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Abstract: Crosswalks present a major threat to pedestrians, but we lack dense behavioral data to
investigate the risks they face. One of the breakthroughs is to analyze potential risky behaviors of the
road users (e.g., near-miss collision), which can provide clues to take actions such as deployment
of additional safety infrastructures. In order to capture these subtle potential risky situations and
behaviors, the use of vision sensors makes it easier to study and analyze potential traffic risks. In
this study, we introduce a new approach to obtain the potential risky behaviors of vehicles and
pedestrians from CCTV cameras deployed on the roads. This study has three novel contributions:
(1) recasting CCTV cameras for surveillance to contribute to the study of the crossing environment;
(2) creating one sequential process from partitioning video to extracting their behavioral features;
and (3) analyzing the extracted behavioral features and clarifying the interactive moving patterns by
the crossing environment. These kinds of data are the foundation for understanding road users’ risky
behaviors, and further support decision makers for their efficient decisions in improving and making
a safer road environment. We validate the feasibility of this model by applying it to video footage
collected from crosswalks in various conditions in Osan City, Republic of Korea.

Keywords: crossing behavior analysis; pedestrian safety; potential collision risks; computer vision

1. Introduction

Despite advances in vehicle safety technologies, road traffic accidents globally still pose
a severe threat to human lives and have become a leading cause of premature deaths [1].
Every year, approximately 1.2 million people are killed and 50 million injured in traffic
accidents [2,3]. Among the various types of traffic accidents, in the case of a vehicle–
pedestrian collision, pedestrians are especially exposed to various hazards, such as drivers
failing to yield to them at crosswalks [2]. According to international institutes, such as
British Transport and Road Research Laboratory and World Health Organization (WHO),
crossing roads at unsignalized crosswalks is as dangerous for pedestrians as crossing roads
without crosswalks or traffic signals [4].

There are a variety of ways to prevent vehicle–pedestrian collisions, such as sup-
pressing dangerous or illegal behaviors of road users (mainly vehicles and pedestrians)
by deploying speed cameras and fences, and operating 24 h CCTV surveillance centers
in administrative districts. In addition, some studies have analyzed actual collisions and
their factors [5,6], and suggested countermeasures. However, such approaches have used
historical accident data or metadata to improve the safety of road environments post facto.
Therefore, it is necessary to devise strategies to proactively respond to such collisions.
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One of the breakthroughs is to analyze potential risky behaviors of road users (e.g.,
near-miss collisions), which can provide clues to take action such as deployment of ad-
ditional speed cameras, speed bumps, and other traffic calming measures [2,7–11]. The
investigation of the risky behaviors, which are heavily influenced by road users’ emotions,
will help in improving road safety. In order to capture these subtle potential risky situations
and behaviors, vision sensors are employed, such as closed-circuit televisions (CCTVs)
on the roads. The use of vision sensors is supposed to make it easier to study potential
traffic risks over long periods of time, and allows analyses such as evaluating the behav-
ioral factors that pose a threat to pedestrians at crosswalks based on vehicle–pedestrian
interactions [7,8,12,13], and supporting decisions based on their subtle interactions [9,10].

In general, one of the most important steps in vision-based traffic safety and surveil-
lance systems is to obtain the behavioral features of vehicles and pedestrians from the
video footage. However, the vision-based approach has a critical problem. Since most
CCTVs are already deployed with oblique views of the road, it is difficult to obtain precise
coordinates and behavioral features such as objects’ speeds and positions. Thus, many
studies have used manual inspection to reliably extract these features from video footage.
This requires more cost and time when extended to the urban scale, so we should address
these challenges when seeking to analyze pedestrian safety across many sites in the city.

This study introduces a new approach to obtain the potential risky behaviors of
vehicles and pedestrians from CCTV cameras deployed on the roads. This research begins
with the question: can the subtle behaviors and intentions of vehicles and pedestrians be
understood from video footage. Thus, the objectives of this study are: (1) to process the
video data as one sequence from motioned-scene partitioning to object tracking; (2) to
extract automatically the behavioral features of vehicles and pedestrians affecting the
likelihood of potential collision risks between them in crosswalks; and (3) to analyze
behavioral features and relationships among them by camera location. This study follows
earlier experiments using sample footage [14], but improves on the methods and expands
to a much larger dataset covering nine cameras over two weeks. The remainder of this
paper consists of five sections described as follows:

1. Literature Review: Reviewing the related works for vehicle–pedestrian’s risky behav-
ior analysis and vision-based traffic safety system.

2. Data Arrangement: Description of test spots and overview of the video dataset and
preprocessing methods.

3. Potential Collision Risky Behavior Extraction: Description of methods for object’s
behavioral extraction.

4. Performance Evaluation: Validation of preprocessing results.
5. Analysis of Potential Collision Risky Behaviors: Analysis of the objects’ behavioral

features by spots, and discussion of results and limitations.
6. Conclusion: Summary of our study and future research directions.

To the best of our knowledge, it the is first attempt to understand and analyze the
subtle behaviors of road users, from video footage. This study has three novel contribu-
tions: (1) recasting CCTV cameras for surveillance to contribute to the study of pedestrian
environments; (2) creating one sequential process from detecting objects to extracting their
behavioral features; and (3) analyzing the extracted behavioral features and clarifying the
interactive moving patterns by crossing environment. Consequently, the proposed method
can handle the video stream in order to obtain objects’ behaviors in multiple spots. These
kinds of data are the foundation for understanding road users’ risky behaviors, and further
support decision makers for their efficient decisions in improving and making a safer road
environment. We validate the feasibility of this model by applying it to video footage
collected from crosswalks in various conditions in Osan City, Republic of Korea.
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2. Materials and Methods

To achieve the purposes of this study requires both handling the vision-based road traf-
fic data and analyzing potential collision risky behaviors, especially for vehicle–pedestrians.
In this section, we briefly introduce the literature for vehicle–pedestrian risky behavior
analysis, and further vision-based traffic safety systems.

