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Abstract: Coating degradation is a critical issue when steel surfaces are subject to weathering. This
paper presents a chipless, passive antenna tag, which can be applied onto organically coated steel.
Simulations indicated that changes associated with organic coating degradation, such as the formation
of defects and electrolyte uptake, produced changes in the backscattered radar cross section tag
response. This may be used to determine the condition of the organic coating. Simulating multiple
aging effects simultaneously produced a linear reduction in tag resonant frequency, suggesting
coating monitoring and lifetime estimation may be possible via this method. For coatings thinner
than calculations would suggest to be optimum, it was found that the simulated response could be
improved by the use of a thin substrate between the coated sample and the antenna without vastly
affecting results. Experimental results showed that changes to the dielectric properties of the coating
through both the uptake of water and chemical degradation were detected through changes in the
resonant frequency.

Keywords: chipless RFID; corrosion; organic coating; degradation; sensors

1. Introduction

Organic coatings are widely used in the construction industry for aesthetic, corrosion
protection, and weather resistance reasons. In fact, in 2020, the EU produced 130 million
metric tonnes of hot rolled steel, of which 5 million metric tonnes was organically coated [1].
Despite this, it has been suggested by some studies that the reason for the high cost of
corrosion is due, in part, to the poor selection of protective measures [2]. Hence, one
widely suggested strategy for corrosion protection is to ‘develop advanced life predic-
tion and performance assessment methods and to move to a greater degree of corrosion
monitoring [3].

Currently, coatings used on construction panels are rarely monitored in-situ and the ex-
pected performance of the overall building envelope is often only estimated from lab-based
accelerated corrosion testing. Real time monitoring could allow more accurate estimates
of building cladding lifespan, as well as required maintenance schedules, providing the
customer with active performance data [3]. A significant amount of emerging research in
this field shows the appetite for this technology [4].

An ideal solution would be a wireless, internet of things style sensor system which
allows remote, live monitoring of the organic coatings. The oil and gas industry have
long been aware of the benefits of corrosion monitoring of pipelines [5]. However, they
are currently the only significant industry with commonly used, commercially viable
monitoring methods. The construction industry is starting to catch up, although current
research suggests monitoring is focused on load critical components, especially reinforced
concrete rebar.

Some research has been carried out into coated panel sensors, such as strain gauges [6],
corrosion indicating paint [7], electrical resistance probes [8], and numerous EIS (electrical
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impedance spectroscopy) modifications [9–17]. These sensors work in small scale testing.
However, they suffer from the same drawbacks of practical use. For example, they often
either modify the paint system, require connection to the underlying metal substrate, or
require modification between the layers of the coating. This makes these systems difficult
to implement and replace if necessary, and, in some instances, reduce the effectiveness of
the coating itself.

Sensors for monitoring coated steel products have to be capable of detecting the kind
of changes in coatings that are indicative of degradation or failure. These include the
formation of defects and the associated uptake of oxygen and ions from the environment,
coating adhesion loss, electrolyte penetration, or corrosion initiation [18]. Furthermore,
degradation can also produce increased porosity of the coating through the action of
UV, blistering due to osmotic or electrochemical effects, and decreased coating thickness
through erosion and coating mineralization and oxidation [18–21]. Tracking the spread
and size of corrosion effects would also be required to allow an indication of the severity
and overall condition of the product. Cut edge corrosion, when corrosion begins and
propagates from a metal edge exposed during manufacture, is one of the most commonly
seen defects for organically coated steel [22].

This paper outlines the basics of a new passive RFID (resonant frequency identification)
technique that aims to allow easy performance monitoring of organically coated steel
cladding products without some of these drawbacks. A passive RFID sensor presents a
number of promising features for organic coating monitoring. As a cheap and ‘semi-remote’
method, it would allow for a medium range, non-destructive monitoring method of a
number of assets. In fact, a significant amount of work has been carried out on developing
RFID based sensors [23–25]. The approach taken by the vast majority of the sensors
currently being developed is to use a so called ‘chipless’ RFID design.

