,
operation, and maintenance works of long-span cable-stayed railway–highway combined
or high-speed-railway bridges.

In the process of monitoring, operation, and maintenance of the bridge, the time-
varying index DCtdf can be calculated using the monitoring data of the bridge from the
current moment to a period in the past (e.g., one year). According to the principle of
mechanics, as the stiffness of a beam decreases, its deflection will be higher under the same
live load. The daily weight and speed of passenger high-speed trains on the bridges do not
change much. When DCtdf decreases slowly, it indicates that the deformation performance
of the whole bridge (or the whole girder) deteriorates in the operation. The maximum
point of DCtdf plus the annual change amplitude of temperature-induced deflection can
be used the early-warning index for the danger of a bridge. When the calculated centroid
of the train-induced deflection amplitude in one or more monitoring section (as the star
icon in Figure 12) shows a great change in the distance from DCtdf, it means that a certain
amount of the redistribution on the internal force of the structure has occurred in the
bridge (that is, there is a certain amount of the local damage in the bridge). Deterioration
and redistribution require long-term data or experiments to verify and calibrate; we only
present the method in this study.

6. Conclusions

Aiming at the quick quantification problem of the real-time performance of long-span
bridges, this paper proposes a representation method of in-service performance using a case
study of a cable-stayed railway–highway combined bridge. The process of representation
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integrates theories of signal processing, structural dynamics, data clustering, and statistical
modeling and can obtain accurate and effective indexes of bridge performance from the
massive data of monitoring, which is filled with randomness and variability. The whole
process of the proposed method verifies the feasibility of the representation of bridge
in-service performance from ‘train-induced response at every point of sampling frequency’
to ‘feature parameters of response in each traversing of trains’ to ‘long term indexes of
performance’. The main contributions of this study are as follows.

1. After the normalization of temperature′s effect on the deflection data, train-induced
non-stationary sections of deflection and acceleration are automatically distinguished
and extracted based on the characteristics of the time series signal of live load-induced
deflection, train speed, and acceleration.

2. Derived calculational theory proves that the train-induced deflection amplitude under
16 carriages train is larger than that under 8 carriages. This provides knowledge for
the clustering of feature parameters of train-induced response for different cases of
train load.

3. Clusters of the main orders of the frequency of train-induced forced vibration are
obtained via hierarchical clustering. Their stability for temperature and train speed are
discussed and validated. The centroid and band range of each cluster are calculated
as the index to represent the current dynamic performance of the bridge.

4. Distribution of the centroid of the train-induced deflection amplitude of the bridge
main span driven by the data of multiple sensors is fitted as the index, which is used
to represent the long-term deterioration of the deformation performance of the bridge.
The statistical threshold of the normal range of the distribution of train-induced
deflection amplitude is determined to detect and clean the data with abnormal signals.
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