2.1. Vehicle–Pedestrian’s Risky Behavior Analysis

In order to make up for actual traffic accidents’ shortcomings, some studies aim to
analyze potential collision risks by using behavior and characteristics of road users [14–16]
and environmental factors [12,17]. For example, the authors in [14] analyzed a variety
of factors contributing to pedestrian safety such as pedestrian’s walking phase, speed,
and gap acceptance by countries. These results can give guidance to decision makers
and administrators with useful and powerful information supporting to improve and
make a safe traffic environment. Similarly, the authors in [16] investigated the pedestrian’s
crossing speed, delays, and gap perceptions at signalized intersections. They applied an
analysis of variance (ANOVA) method to reveal the factors affecting the pedestrian walking
speed and safety margin. Furthermore, the authors in [15] investigated the age effect of
pedestrian road-crossing behaviors and described how age affects street-crossing decisions
with vehicle speed, time gap, and time of day, together.

In terms of environmental factor analysis, the authors in [12] provided an informative
tool for evaluating the collision risk between vehicles and pedestrians for improving
pedestrian safety in urban environments. In order to evaluate the collision risks, they used
features such as pedestrian counts and automobile traffic flow, and identified a safety in
numbers effect. The authors in [18] studied the relationships between pedestrian risks and
the built environment. They figured out that pedestrian road traffic injuries depend on the
design of the roadway and land uses.

Meanwhile, the authors in [17] analyzed the vehicle–pedestrian near-crash identifi-
cation using the trajectories of vehicles and pedestrians extracted from roadside LiDAR
data. The study focused on identifying vehicle–pedestrian near-crash, especially consider-
ing the increased risk of vehicle–pedestrian conflicts. To identify the near-crash between
vehicle and pedestrian, three parameters—Time Difference to the Point of Intersection
(TDPI), Distance between Stop Position and Pedestrian (DSPP), and vehicle–pedestrian
speed–distance profile were developed used in the research. However, the performance of
near-crash identification using the three developed parameters was not stable. To increase
the accuracy, the authors in [19] proposed an improved vehicle–pedestrian near-crash
identification method with three indicators: Post-Encroachment Time (PET), the Proportion
of the Stopping Distance (PSD), and the Crash Potential Index (CPI). The case studies show
that the proposed method can evaluate pedestrian safety without waiting for historical
crash records.

In this study, we also focus on analyzing potential collision risky behaviors between
vehicles and pedestrians such as near-miss collisions, not actual collisions. However, unlike
the existing studies, we use vision-based data sources, and further extract the various
behavioral features for analysis.

2.2. Vision-Based Traffic Safety System

There have been many efforts to build a vision-based transportation system, especially
focusing on safety. For example, the authors in [11] proposed an onboard monocular vision-
based framework to automate the detection of the near-miss event data. The advantages
of the onboard monocular camera are the large coverage area and numerous data sources.
In the research, time-to-collision (TTC) and distance-to-safety (DTS) are used in near-
miss detection. Similarly, the authors in [20] focused on near-miss incidents by using
the driving records installed in passenger vehicles. Specifically, TTC was calculated to
analyze the potential risk between pedestrians and vehicles based on the video frames
captured by the drivers’ records. The results indicate that the average TTC is shorter
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when the pedestrians are not using the pedestrian crossing and emerged from behind
obstructions. The authors in [21] proposed a new analytical system for potential pedestrian
risk scenes based on video footage obtained by road security cameras already deployed at
unsignalized crosswalks. Similarly, the authors in [22] proposed a new framework for a
vision sensor-based intersection pedestrian collision warning system (IPCWS) that gives
a collision warning to drivers approaching an intersection by predicting the pedestrian’s
crossing intention based on various machine learning algorithms. Furthermore, the authors
in [22] considered the 3D pose estimation factor in real-time to clarify the pedestrian’s
intention of crossing. The authors in [23] also investigated vehicle–pedestrian behaviors by
using the vision-based data, and they focused on analyzing instant behaviors of them in
the video stream.

In this study, we also focus on extracting objects’ behavioral features, especially risky
behaviors, from video footage and analyzing them. In fact, there are many kinds of
measurements of risky behaviors, especially surrogate measurements, such as speed TTC
and DTS, as well as speeds and distances of vehicle and pedestrian. In our experiment,
we handle the overall behavioral features such as speed, distance, and pedestrian safety
margin (PSM) with a focus on extracting them automatically, and then evaluating the
performance of the extracted features from video.

3. Data Arrangement

In this section, we describe the video dataset used in our experiment and how to
extract the behavioral features of vehicles and pedestrians that might affect the likelihood
of potential collision risks between them in a visual environment. First, we process the
given input video stream from CCTV cameras, called preprocessing, consisting of three
steps: (1) motioned-scene partitioning; (2) object detection in overhead view; and (3) object
tracking. As the outputs, we can obtain the objects’ trajectories, and, then, the objects’
behavioral features are extracted from these trajectories.

3.1. Data Sources

In our experiments, we use video data from CCTV cameras deployed on nine roads
in Osan City, Republic of Korea. The information for each spot is arranged in Table 1,
including road characteristics and recording metadata. These cameras are deployed over
crosswalks, and are intended to record and deter instances of street crime. Some are
deployed in school zones, which are certain roads near facilities for children under age 13,
e.g., elementary schools, daycare centers, and tutoring academies. Penalties for breaking
traffic rules or causing accidents in these areas are highly severe, such as fines of up to KRW
3000 million or life imprisonment, in order to suppress risky behavior [24].