Chipless RFID tags were first considered as a concept in order to allow RFID tagging
to compete financially with low-cost barcode tagging [25,26]. By removing the integrated
circuit, chipless RFID is greatly reduced in cost and allows consideration of fully printable
tags, increasing ease and rate of production [26]. Chipless sensors offer a much simpler
approach in which some of the complications of impedance matching as well as other
complications are negated compared to chipped devices.

As a sensor, they are stated to have better robustness, lower radiated power, and
longer life than traditional sensors [25]. Three types of chipless RFID sensors exist, namely
time-domain reflectometry (TDR), frequency modulation, and phase encoded sensors [25],
and these are summarized in Figure 1. For each of these types, different tag technologies
exist, such as surface acoustic wave (SAW) and radar cross section backscatter (RCS).
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A recent study involved using a chipless RFID circular microstrip patch antenna
(CMPA) to monitor crack growth in aluminium [27]. Microstrip antennas are commonly
used in wireless communication, including in high performance situations, such as in
satellites and aircraft [28]. They have advantages of low price and profile, simplicity,
and versatility [28]. A basic microstrip antenna is composed of a ground plane, which is
covered by a dielectric layer with a metal antenna strip on it. A microstrip patch antenna is
differentiated because it consists of relatively large sections, or patches, of metal [29]. A
CMPA is simply an MPA in which the patch is circular in shape, as shown in Figure 2.
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In this paper, a similar approach was used to that in [28], which utilizes radar cross
section (RCS) backscatter-based technology, which is based on frequency modulation. The
principle is described visually in Figure 3 and involves the use of a microstrip resonator. An
interrogation signal is aimed at the chipless tag which will resonate at a unique frequency
and hence produce a signature backscattered signal which is received by a further antenna
for analysis [25,27].
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The monitoring system developed in this paper has parallels to that designed by
Marindra [27], which utilised the fact that the resonant frequency of a CMP antenna is
affected by changes in the ground plane. This study aimed to use a similar antenna system
to monitor changes in the dielectric layer of such a system with the dielectric layer, in this
case, being an organic coating layer on a steel product.

As described in [28], the dominant TMz
mn0 mode for a circular microstrip patch

antenna is the TM110 mode for which the resonant frequency is defined by:
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√
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where a is the diameter of the circular patch, h is the thickness of the dielectric layer, εr is
the relative permittivity of the dielectric layer, v0 is the speed of light, µ is the permeability
of the dielectric, and ε is the permittivity of the dielectric layer.
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Hence, it can be concluded that:

( fr)110 ∝ f (εr) (3)

( fr)110 ∝ f (h) (4)

Therefore, the resonant frequency of a patch antenna is related to a function of both
the relative permittivity (dielectric constant) and the height of the dielectric. As a result,
any changes to the dielectric properties of an organically coated product could be detected
via this approach. This would include degradation due to water ingress, defect forma-
tion, or paint formation failures such as chalking. This approach was utilized by [28] to
monitor the response of an epoxy coated resonator and was able to detect changes in the
dielectric properties of the epoxy coating produced by the absorption and desorption of
water. The proposed method differs from this method as the antenna can be placed onto,
rather than under, the coating of interest which may interfere with the adhesion and/or
protective properties of the coating. Furthermore, as the proposed device is solely reliant
on backscatter RCS measurement, a physical wired connection to the antenna, as in [30], is
not required simplifying the procedure.

The aim of the investigation was to develop the concept outlined, in order to prove its
applicability to architecturally painted steel. The strategy employed used a combination
of simulation and laboratory experimental techniques. The simulation provided a means
of estimating the response change when variations in material properties which could be
expected during degradation occurred within a purely simulation space. The simulated
response could then be compared and validated using the laboratory derived experimental
results. This parallel approach ensured that a greater understanding of underlying physics
could be established while also proving the applicability in the real world.

