Three-Dimensional-Printed Mechanical Transmission Element with a Fiber Bragg Grating Sensor Embedded in a Replaceable Measuring Head
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fiber Bragg Grating Based Sensor Fabrication
2.2. Three-Dimensional Printing Technology
2.3. Numerical Calculations
2.4. Measurement Setup
3. Results
3.1. Numerical Calculation Results
3.2. Measurement Results
3.2.1. 3-Point Bending Measurement
3.2.2. Temperature Measurement
3.3. Compliant Mechanism Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, F.; Zhang, Q.; Gao, Y.; Dong, W. A Review on the Flexure-Based Displacement Amplification Mechanisms. IEEE Access 2020, 8, 205919–205937. [Google Scholar] [CrossRef]
- Wang, M.; Ge, D.; Zhang, L.; Herder, J.L. Micro-Scale Realization of Compliant Mechanisms: Manufacturing Processes and Constituent Materials—A Review. Chin. J. Mech. Eng. 2021, 34, 85. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, X.; Zhang, H.; Liang, J.; Zang, H.; Li, H.; Wang, R. Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review. Mech. Mach. Theory 2020, 143, 103622. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, L.; Qiu, D. A Lever-Bridge Combined Compliant Mechanism for Translation Amplification. Precis. Eng. 2021, 67, 383–392. [Google Scholar] [CrossRef]
- Qi, K.; Xiang, Y.; Fang, C.; Zhang, Y.; Yu, C. Analysis of the Displacement Amplification Ratio of Bridge-Type Mechanism. Mech. Mach. Theory 2015, 87, 45–56. [Google Scholar] [CrossRef]
- Jagtap, S.P.; Deshmukh, B.B.; Pardeshi, S. Applications of Compliant Mechanism in Today’s World—A Review. J. Phys. Conf. Ser. 2021, 1969, 012013. [Google Scholar] [CrossRef]
- Shuib, S.; Ridzwan, M.I.Z.; Kadarman, A.H. Methodology of Compliant Mechanisms and Its Current Developments in Applications: A Review. Am. J. Appl. Sci. 2007, 4, 160–167. [Google Scholar] [CrossRef]
- Kota, S.; Hetrick, J.; Li, Z.; Saggere, L. Tailoring Unconventional Actuators Using Compliant Transmissions: Design Methods and Applications. IEEE/ASME Trans. Mechatron. 1999, 4, 396–408. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.D.; Midha, A.; Howell, L.L. The Topological Synthesis of Compliant Mechanisms. Mech. Mach. Theory 1996, 31, 185–199. [Google Scholar] [CrossRef]
- Reggiani Manzo, N.; Callado, G.T.; Cordeiro, M.B.C.; Vieira, L.C.M., Jr. Embedding Optical Fiber Bragg Grating (FBG) Sensors in 3D Printed Casings. Opt. Fiber Technol. 2019, 53, 102015. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of mate-rials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Al-Mai, O.; Albert, J.; Ahmadi, M. Development and Characterization of Compliant FBG-Based, Shear and Normal Force Sensing Elements for Biomechanical Applications. IEEE Sens. J. 2020, 20, 5176–5186. [Google Scholar] [CrossRef]
- Barino, F.O.; Luiz Faraco-Filho, R.; Campos, D.; Bessa dos Santos, A. 3d-Printed Force Sensitive Structure Using Embedded Long-Period Fiber Grating. Opt. Laser Technol. 2022, 148, 107697. [Google Scholar] [CrossRef]
- Fang, L.; Chen, T.; Li, R.; Liu, S. Application of Embedded Fiber Bragg Grating (FBG) Sensors in Monitoring Health to 3D Printing Structures. IEEE Sens. J. 2016, 16, 6604–6610. [Google Scholar] [CrossRef]
- Liu, X.; Liang, L.; Jiang, K.; Xu, G. Sensitivity-Enhanced Fiber Bragg Grating Pressure Sensor Based on a Diaphragm and Hinge-Lever Structure. IEEE Sens. J. 2021, 21, 9155–9164. [Google Scholar] [CrossRef]
- Ping, Z.; Zhang, T.; Gong, L.; Zhang, C.; Zuo, S. Miniature Flexible Instrument with Fibre Bragg Grating-Based Triaxial Force Sensing for Intraoperative Gastric Endomicroscopy. Ann. Biomed. Eng. 2021, 49, 2323–2336. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Marques, C.; Ribeiro, M.R.N.; Pontes, M.J.; Frizera, A. FBG-Embedded 3-D Printed ABS Sensing Pads: The Impact of Infill Density on Sensitivity and Dynamic Range in Force Sensors. IEEE Sens. J. 2018, 18, 8381–8388. [Google Scholar] [CrossRef]
- Palma, P.D.; Iadicicco, A.; Campopiano, S. Study of Fiber Bragg Gratings Embedded in 3D-Printed Patches for Deformation Monitoring. IEEE Sens. J. 2020, 20, 13379–13386. [Google Scholar] [CrossRef]
- Liu, M.; Wang, W.; Song, H.; Zhou, S.; Zhou, W. A High Sensitivity FBG Strain Sensor Based on Flexible Hinge. Sensors 2019, 19, 1931. [Google Scholar] [CrossRef] [Green Version]