All video frames were processed locally on a computer server we deployed in the Osan
Smart City Integrated Operations Center, and we only obtained the processed trajectory
data after removing the original video data. This was to protect the privacy of anyone
appearing in the footage. Future systems could employ internet-connected cameras that
process images on-device in real time, and transmit only trajectory information back
to servers.

Figure 1a–i show the CCTV views being actually recorded in spots A to I, respectively.
Since these spots have a high “floating population” during commuting hours, due to their
proximity to schools and residential complexes, we used video recorded on weekdays from
9 to 28 January 2020, from 8 a.m. to 10 a.m., and from 6 p.m. to 8 p.m.
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Table 1. Information of the obtained spots.

Spot Code Cam.
Name

Crosswalk
Length (m) School Zone Speed Cam.

The
Number of

Lanes
Signal Light Speed Limit

(km/h) Frame Size Frame-per-Sec
(FPS)

A

Unam
Elementary
school, back

gate #2

about 8 m + × 2 × 30 km/h 1920 × 1080 25

B

Yangsan
Elementary

school, main
gate #1

about 11 m + × 3 × 30 km/h 1920 × 1080 25

C

Gohyeon
Elementary
school, back

gate #2

about 20 m + × 4 × 30 km/h 1920 × 1080 25

D

Municipal
Southern

Wel-
fare/Daycare

center #3

about 7 m + × 2 + 30 km/h 1280 × 720 30

E iFun daycare
center #2 about 8 m + × 2 + 30 km/h 1280 × 720 30

F

Daeho
Elementary

school
opposite
side #3

about 23 m + + 4 × 30 km/h 1280 × 720 30

G
Segyo

complex #9
back gate #2

about 8 m × × 2 + 30 km/h 1280 × 720 15

H
iNoritor
daycare
center #2

about 8 m + × 2 + 30 km/h 1280 × 720 11

I
Kids-mom

daycare
center #3

about 7 m + × 2 + 30 km/h 1920 × 1080 25

Note: +: Yes ×: No.

Figure 1. Actual CCTV views in (a) Spot A; (b) Spot B; (c) Spot C; (d) Spot D; (e) Spot E; (f) Spot F; (g)
Spot G; (h) Spot H; and (i) Spot I.

3.2. Preprocessing
3.2.1. Motioned-Scene Partitioning

As a first step of preprocessing, we partition the video stream into only video clips
with moving vehicle or pedestrian activities, regarded as “motioned-scene.” The goal of
this step is to make efficient processing of video footage. In general, there are occasionally
some motioned-scenes (see Figure 2), but CCTVs on the road constantly record for 24 h,
so most frames are idle states. Thus, it is necessary to decide whether to process the input
frame or not. Thus, it requires a method with a simple and low computational complexity
to handle the video footage.
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Figure 2. Composition of the actual video stream.

For this, we apply a frame difference method, a widely used approach for detecting
moving objects from the fixed cameras [25,26]. This method simply calculates the pixel-
based difference between two frames, as an image obtained at the time t, denoted by I(t),
and the background image denoted by B:

P[F(t)] = P[I(t)]− P[B] (1)

where pixel value in I(t) is denoted by P[I(t)], and P[B] means the corresponding pixels at
the same position on the background frame. As a result, we can observe the intensity of
the pixel positions that have changed in the two frames, and then detect the “motion” by
comparing it with the threshold as follows:

|P[I(t)]− P[I(t + 1)]| > Threshold (2)

The example of frame difference is illustrated in Figure 3. In practice, the frame
difference method is applied to all frames, and if a motion is recognized in the given two
consecutive frames, the following algorithms work.
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3.2.2. Object Detection in Overhead View

Next, objects in motioned-scene are detected by using deep learning-based object
detection models. We used a mask R-CNN (Regional Convolutional Neural Network)
model, an extension of faster R-CNN, which was a pre-trained model with ResNet-101-FPN
by Microsoft common objects in context (MS COCO) image dataset [27]. In our experiment,
we use the Detectron 2 platform, as implemented by Facebook AI Research (FAIR) [28].
Since the accuracy was close to perfect for these objects in our video footage, this pre-trained
model did not need to be trained further for our purposes. As the output of object detection,
we can obtain the bounding-box information with four x-y pixel coordinates for each object.

Typically, road-deployed CCTV cameras record from oblique views, so it is difficult
to precisely extract their behavioral features such as speeds and positions. To solve this,
we recognize the “ground tip” points of the vehicle and pedestrian, which are situated
directly underneath the front bumper and on the ground between the feet, respectively.
The ground tip point of the vehicle is captured by using the object mask matrix, as output
from the mask R-CNN model, and the central axis line of the vehicle lane, and one of the
pedestrians is regarded as the midpoint from its tiptoe points within the mask. Then, the
perspectives of the obtained ground tip points are transformed into the top view. More
detailed procedures for this transformation are explained in our previous studies [23,29].

3.2.3. Object Tracking

Lastly, we identify each object in a consecutive frame by using an object tracking
algorithm. In our experiment, we improved an existing object tracking algorithm from our
previous works using a centroid track with threshold and minimum distance methods [30].
This previous algorithm accounts for distance when postulating the location that an object
can move to in the next frame, prioritizing the closest object rather than the most likely one.
However, this makes some errors; other objects are regarded as having disappeared out of
frame if their distance to the remaining positions is greater than the threshold. Furthermore,
in the vision-based object handling process, there is noise at the positions of the detected
objects, so it is difficult for the previous object tracking algorithm to cope with this issue, as
illustrated in Figure 4. Assume that there are two objects, A and B, in multiple consecutive
frames, and the trajectories of A and B from frames 1–3 are, so far, already connected, and
are trying to correctly assign A4 and B4. The circular positions mean the actual positions
of each object, and the triangular ones mean the detected positions in the video by using
an object detection model. In practice, the contact points of the object have a noise due to
either the object detection model or contact point recognition process, so there is a slight
difference between the actual object’s position and the detected position, affecting the
performance of the object tracking. Thus, it is necessary to improve the accuracy of the
tracking algorithm by adjusting this noise.
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To address these errors, we applied a modified Kalman filter method to more accurately
track objects from frame to frame. Much research has been conducted on object tracking
and indexing in various fields of computer science and transportation [30–32]. In particular,
Kalman filters have been used in a wide range of engineering applications such as computer
vision and robotics. They can efficiently calculate the state estimation process [33] and can
be applied to estimate the unknown current or future states of the objects in the video [34].
A Kalman filter calculates the next position of an object by repeatedly performing two
steps: (1) state prediction, and (2) measurement update. In the state prediction step, the
current object’s parameter values are predicted using previous values such as positions
and speeds. In the measurement update step, the parameter values of the current object are
updated by using the prior predicted values and information obtained about the current
object’s position.