2. Methodology
2.1. Simulation

The tag was designed and tested in CST (Computer Simulation Technology) Design
Environment 2019, a 3D electromagnetic analysis software commonly used for antenna
design and analysis [31]. Two approaches, the basic design of each shown in Figure 4, were
considered. The first approach (NS) solely used the organic coating as the dielectric layer,
and the sensor patch is attached to this, while the second approach (S) used a dielectric
substrate between the sensor patch and the coated steel panel.
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Figure 4. Two tag systems NS, no substrate, (left) and S, substrate, (right) showing the copper sensor
(C), the substrate layer (S), the paint system (P) the zinc galvanized layer (Z) and the steel metal
substrate layer (M).

Two coating systems were also considered and designed in the software based on
two commonly used coated steel products composed of a steel substrate, a zinc metal
coating layer, and a dielectric organic coating layer. This is referred to as coated steel in the
following work. A polyvinyl chloride (PVC)-based coating with a total nominal coating
thickness of 211 microns and a polyurethane (PU)-based coating with a total nominal
coating thickness of 41 microns were designed. These are two commonly used coating
systems for architectural steel cladding and are referred to in the following work as PVC
and PU. The dimensions of the tag are displayed in Figure 5 and listed in Table 1.
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Table 1. Simulation parameters.

Component Symbol Dimension/mm

Antenna Radius r 10
Antenna Thickness t 0.035
Dielectric Thickness pt 0.211 (PVC) 0.040 (PU)

Zinc Thickness zt 0.04
Metal Thickness mt 0.6

Dielectric Constant (PVC & PU) e 3.5
Sample Height/Width m 60

Substrate Thickness st 0.00 (NS) 0.20 (S)
Substrate Height/Width s 0.00 (NS) 22.0 (S)

In the modelling of the cladding panels, several assumptions were made for the initial
testing. Firstly, the coating layers of pre-treatment, primer, and topcoats were combined
into one homogenous layer with a cumulative thickness and an arbitrary dielectric constant
of 3.5. The metal substrate was defined as 1010 steel and the metallic coating layer as pure
zinc. The size of the cladding piece was set to 6 cm2, and the substrate layer used was FR-4
(lossy). The properties for each of the materials used are shown in Table 2.

Table 2. Simulation material properties.

Component Value/Properties Reference

Steel Conductivity (σS) 6.99 × 106 S/m [32,33]
Zinc Conductivity (σz) 1.69 × 107 S/m [32,33]

Fr-4 Dielectric Constant (Er) 4.3 [33]
Fr-4 Loss Tangent (δ) 0.025 [33]

Although the actual steel substrate and zinc layer are composed of either different or
more complex alloys, the conductivity values used were expected to be a fair representative
value. Furthermore, additional simulations, not provided in this work, showed that small
deviations in these values of conductivity did not noticeably affect the resonant frequency
and only produced small changes in the measured RCS.

Perhaps the largest source of uncertainty is the accuracy in modelling the coating
layers as one homogenous layer, whereas in reality the pre-treatment, primer, and topcoat(s)
have different requirements and hence compositions. This was mainly done for ease of
modelling, and it is believed to be representative of a weighted average of the multiple
dielectric layers. It is possible that experimental confirmation of this assumption may be
further required. A dielectric constant of 3.5 was considered an accurate representation of
both systems as the coatings are based on polyvinyl chloride chemistry, which has a stated
dielectric constant of 3.4 [34,35], and polyurethane chemistry, which has a stated dielectric
constant of 3.2–3.6 [36,37].

The simulation, shown in Figure 6, was set up with a frequency range of 2–6 GHz
of plane wave excitation in the z direction. The E-plane of the excitation plane wave was
oriented parallel with the y axis and the H-plane was oriented parallel with the x axis.
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The plane wave excitation source and an RCS Probe were set −200 mm away from the
sample in z direction to provide the simulated interrogation signal and response signal
measurement of the tag, respectively, at 200 mm distance. Finally, all boundaries were set
to open (add space), which is used to simulate free space surrounding the set up and is
recommended for antenna calculations [38].
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Figure 6. Simulation set up in CST Studio Suite.