- Dsouza, R.; Antunes, P.; Kakkonen, M.; Tanhuanpää, O.; Laurikainen, P.; Javanshour, F.; Kallio, P.; Kanerva, M. Microscale Sensor Solution for Data Collection from Fibre-Matrix Interfaces. Sci. Rep. 2021, 11, 8346. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Díaz, C.; Marques, C.; Frizera, A.; Pontes, M.J. 3D-Printing Techniques on the Development of Multiparameter Sensors Using One FBG. Sensors 2019, 19, 3514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal-Junior, A.; Theodosiou, A.; Díaz, C.; Marques, C.; Pontes, M.J.; Kalli, K.; Frizera-Neto, A. Fiber Bragg Gratings in CYTOP Fibers Embedded in a 3D-Printed Flexible Support for Assessment of Human–Robot Interaction Forces. Materials 2018, 11, 2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal-Junior, A.; Díaz, C.R.; Pontes, M.J.; Marques, C.; Frizera, A. Polymer optical fiber-embedded, 3D-printed instrumented support for microclimate and human-robot interaction forces assessment. Opt. Laser Technol. 2019, 112, 323–331. [Google Scholar] [CrossRef]
- Zhao, C.; Xia, Z.; Wang, X.; Nie, J.; Huang, P.; Zhao, S. 3D-printed highly stable flexible strain sensor based on silver-coated-glass fiber-filled conductive silicon rubber. Mater. Des. 2020, 193, 108788. [Google Scholar] [CrossRef]
- Shi, C.; Li, M.; Lv, C.; Li, J.; Wang, S. A High-Sensitivity Fiber Bragg Grating-Based Distal Force Sensor for Laparoscopic Surgery. IEEE Sens. J. 2020, 20, 2467–2475. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Y.; Han, S.; Ma, K. Dynamic Modeling and Experimental Study of Hybrid Compliant Mechanism Stretching Trapezoidal Membrane. Int. J. Mech. Sci. 2022, 217, 107025. [Google Scholar] [CrossRef]
- Turkseven, M.; Ueda, J. Analysis of an MRI Compatible Force Sensor for Sensitivity and Precision. IEEE Sens. J. 2013, 13, 476–486. [Google Scholar] [CrossRef]
- Grattan, K.T.V.; Sun, T. Fiber Optic Sensor Technology: An Overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Tosi, D. Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors. Sensors 2017, 17, 2368. [Google Scholar] [CrossRef]
- Lesiak, P.; Szeląg, M.; Budaszewski, D.; Plaga, R.; Mileńko, K.; Rajan, G.; Semenova, Y.; Farrell, G.; Boczkowska, A.; Domański, A.; et al. Influence of Lamination Process on Optical Fiber Sensors Embedded in Composite Material. Measurement 2012, 45, 2275–2280. [Google Scholar] [CrossRef]
- Lesiak, P.; Szostkiewicz, L.; Wolinski, T.R. Numerical Analysis of Stress Distribution in Embedded Polymer and Silica-Glass Highly Birefringent Fibers. J. Lightwave Technol. 2016, 34, 4564–4571. [Google Scholar] [CrossRef]
- Kashyap, R. Fiber Bragg Gratings; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Lesiak, P.; Domanski, A.; Wolinski, T.; Boczkowska, A.; Farrell, G. The influence of thermal expansion of a composite material on embedded polarimetric sensors. Smart Mater. Struct. 2011, 20, 125002. [Google Scholar] [CrossRef] [Green Version]
- Botean, A.I. Thermal expansion coefficient determination of polylactic acid using digital image correlation. E3S Web Conf. 2018, 32, 01007. [Google Scholar] [CrossRef] [Green Version]
Optical Fiber |
With partially removed coating |
3D Printer |
Programmed change of filament color as a pause |
Resolution limitation—180 µm v-groove |
Printing Process |
Supports for optical fibers Stretching the optical fiber during printing |
Nozzle printer temperature: 215–220 °C; table: 60 °C |
At least two layers covering the optical fiber |
Fan power reduction to 60% after the 2nd layer |
PLA | |
---|---|
Young modulus E (MPa) | 3170 |
Poisson coefficient | 0.331 |
Strain Sensitivity (mε/mm) | |
---|---|
Measured | 0.64 |
Calculated | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lesiak, P.; Pogorzelec, K.; Bochenek, A.; Sobotka, P.; Bednarska, K.; Anuszkiewicz, A.; Osuch, T.; Sienkiewicz, M.; Marek, P.; Nawotka, M.; et al. Three-Dimensional-Printed Mechanical Transmission Element with a Fiber Bragg Grating Sensor Embedded in a Replaceable Measuring Head. Sensors 2022, 22, 3381. https://doi.org/10.3390/s22093381
Lesiak P, Pogorzelec K, Bochenek A, Sobotka P, Bednarska K, Anuszkiewicz A, Osuch T, Sienkiewicz M, Marek P, Nawotka M, et al. Three-Dimensional-Printed Mechanical Transmission Element with a Fiber Bragg Grating Sensor Embedded in a Replaceable Measuring Head. Sensors. 2022; 22(9):3381. https://doi.org/10.3390/s22093381
Chicago/Turabian StyleLesiak, Piotr, Konrad Pogorzelec, Aleksandra Bochenek, Piotr Sobotka, Karolina Bednarska, Alicja Anuszkiewicz, Tomasz Osuch, Maksymilian Sienkiewicz, Piotr Marek, Michał Nawotka, and et al. 2022. "Three-Dimensional-Printed Mechanical Transmission Element with a Fiber Bragg Grating Sensor Embedded in a Replaceable Measuring Head" Sensors 22, no. 9: 3381. https://doi.org/10.3390/s22093381
APA StyleLesiak, P., Pogorzelec, K., Bochenek, A., Sobotka, P., Bednarska, K., Anuszkiewicz, A., Osuch, T., Sienkiewicz, M., Marek, P., Nawotka, M., & Woliński, T. R. (2022). Three-Dimensional-Printed Mechanical Transmission Element with a Fiber Bragg Grating Sensor Embedded in a Replaceable Measuring Head. Sensors, 22(9), 3381. https://doi.org/10.3390/s22093381