The tracking and indexing algorithm used in this study consists of two parts: (1) esti-
mating the candidate points based on smoothing; and (2) assigning objects in the next frame
by calculating and comparing distances. First, we smooth the existing trajectory points
using a Kalman filter to make positions and speeds more consistent. Then, we predict the
next location of the trajectory, and calculate all distances between this and the candidate
locations in the next frame, choosing the closest match. Unlike the previous object tracking
method (no Kalman filter), the modified Kalman filter-based object tracking method has a
smoothing step, so it can adjust the noisy positions of objects. As represented in Figure 5,
we smooth the trajectories through frames 1–3, and predict the object’s position in frame
4. The smoothed points are represented as rectangles denoted with doubled-apostrophes
such as A′′ 1 A′′ 2, and B′′ 3 and the estimated target objects are denoted C, D, E, and F. Next,
we calculate the distances between the origin target objects and the estimated target objects,
denoted Dist(origin target object, estimated target object). Finally, the target object with
the smallest distance from its prediction is assigned to the trajectory, and this process is
repeated until the last frame in scene.
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As a result, we extracted about 50,000 scenes from the entire video dataset, and used
45,890 scenes involving traffic-related objects as seen in Table 2. Each scene spanned
approximately 38 frames, or 1.38 s. The majority of scenes captured only passing cars,
while “interactive scenes” involved both vehicles and pedestrians in the scene at the same
time. Finally, we obtained the scenes with trajectories of vehicles and pedestrians in video
footage, and preparations for extracting their behavioral features are completed.
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Table 2. The number of the extracted scenes after preprocessing.

Spot Code
The Number of Scenes
(After Preprocessing) The Number of

Total Frames
Avg. Frames

in One Scene (Ranges)
Car-Only Scenes Interactive Scenes

A
4221

136,189 32.26 frames
(1.29 s)2681 1540

B
2908

86,249 29.66 frames
(1.18 s)1721 1187

C
4111

382,980 93.16 frames
(3.72 s)2321 1790

D
6955

219,240 31.52 frames
(1.05 s)4633 2322

E
3876

125,935 32.49 frames
(1.08 s)2481 1395

F
7587

377,752 44.51 frames
(1.48 s)6494 1093

G
5612

175,247 31.22 frames
(2.08 s)3533 2079

H
2845

47,468 16.68 frames
(1.11 s)1843 1002

I
7775

260,260 33.47 frames
(1.34 s)4572 3203

4. Potential Collision Risky Behavior Extraction

In this section, we describe which behavioral features were extracted and how to
automate these processes. In fact, there are many kinds of indicators to measure potential
collision risks, but practically it is difficult to handle all of them. Thus, in our experiment,
we extracted about 10 features among plenty of such features that could relate to potential
collision risky behaviors as seen in Table 3, and the extracting methods are described below
in detail.

Vehicle and pedestrian speeds: In general, object speed is a basic measurement that
can signal potential risky situations. Car speed is a significant risk factor for pedestrian
fatalities, and has a close relationship with crash severity in vehicle-to-pedestrian colli-
sions [35,36]. Speed limits in our all testbeds were 30 km/h. A large number of detected
vehicles traveling over the limit at any point, especially in school zones, contributes to high
potential risk at that location. Meanwhile, pedestrian speed alone is not a direct indicator
of such risks, but we may find important correlations and interactions with other features
such as vehicle speed and vehicle–pedestrian distance.

Object speed can be obtained from an assembled trajectory by the dividing distance
between its position in two consecutive frames by the time interval. In this case, the pixel
distance between point i in jth and (j + 1)th frames in x-y plane, Dpixel

(
pointj

i , point(j+1)
i

)
,

is computed by the Euclidean distance method, and converted into real-world distance
units such as meters. We infer the pixel-per-meter constant, denoted as P, by dividing the
pixel length of the crosswalk (lpixel) by the actual length of it (lworld); we measured the
actual lengths of crosswalks in field visits. For example, if the length of a crosswalk is 15 m,
and the pixel length is 960 pixels, 1 m is about 46 pixels (=960/15).
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Table 3. The extracted features in our experiment.