The resonant frequency of the tag was determined by measuring the frequency at the
point of maximum drop of RCS amplitude. The RCS change at resonant frequency was
calculated by taking the measured RCS (RCSRF) away from the average of the RCS at the
beginning of the valley (RCSL) and the RCS at the end of the valley (RCSH):

∆RCS =
RCSL + RCSH

2
− RCSRF (5)

2.2. Production of the Antenna

In order to validate the simulations, several tags were produced, as shown in Figure 7.
The antennae were manufactured from adhesive copper tape (RS Pro foil, thickness
0.035 mm, from RS Components, Ireland) using a 20 mm paper punch. This method
was initially used for simplicity and because it gave reasonable cut quality and uniformity.
As copper rapidly tarnishes antennae were also produced from adhesive aluminium tape
(RS Pro foil thickness 0.04 mm), this is a far more environmentally resilient substrate and
hence it was considered as an alternative. The 20-mm circles were then either attached
directly to the sample, or to the Fr-4 substrate, which was attached to the sample via thin
double sided adhesive tape. An example of the two produced antenna systems is shown
in Figure 7. A number of coated steel samples were used in this study with the colours
used including white, anthracite, grey (PVC only), and silver (PU only). This was done to
understand the effect the different coating colours may or may not have on the measured
resonant frequencies. The samples used are shown in Figure 8.
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Figure 8. The samples used in this study.

2.3. Antenna Measurement

To measure the antenna response, a vector network analyser (VNA) (model) was used,
connected to two horn antennas (TX and RX) (model). A signal sweep from 4 to 6 GHz
was emitted from the TX horn antenna and the resulting S21 from the RX antenna was
recorded. To ensure similar positioning of the antenna in each test, a small acrylic stand
was produced, and the position of each horn antenna was marked on the test workspace
to ensure the same range was used. The distance between horn antennas was 5 cm and
the distance to the sample was 20 cm as with the simulations. The test set up is shown in
Figure 9.
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3. Results
3.1. Simulations
3.1.1. Initial Simulations

The simulated RCS response for each system is shown in Figure 10 and the main
results that can be drawn from each RCS response are summarized in Table 3. It can be seen
that the PVC system gives a similar response when the antenna is placed both directly on
the coated steel and on a substrate. The PU coating system, comparatively, does not show a
very significant response when the antenna is placed directly on the cladding. However, a
much more prominent, albeit smaller than the PVC system, response is recorded when a
substrate layer is used. Both systems show a small shift to a smaller resonant frequency
when the substrate layer is used. This is expected as the substrate has a larger dielectric
constant of 4.3. Adding this larger value dielectric layer has the effect of decreasing the
resonant frequency of the system according to Equation (1).
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Table 3. Results of initial simulations.

System Resonant Frequency/GHz RCS at Resonant
Frequency/dBsm

RCS
Change/dBsm

PVC-NS 4.556 −17.41 3.48
PU-NS 4.672 −13.87 0.03
PVC-S 4.380 −17.43 3.33
PU-S 4.244 −15.17 1.02

As the only difference in simulations between system PVC-NS and PU-NS is the paint
thickness, the poor response from the PU system (PU-NS) must be caused by the change in
dielectric layer thickness. It is stated in [28] that the usual dielectric substrate height h for a
microstrip patch antenna with a dielectric constant between approximately 2 and 12 is:

0.003λ0 ≤ h ≤ 0.05λ0 (6)

The calculated corresponding height range for the observed resonant frequencies seen
is shown in Table 4. It can be concluded that the optimum range is not satisfied by the PU
system paint thickness unless it is further increased with the substrate used in PU-S. As
stated in [39], a decreased thickness of dielectric can lead to greater losses and a decreased
efficiency, thus explaining the lack of a significant response by the PU model.

Table 4. Calculated optimum range of dielectric height.

System Resonant Frequency/GHz System h/mm h Min/mm h Max/mm

PVC-NS 4.556 0.211 0.20 3.29
PU-NS 4.672 0.040 0.19 3.21
PVC-S 4.380 0.411 0.21 3.42
PU-S 4.244 0.240 0.21 3.53

This conclusion is reinforced by comparing the surface current distribution maps of
each system at resonant frequency, as shown in Figure 11. It can be seen that the PU sample
with no substrate has a significantly lower current distribution surrounding the antenna
patch than any of the other systems. This is thought to be down to the poor efficiency of
the antenna because of the thin dielectric layer, which causes far less resonance and hence
electrical current. As a result, the backscattered RCS records far less of a change in the
signal as little power has been transferred.

3.1.2. Simulated Changes in Dielectric Constant

To monitor the effect of changes in the dielectric constant of the paint layer, a paramet-
ric sweep was performed in which the dielectric constant of the paint was changed from 2
to 5 in increments of 0.2.

As can be seen in Figure 12, for all systems, a clear trend was seen in that as the
dielectric constant was increased, the resonant frequency of the system decreased. This is
expected from Equations (1) and (3). However, it was also seen that the use of the substrate
layer decreased the magnitude of the resonant frequency change. In Figure 13, it can be seen
that the total change in resonant frequency for systems PVC-NS and PU-NS is far greater
than that for PVC-S and PU-S. This is because the substrate has an unchanging dielectric
constant and so is thought to average out some of the dielectric changes introduced.

What is perhaps more unexpected is that, by using a substrate layer, the RCS at
resonant frequency showed a far clearer trend of reducing with increased value for the
dielectric constant. This can be seen by comparing the four systems against each other, as
shown in Figure 13.



Sensors 2022, 22, 3312 10 of 20Sensors 2022, 22, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 11. Simulated surface current distribution on each system at resonant frequency. 

3.1.2. Simulated Changes in Dielectric Constant 
To monitor the effect of changes in the dielectric constant of the paint layer, a para-

metric sweep was performed in which the dielectric constant of the paint was changed 
from 2 to 5 in increments of 0.2.  

As can be seen in Figure 12, for all systems, a clear trend was seen in that as the 
dielectric constant was increased, the resonant frequency of the system decreased. This is 
expected from Equations (1) and (3). However, it was also seen that the use of the substrate 
layer decreased the magnitude of the resonant frequency change. In Figure 13, it can be 
seen that the total change in resonant frequency for systems PVC-NS and PU-NS is far 
greater than that for PVC-S and PU-S. This is because the substrate has an unchanging 
dielectric constant and so is thought to average out some of the dielectric changes intro-
duced.  

What is perhaps more unexpected is that, by using a substrate layer, the RCS at res-
onant frequency showed a far clearer trend of reducing with increased value for the die-
lectric constant. This can be seen by comparing the four systems against each other, as 
shown in Figure 13.  

This set of results helps to validate the model from the assumption that a dielectric 
constant of 3.5 was used and hence provides more confidence in the simulation process. 
If the coating system used has a different dielectric constant, a result will still be expected, 
however it will show a shift to a lower frequency, as shown by this simulation. 

Figure 11. Simulated surface current distribution on each system at resonant frequency.
Sensors 2022, 22, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 12. The effect of changes in the dielectric constant of the paint layer on the simulated RCS 
response. 

 
Figure 13. The effect of changes in the dielectric constant of the paint layer on the resonant frequency 
(left) and the RCS at resonant frequency (right) of each system. 

3.1.3. Simulated Aging/Degradation 
In reality, as a coated steel sample ages, a number of the effects simulated above occur 

simultaneously. Hence, it is important to determine the effect of multiple expected 
changes on the response. It is also important to determine if the multiple effects cause the 
overall change in response to reduce or even cancel out. To do this, a test was performed 

Figure 12. The effect of changes in the dielectric constant of the paint layer on the simulated
RCS response.



Sensors 2022, 22, 3312 11 of 20

Sensors 2022, 22, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 12. The effect of changes in the dielectric constant of the paint layer on the simulated RCS 
response. 

 
Figure 13. The effect of changes in the dielectric constant of the paint layer on the resonant frequency 
(left) and the RCS at resonant frequency (right) of each system. 

3.1.3. Simulated Aging/Degradation 
In reality, as a coated steel sample ages, a number of the effects simulated above occur 

simultaneously. Hence, it is important to determine the effect of multiple expected 
changes on the response. It is also important to determine if the multiple effects cause the 
overall change in response to reduce or even cancel out. To do this, a test was performed 

Figure 13. The effect of changes in the dielectric constant of the paint layer on the resonant frequency
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This set of results helps to validate the model from the assumption that a dielectric
constant of 3.5 was used and hence provides more confidence in the simulation process. If
the coating system used has a different dielectric constant, a result will still be expected,
however it will show a shift to a lower frequency, as shown by this simulation.