Target Object Feature Name Description Example

Vehicle

Speed
• Vehicle speeds change by frames
• Unit: km/h • [14.3, 12.0, 9.8, 4.3, 7.8, 12.1 . . . ]

Position

• Vehicle positions change based on a
crosswalk by frames

• Represented as “before crosswalk”, “on
crosswalk” or “after crosswalk”

• [before crosswalk, on
crosswalk]

• [before crosswalk, on crosswalk,
after crosswalk]

Acceleration
• Vehicle accelerations change by frames
• Represented as “acceleration (acc)”,

“deceleration (dec)” or “no change (nc)”

• [acc, nc]
• [nc]
• [acc, nc, acc]

Crosswalk distance
• Distance changes between vehicles and

crosswalks by frame
• Unit: m

• [4.1, 3.3, 1.9, . . . ]

Car stops before crosswalk
• Whether the vehicles stopped before

passing the crosswalk in one scene
• Represented as “stop” or “no stop”

• stop
• no stop

Pedestrian

Speed
• Pedestrian speeds change by frame
• Unit: km/h • [2.3, 2.0, 1.9, . . . ]

Position
• Pedestrian positions change by frames
• Represented as “sidewalk”, “crosswalk”

or “CIA (crosswalk-influenced area)”

• [sidewalk, CIA, sidewalk]
• [crosswalk]

Vehicle–pedestrian interaction

Distance
• Distance changes between vehicle and

pedestrian by frame
• Unit: m

• [4.1, 3.3, 1.9, . . . ]

Relative position

• Relative positions list between vehicle
and pedestrian by frame

• “Front” means pedestrian is on the front
side of the car, and “Behind” means the
pedestrian is on the back side of the car

• [Front, Front, Front, Behind,
Behind]

• [Behind, Behind, Front]

Pedestrian safety margin
• Pedestrian safety margin in one scene
• Unit: sec.

• 3.2
• −1.5

Meanwhile, the frame intervals between trajectory points must be converted to real-
world seconds. The time conversion constant (F) is computed by dividing the skipped
frames by FPS. For example, if the video is recorded at 11 FPS, and we sampled every fifth
frame, the time interval F is equal to 5/11. Finally, ith object’s speed in jth and (j + 1)th

frames can be calculated as follows:

Speedj, (j+1)
i =

Dpixel

(
pointj

i , point(j+1)
i

)
F ∗ P

(m/s) (3)

Finally, we convert these measurements into km/h, and apply them to all frames in
the scene to obtain the instantaneous object speeds in each frame. As a result, the speed list
of object i in scene k consisting of j frames is represented as:

speedListk, i =
[

speed1,2
i , speed2,3

i , speed3,4
i . . . speed(j−1),j

i

]
(4)

Vehicles and pedestrian’s positions: The objects’ positions on the road are also im-
portant to investigate the potential traffic risks. A pedestrian on the road, even when cars
are moving at a slow speed, may be more at risk than a pedestrian on the sidewalk when
cars are moving at high speed. In this study, the vehicle’s position is categorized into three
areas: “before crosswalk”, “on crosswalk”, and “after crosswalk”, and the pedestrian’s
position is categorized into four areas using their coordinates: “sidewalk”, “crosswalk”,
“crosswalk-influenced area (CIA)”, and “road”. CIA refers to the road area adjacent to the
crosswalk, where pedestrians often enter while crossing the road [37–39]. The detailed
areas are illustrated in Figure 6a,b, respectively. In this study, we encompassed CIA with a
buffer of ~3 m on either side of the crosswalk.
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Vehicle acceleration: Vehicle accelerations and their changes during the scene are
important factors to consider; if many vehicles maintain their speed or accelerate while
approaching the crosswalk, this increases the risk to pedestrians. Ideally, we would expect
to see cars decelerate near crosswalks, especially when pedestrians are present. In our
experiment, we categorized vehicle accelerations as “acc”, “dec”, and “nc” by considering
only speed changes. First, we smooth the speed sequence (see Figure 7) using a low-pass
filter method, commonly used to reduce the rapid fluctuation of the signal that may result
from the imprecision of object positioning from the image processing algorithm [40,41].
This results in the filtered speed list, F(velListk, i), with the filtered values, f

(
velListj, (j+1)

i

)
,

where the subscripts k and i are scene number and object number in this scene, respectively.
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Next, we calculated slope changes in the graph (means vehicle acceleration in the
time–speed graph) from when the vehicle enters the scene to when it reaches the crosswalk.
We classified these as a sequence of acceleration states, with positive slopes yielding
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“acceleration”, negative as “deceleration”, and close to zero as “no change”. This procedure
can be written in mathematic equations as follows:

Accj
i =


”acc”, f

(
speed(j+1), (j+2)

i

)
− f

(
speedj, (j+1)

i

)
> ε

”dec”, f
(

speed(j+1), (j+2)
i

)
− f

(
speedj, (j+1)

i

)
< ε

”nc”, otherwise

(5)

Vehicle stop before crosswalk: This feature indicates whether the vehicles came to a
stop, before passing the crosswalk. Vehicles at these locations were required to stop once
before passing the crosswalk, with or without pedestrians present. In practice, since the
values of the extracted speeds have noise, we used the concept of “speed tolerance” to
detect stops. The descriptions of speed tolerance will be elicited in the experiment part,
and the details on speed tolerance are described in our previous study, [23].

Crosswalk distance and vehicle–pedestrian distance: Crosswalk distance list means
the distance changes between vehicles and crosswalk by frame, while the vehicle–pedestrian
distance list measures the sequence of distances between the vehicle and nearest-pedestrian
by frame. Distances between vehicle i and pedestrian p are ordered by frame as follows:

distj
i,p =

Dpixel

(
vehiclej

i , pedestrianj
p

)
P

(m) (6)

distChngk,i,p =
[

dist1
i,p , dist2

i,p , dist3
i,p , . . . , distj

i,p

]
(7)

where the subscripts k and j are scene number and the frame order, respectively.
These distance sequences alone are not factors for potential risk, but when compared

with other features, we may identify dangerous situations. For example, Figure 8a,b
show two scenes as vehicle speeds plotted against vehicle–pedestrian distances while the
pedestrian was on the crosswalk. In these examples, assume that the vehicle speed is
not considered if it does not exceed the speed limit, and only investigate its changes by
vehicle–pedestrian distance.
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Figure 8. Examples of analyzing vehicle–pedestrian distance and other features; (a) slowing down
and dramatically accelerated; and (b) normal slowing down when approaching to pedestrian.