3.1.3. Simulated Aging/Degradation

In reality, as a coated steel sample ages, a number of the effects simulated above occur
simultaneously. Hence, it is important to determine the effect of multiple expected changes
on the response. It is also important to determine if the multiple effects cause the overall
change in response to reduce or even cancel out. To do this, a test was performed in which
aging and degradation of the coating was simulated eight times and with each iteration.
As displayed in Table 5:

• The dielectric constant of the paint layer was increased by 0.025 to simulate water
ingress. Previous work such as [30] has shown that water uptake by a coating leads to
an increased dielectric constant of up to at least 8%.

• The diameter of small defect holes in the paint were increased by 0.01 mm to simulate
defect growth. These were designed to be placed ‘randomly’ with no specific pattern
to attempt to mimic as close as possible that which would occur in reality. The defects
were placed centered on (−4, 0) (3, 3) (−3, −5) (−2, 7), with (0, 0) being the centre of
the CMPA. This sort of defect is a known failure method in organic coatings as a result
of mechanical shock and/or aging [40].

• The paint thickness was decreased by 0.001 mm to simulated UV degradation. A de-
crease in organic coating thickness is known to occur through chain scission as a result
of organic coating exposure to UV, oxygen, and other atmospheric contaminants [41].

This offered a reasonable level of replication of the real-life ageing process of a coated
specimen which undergoes the changes simulated in this exercise. The simulated RCS
response for each system is shown in Figure 14 and the effect of the aging severity on the
resonant frequency and the RCS at resonant frequency are shown in Figure 15. It can be
seen that the resonant frequency shifts to lower frequencies as the simulated aging severity
increases. Furthermore, the RCS at resonant frequency is seen to decrease in magnitude
with simulated aging. Using a substrate had little effect on the change in frequency with
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aging. However, as before, this makes identification of resonant frequencies in the thinner
paint system far easier, by increasing the depth of the trough.

Table 5. Parameters used for each aging severity level.

Aging Severity Dielectric Constant Defect Diameter/mm Paint Thickness/mm

1 3.500 0.00 0.211 (PVC) 0.040 (PU)
2 3.525 0.01 0.210 (PVC) 0.039 (PU)
3 3.550 0.02 0.209 (PVC) 0.038 (PU)
4 3.575 0.03 0.208 (PVC) 0.037 (PU)
5 3.600 0.04 0.207 (PVC) 0.036 (PU)
6 3.625 0.05 0.206 (PVC) 0.035 (PU)
7 3.650 0.06 0.205 (PVC) 0.034 (PU)
8 3.675 0.07 0.204 (PVC) 0.033 (PU)
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3.2. Experimental
3.2.1. Initial Test of the System

Figure 16 shows the comparison between the simulated and measured RCS for both
paint and mounting systems. This test was carried out on virgin, white coloured samples. It
can be seen that interference was captured compared to the ideal simulated scenario. This
made the detection of the resonant frequencies for the NS samples (no additional substrate)
impossible to determine. However, the resonant frequencies of system two (marked A and
B) were detectable. These were observed to be at a higher frequency and provided a smaller
RCS drop that was predicted by the simulations. However, this is not unexpected due small
variations between the values and assumptions used in the simulations and the actual
real values as mentioned previously in Section 3.1. The resonant frequency troughs did
however appear in a similar position and size relative to each other when compared to the
simulated results giving confidence in their correct identification. While it is true that noise
would be greatly reduced through the use of an anechoic chamber, this would somewhat
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defeat the desire to use this technique in the field. While, due to the low simulated RCS
trough, it was expected that the NS-PU sample was undetectable, it was surprising that
the NS-PVC sample also produced no clear resonant frequency trough, especially as in
simulations this showed a clear decrease in RCS of around 3.5 dBsm at resonant frequency.
It was theorized that this discrepancy between simulation and experimental may be due to
the difference between modelling the coating perfectly as a layer of set dielectric properties
and measuring on what is an inhomogeneous, multi-layer, multi component, complex paint
system. While in a simulation, the paint system alone can produce a resonant antenna, in
real life, the addition of a small FR-4 substrate with homogenous dielectric properties is
required to support the resonance of the antenna. Hence, it was concluded that the concept
of attaching the circle directly to the paint without an additional substrate was insufficiently
responsive to use for further testing.
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However, to reduce the impact of noise, the following results were calculated by
subtracting the sample background RCS. This was the measured RCS of the sample with-
out the antenna attached. As shown later, this allowed far easier trough detection and
noise removal.