In Figure 8a, we can observe that as the vehicle approached the pedestrian, its speed
decreased rapidly, then accelerated again immediately after the pedestrian passed. Al-
though the vehicle slowed down when needed, it also accelerated rather rapidly even
before the pedestrian had safely reached the sidewalk. In Figure 8b, the vehicle slows
down as it approaches the pedestrian, and the speed is under the speed limit (almost
30 km/h). Now, we cannot determine which is more dangerous, but when considering
only patterns of vehicle speeds, Figure 8a is a pattern of re-acceleration after deceleration,
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and Figure 8b is a pattern of continuous deceleration. These figures are just examples that
have the possibility to identify dangerous situations using the shapes of these features with
others together.

Relative position change between vehicles and pedestrians: This describes the po-
sitional relationship between vehicles and pedestrians. If a pedestrian is in front of the car,
they are at greater risk than if they were behind the car. We determine the relative positions
between them by comparing their contact points, along with the position and direction of
the vehicles.

This alone is not an obvious signal for risk, but when analyzed together with other
features such as vehicle speed and pedestrian position, we may find important correlations
and interactions between them. For example, a pedestrian who is behind a vehicle and on
the sidewalk is in a relatively safe position.

Pedestrian safety margin (PSM): There are various ways to define the concepts of
PSM [15,42–44]. In this study, we defined PSM as the time difference between when a
pedestrian crossed the conflict point and when the next vehicle arrived at the same conflict
point [42,45,46]. Suppose a pedestrian reaches a conflict point at time T1, and the vehicle
arrives at the same conflict point at time T2, then the PSM is T2 − T1. Smaller PSM values
mean there is less margin for error to avoid a collision at the conflict point.

Since the goal of this study is to extract these behavioral features automatically, it is
important to infer the conflict point as seen in Figure 9. In this study, we applied virtual
lines connecting the same objects between consecutive frames, and used the intermediate
value theorem (IVT).
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As represented as Figure 10, the process of PSM value extraction follows three steps:
(1) drawing the virtual lines connecting the points of pedestrian in ith and (i + 1)th frames,
functionalized as linear function fi,(i+1)(x); (2) multiplying function values, fi,(i+1)(Ck) and
fi,(i+1)(Ck+1) where Ck and Ck+1 are vehicles points, respectively; and (3) iterating steps 1
and 2 for all points in trajectories until fi,(i+1)(Ck)× fi,(i+1)(Ck+1) is negative.

Applying IVT this way results in either a positive or negative value; if the result is
positive, these points i and k are not in conflict. If it is negative, there is a conflict point
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between these points, and we can obtain the PSM values by calculating the difference
between i and k, and adjusting the time unit from frames into seconds, as follows:

f ind i, k s. t. fi,(i+1)(Ck)× fi,(i+1)(Ck+1) < 0 (8)

PSM =
(i− k)

F
(sec) (9)
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5. Performance Evaluation
5.1. Experimental Design

Prior to potential collision risk analysis, we validate the results of preprocessing of
vision-based data: (1) object tracking, and (2) behavior extraction.

First, in order to validate the object tracking algorithm, we defined success criteria,
and manually counted all scenes with trajectories of objects that violated these criteria.
Figure 11a shows trajectories for correctly tracked objects. As seen in these figures, the
trajectories of objects should be continuous, and two or more objects should not cross each
other. In addition, since this algorithm applied a threshold method, if there are unallocated
objects within the threshold range, they could be traced incorrectly. Thus, we defined three
criteria as follows:

• Connectivity: Are all of the objects connected in consecutive frames without breaks?
• Crossing: Are two or more objects, moving in parallel, traced separately without

intertwining?
• Directivity: Do the objects follow their own paths without invading others’ trajectories?

This phenomenon may occur more frequently when adjusting the threshold.

Figure 11b–d represent scenes that violate the above three criteria, respectively.
As a baseline, we compare the object tracking algorithm without the Kalman filter

(previous method in our work) with the used one.
Next, we evaluate the behavior extraction method. Since the performance of the

extracted behaviors, especially the object’s speed and acceleration, depends on the accuracy
of the object’s coordinates calculated in the “object detection step” in preprocessing. It
means that distance has some level of error, and speed and acceleration also have some
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level of error. Thus, we aim at obtaining the precise contact points, and then derive
speed/acceleration errors. In fact, it is difficult to clarify a point that exactly represents
the contact point of the vehicle or pedestrian in a mono-vision sensor, so we adopt a
concept of “distance tolerance”, denoted by εdist, which tolerates some errors by assuming
that if there are calculated contact points within the error boundary, these points are
properly recognized.
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In order to evaluate the accuracy of the contact points, we asked the recruited 12 testers
to choose the pixel location for the actual contact points of the vehicle and pedestrian for
top-view-converted 100 frames, respectively. Then, we measure the accuracy by various
distance tolerance (10 cm, 20 cm, 35 cm, 50 cm, 60 cm, and 70 cm) by comparing the
difference between the points derived from the proposed method and the points by testers.

5.2. Result
5.2.1. Evaluation of Object Tracking Algorithm

The result of validation is shown in Table 4. We compared our tracking and indexing
algorithm with our prior simple algorithm (see [29]). As a result, the overall accuracy is
approximately 0.9, and the average accuracy is about three percent higher than that of
the existing method. In particular, by using the Kalman filter, the accuracy of directivity
increased about two percent.

5.2.2. Evaluation of Behavior Extraction Method

Table 5 shows the average accuracy of contact point recognition in each spot by objects.
As a result of the comparison, the average accuracies for both vehicle and pedestrian
are more than about 0.89 when the distance tolerance is more than 50 cm. Although the
distance tolerance with the best performance is 70 cm (accuracies are about 0.95 and 0.93
for vehicle and pedestrian, respectively), the distance tolerance of 50 cm is the best option
when considering a speed tolerance, εv.

For every distance tolerance, we can derive the speed tolerance. As described in
Figure 12, εv can be calculated with maximum potential distance tolerance between two
consecutive frames, and divided by the time interval between those frames as follows:

εv = 2× εdist
(R/FPS)

(10)

where R is the number of the skipped frames in video footage, FPS is frame-per-second, and
R/FPS means time interval. As seen in Equation (10), εv increases linearly in proportion to
εdist. Thus, the optimal εdist is 50 cm when considering εv and accuracy, as represented in
Figure 13. In our experiment, we set the time interval, R/FPS, at about 0.4 regardless of
FPS. According to the above formula, the speed tolerance is about 2.5 m/s, or 9.0 km/h,
when distance tolerance is 50 cm.
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Table 4. Results of trajectory validation based on three criteria.

Result of Trajectory without Kalman Filter
(Car Threshold = 100, Pedestrian Threshold = 50)

Spot Code # of Scenes
The Number of Error Frames

Connectivity Crossing Directivity Accuracy

Spot A 4789 45 98 305 0.91
Spot B 3195 35 75 285 0.88
Spot C 5311 32 112 401 0.90
Spot D 7304 49 155 491 0.90
Spot E 4261 54 98 358 0.88
Spot F 8036 61 187 652 0.89
Spot G 6259 55 138 499 0.89
Spot H 3295 25 59 441 0.84
Spot I 7940 35 90 595 0.91

Average 291 1012 4027 0.89

Result of trajectory without Kalman filter
(Car threshold = 100, pedestrian threshold = 50)

Spot code # of scenes
The number of error frames

Connectivity Crossing Directivity Accuracy

Spot A 4789 25 66 194 0.94
Spot B 3195 21 58 201 0.91
Spot C 5311 22 74 298 0.93
Spot D 7304 40 101 347 0.93
Spot E 4261 41 59 256 0.91
Spot F 8036 45 111 515 0.92
Spot G 6259 35 77 398 0.92
Spot H 3295 14 32 387 0.86
Spot I 7940 28 47 457 0.93

Average 271 635 3053 0.92

Table 5. Results of accuracy using tolerance for vehicle and pedestrian in each spot.

Spot Code

Tolerance (cm)

Target Object

10 20 35 50 60 70

V P V P V P V P V P V P

A 0.18 0.10 0.36 0.23 0.69 0.51 0.93 0.89 0.95 0.90 0.95 0.91

B 0.17 0.09 0.31 0.23 0.70 0.48 0.88 0.87 0.97 0.88 0.98 0.97

C 0.10 0.10 0.24 0.19 0.64 0.52 0.90 0.90 0.95 0.87 0.96 0.88

D 0.25 0.11 0.32 0.14 0.72 0.53 0.90 0.90 0.95 0.91 0.97 0.91

E 0.17 0.14 0.28 0.11 0.71 0.49 0.89 0.87 0.96 0.95 0.97 0.95

F 0.12 0.12 0.29 0.17 0.69 0.56 0.90 0.93 0.94 0.90 0.96 0.94

G 0.17 0.12 0.37 0.21 0.72 0.51 0.89 0.91 0.90 0.94 0.92 0.93

H 0.14 0.13 0.25 0.20 0.70 0.46 0.90 0.91 0.92 0.92 0.93 0.92

I 0.11 0.10 0.23 0.17 0.68 0.45 0.89 0.84 0.94 0.92 0.96 0.94

Average 0.16 0.11 0.30 0.18 0.69 0.50 0.90 0.89 0.94 0.91 0.95 0.93

Note. V: Vehicle, P: Pedestrian.
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6. Analysis of Potential Collision Risky Behaviors

In this section, we analyze the potential collision risks based on the extracted behav-
ioral features following three scenarios: (1) using distributions of vehicles’ speeds and
PSMs by spots; (2) investigating driver stopping behaviors when there are pedestrians on
the crosswalk; and (3) considering PSMs together with stopping behaviors.

6.1. Analyzing Vehicles’ Speeds and PSMs by Spots

Table 6 shows statistical values of average car speeds in each spot.
The maximum average speeds are in the range of about 51.3 to 87.5 km/h, and

minimum values range from 2.2 to 9.4 km/h. The overall distributions are skewed right
since many cars move slowly in these areas. The speed limit for all spots with school zones
is 30 km/h. When considering that mean values in all spots are near or under the regulation
speed, then these are reasonable values.

In general, cars tend to move faster when there are no pedestrians present, and slow
down when there are pedestrians. We can observe these tendencies by separating the
average vehicle speeds into car-only scenes and interactive scenes as seen in Table 6. In all
spots, the speeds in interactive scenes are lower than those in car-only scenes.

Spot C is the only location where the average speeds exceeded the speed limit
(30 km/h). This may be related to the number of lanes and whether a speed camera
is deployed. First, Spot C has four lanes, more lanes than any other spot except Spot F;
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generally, higher speed limits apply when there are more lanes, but the speed limit in Spot
C remains 30 km/h because it is designated as a school zone. Second, Spot F matches Spot
C in the number of lanes, speed limit, signalized crosswalk, and school zone designation,
but Spot F has a speed camera, missing from Spot C (refer Table 1). From this example, we
can hypothesize that when the number of lanes increases, vehicle speeds increase, but a
speed camera can suppress such a tendency.

Table 6. Average vehicle speed information in all spots by scene types.