3.2.2. Detection of Artificial Weathering

Following the initial testing of the chipless RFID system, samples were produced with
different artificial aging techniques. The set of samples (Salt) was produced via 10 weeks
of ASTM B117 salt fog/spray exposure in a 100% humidity (5% NaCl solution, pH 7),
35 ◦C environment. A second set of samples (Chemical) was exposed to 50 MEK (Methyl
Ethyl Ketone) double rubs, a 30 min acetone soak, and a two-hour boil. This was done
as a proof of the concept of the technique to detect changes in organic coatings caused
by degradation, and hence the use of common accelerated weathering techniques. The
samples after exposure are shown in Figure 17.

It can be seen that the chemical samples do not appear, visually, that different to the
control samples except for slight discoloration on the PVC grey and anthracite samples.
The salt exposed samples show a far greater visual level of degradation with significant
blistering and corrosion at the cut edge. However, it should be noted that the sensor tag
is only expected to detect changes in the coating directly underneath where it is placed
and that the middle of the samples showed little visual change to the control samples.
Hence, the sensor is still monitoring an area in which degradation of the coating has not
occurred significantly enough for a visual inspection to determine. After exposure to the
environments, the samples were also examined using FTIR. Examples of the FTIR results
are shown for a PVC and PU sample in Figure 18.

From these spectra, it is possible to see the effect the different treatments have had
on the two paint systems. Perhaps most obvious is the significant emergence of the
characteristic broad OH peak between approximately 3000 and 3500 cm−1 [42] in the
samples exposed to the salt spray. This is indicative of moisture presence either in the
coating itself or through the formation of micropores or blisters. While the chemically
exposed samples do also perhaps show slight emergence of this peak, especially in the
PVC samples, the effect is not as pronounced. However, from these results, it would
be expected that the salt exposed samples would have a significantly different, higher,
dielectric constant and that the chemically exposed samples may have a slightly higher
dielectric constant. The respective obtained RCS results for a PVC and PU sample are
shown in Figure 19.

It can be observed that the salt and chemical treatment has caused the resonant
frequency to shift to the left and that this shift is greater in magnitude for the PVC sample.
This shift is indicative of the types of changes expected under these tests. A comparison
of the resonant frequencies for all the tested samples exposed to the salt and chemical
degradation can be seen in Figure 20 where the resonant frequency was measured using
three repeats. All the samples tested show a similar trend to that of the example above,
even with the variation in measurements.

As expected, the shift in resonant frequency as a result of coating changes for the PU
samples is far more reduced than for that of the PVC samples. As mentioned previously,
the additional layer of FR-4 used to increase the signal for both paint systems effectively
reduces the magnitude of the relative shift in resonant frequency due to its unchanging
dielectric properties. The influence of this effect is far greater in the PU sample, where
the FR-4 thickness (0.2 mm) constitutes a far larger proportion of the total antenna dielec-
tric; approximately 83% compared to 50% of the total PVC antenna dielectric. However,
despite this, it is still possible to distinguish the different treatments through resonant
peak identification.
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4. Discussion

There is no doubt that the monitoring of organic coatings applied to steel cladding
on buildings is a difficult proposition. The current common monitoring practices for
buildings are often simple and subjective manual inspections, and generally, a ‘fix when
failed’ approach is taken. This means that degradation is only detected when significant
coating damage and/or corrosion has taken place, increasing the cost of rectification.
Recent techniques developed for monitoring early-stage coating deterioration suffer from
requirements to modify the coating layers or connect to the substrate making results less
representative of the bulk and more complex to carry out in-situ.

While not a perfect solution, the novel method developed shows considerable promise
for the detection of pre-failure degradation in coated steels, which could be carried out
quickly and reliably at low cost. It has shown its ability to detect both water uptake by the
coating/coating–metal interface and degradation of the polymer itself before a significant
visual change in the sample area has occurred. The degree of degradation is expected to be
semi-quantitatively assessed by considering the size of the resonant frequency shift between
the virgin sample and exposed sample with a greater degree of degradation producing a
larger shift.

However, to further investigate and develop the technique, a number of additional
studies are required. The sensitivity of the method needs to be established such that the
change in resonant frequency can be more linked to the degree of degradation. For example,
coating material integrity is often affected by UV, and this would be expected to provide
a change in the dielectric properties of the coating. Typically, the change in structure that
occurs when a coating is subjected to UV arises from the breakdown of the longer polymer
chains, pigment bleaching, and cracking of the coating [41]. The precise impact of this
and other failure modes on the dielectric properties of the coating should be addressed.
This requires multiple coated substrate samples of varied levels of degradation, through
multiple degradation mechanisms to be measured and analyzed.

Furthermore, the universality of the resonance value for multiple coating systems
needs to be established. The absolute resonance is a function of many coating and substrate
parameters. Hence, the coating systems of interest must first be tested in advance to
determine the specific resonant frequency for the given coating thickness, pigmentation,
polymer system and application involved. Thus, this technique would be used to monitor
any resonance shift from this specific virgin sample datum, which will need to be considered
as the prime indicator of coating degradation/substrate corrosion. It is therefore a relative,
not an absolute measurement technique. Given the background noise observed within the
laboratory, signal processing techniques may need to be refined in order to clearly identify
the peaks in a consistent manner.

Finally, if the laboratory findings are positive then a simplified robust piece of hard-
ware needs to be designed which can be used in the field. All of the hardware electronics
for such a device exists and is relatively low cost, but it would need to be ruggedized for
use in practice.

It is envisaged that this technique could be deployed via miniaturization into a portable
handheld device, which is used to interrogate a tag that can be placed and then removed
during routine inspections. The device would ensure that the interrogating antennas are
fixed at a required angle and distance for measurement and a ‘place and remove’ testing
procedure would ensure tarnishing of the tags does not impact the results and would
reduce the aesthetic implications of constantly mounted tags. The resonant frequency
measured could then be compared to the baseline initially measured resonant frequency
and the shift related to the condition of the coating system. As each tag is only influenced
by the coating directly beneath it several locations would have to be tested. However, this
would allow a determination of the general condition of the coating across the building.
Where the technique suggests early-stage coating degradation is occurring more rapidly
than expected, maintenance and/or repair of the coating, via overpainting for example,
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would reduce the likelihood of degradation continuing to the point where replacement
is required.

5. Conclusions

This paper has introduced a new non-contact, non-destructive method for the mon-
itoring of organically coated steel. The design of a CMPA was achieved via simulation
and, by considering shifts in the resonant frequency of the CMPA, was shown to provide
information as to the condition of an organic coating, even when the organic coating is
relatively thin. It was observed that as a coating underwent simulated ageing, the expected
response would be a decrease in the resonant frequency due to an increased dielectric
constant and reduced thickness. For thinner coatings, the use of an additional piece of FR-4
substrate allowed a more substantial response, although it reduced the sensitivity of the
method. Experimental results showed that background noise was the largest cause for
concern, and hence resonant peaks could only be distinguished accurately if additional
substrate thickness was used. Background removal via the measurement of the sample
background RCS was also crucial to allow further ease of peak detection. However, the tech-
nique did respond as expected in the simulations when determining the resonant frequency
of samples exposed to accelerated weathering conditions. These samples showed a clear
decrease in resonant frequency as a result of water uptake and polymer degradation. This
method shows promise as a rapid way to determine coating condition non-destructively
and without contact with the product being tested.
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