Spot Code

All Scenes Types of Scenes

Max.
(km/h)

Min.
(km/h)

Mean
(km/h)

Avg. of Car-Only
Scene
(km/h)

Avg. of
Interactive Scene

(km/h)

A 71.3 3.6 18.2 20.5 12.2

B 87.5 4.4 24.5 25.9 16.2

C 75.4 6.5 36.5 41.7 21.7

D 79.7 4.1 18.1 18.4 14.6

E 68.1 2.2 22.3 22.3 17.6

F 51.3 3.9 20.9 21.2 11.3

G 63.9 9.4 14.0 14.2 9.4

H 59.2 3.3 21.4 21.5 14.7

I 70.2 7.4 33.8 34. 19.8

Next, we analyzed the extracted PSM distributions. Note that PSM counts how many
seconds it takes for a car to pass through the same point after a pedestrian passes it, thus
quantifying the potential risk of a vehicle–pedestrian collision. In our experiment, we
filtered out the negative values and only looked at cars passing behind the pedestrians
(negative PSM values mean that the car passed before the pedestrian). Then, we differenti-
ated between the signalized crosswalks (spots A, B, C, and F) vs. unsignalized crosswalks
(spots D, E, G, H, and I).

Figure 14 shows the distributions of positive PSM in all signalized vs. unsignalized
spots. It represents the ranges and mean values of PSM; PSMs were higher on average in
signalized crosswalks than those in unsignalized crosswalks. In addition, the peak of the
distribution across all signalized spots is higher, since the traffic signal forces some time to
pass before cars can cross the pedestrian’s path. Without the signal, the distribution peaks
are closer to zero, indicating cars are not willing to wait and give pedestrians the safety
margin before passing.
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Figure 15a,b show distributions of PSM at each spot. In Figure 15a, we can observe
that in signalized spots, wider roads lead to higher PSM, possibly because of longer signal
cycles for pedestrian crossing. Spots C and D each have four lanes, wider than Spot A
(two lanes) and B (three lanes), and their PSM distributions are further to the right.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 25 
 

 

Figure 15a,b show distributions of PSM at each spot. In Figure 15a, we can observe 
that in signalized spots, wider roads lead to higher PSM, possibly because of longer signal 
cycles for pedestrian crossing. Spots C and D each have four lanes, wider than Spot A (two 
lanes) and B (three lanes), and their PSM distributions are further to the right.  

 
 

 
(a) 

 
(b) 

Figure 15. Distributions of PSMs in (a) signalized spots, and (b) unsignalized spots. 

Meanwhile, in unsignalized crosswalks, the overall distributions are similar to each 
other, and we did not observe a relationship between road width and PSM distribution. 
Spot G stood out, with PSM distribution further right of the others; one reason could be 
its slower vehicle speeds overall. Since it is in a residential area, it has a particularly high 
floating population (especially students) during rush hour. In addition, there are road in-
tersections close to either side of the crosswalk (see Figure 2g), forcing slower speeds and 
more careful maneuvering for vehicles, who in turn give pedestrians plenty of crossing 
time. 

6.2. Analyzing Pedestrian’s Potential Risk near Crosswalks Based on Car Stopping Behaviors 
In this sub-section, we analyzed whether or not vehicles stopped before passing the 

crosswalk when a pedestrian was present, and the distance they stopped from the cross-
walk. Generally, vehicles may stop for a variety of reasons such as parking on the shoul-
der, waiting for a traffic signal, or allowing pedestrians the right-of-way. To precisely 
count the scenes when the driver stopped to ensure pedestrian safety, we chose 10 m as a 
baseline distance; if a car stopped within 10 m from the crosswalk, with a pedestrian in 
the crosswalk or CIA, we assumed they were reacting to the pedestrian’s presence.  

Figure 16 shows the percentages of vehicles that stopped within 10m before passing 
the crosswalks when pedestrians crossed the streets in signalized and unsignalized spots, 
respectively. First, among signalized spots, Spot A has the lowest percentage of drivers 
stopping. The reason could be related to the width of lanes. Spot A has just two lanes, but 
other signalized spots have three or more lanes. It can be interpreted that the drivers on 
the narrow road are reluctant to wait for the signal, so they would violate the signal. Spot 
F has a higher percentage than those in other spots. It can be seen that the installation of 
the speed camera has a deterrent force that makes the drivers obey the signal. In this ex-
periment, we analyzed only behaviors of vehicles and pedestrians, not considering signal 
phases together. Note that the coexistence of the passing vehicle and crossing pedestrian 
implies that one of the traffic participants violates the traffic signal threatening driving 
safety regardless of the signal.  

Figure 15. Distributions of PSMs in (a) signalized spots, and (b) unsignalized spots.

Meanwhile, in unsignalized crosswalks, the overall distributions are similar to each
other, and we did not observe a relationship between road width and PSM distribution.
Spot G stood out, with PSM distribution further right of the others; one reason could
be its slower vehicle speeds overall. Since it is in a residential area, it has a particularly
high floating population (especially students) during rush hour. In addition, there are
road intersections close to either side of the crosswalk (see Figure 2g), forcing slower
speeds and more careful maneuvering for vehicles, who in turn give pedestrians plenty of
crossing time.

6.2. Analyzing Pedestrian’s Potential Risk near Crosswalks Based on Car Stopping Behaviors

In this sub-section, we analyzed whether or not vehicles stopped before passing
the crosswalk when a pedestrian was present, and the distance they stopped from the
crosswalk. Generally, vehicles may stop for a variety of reasons such as parking on the
shoulder, waiting for a traffic signal, or allowing pedestrians the right-of-way. To precisely
count the scenes when the driver stopped to ensure pedestrian safety, we chose 10 m as a
baseline distance; if a car stopped within 10 m from the crosswalk, with a pedestrian in the
crosswalk or CIA, we assumed they were reacting to the pedestrian’s presence.

Figure 16 shows the percentages of vehicles that stopped within 10m before passing
the crosswalks when pedestrians crossed the streets in signalized and unsignalized spots,
respectively. First, among signalized spots, Spot A has the lowest percentage of drivers
stopping. The reason could be related to the width of lanes. Spot A has just two lanes,
but other signalized spots have three or more lanes. It can be interpreted that the drivers
on the narrow road are reluctant to wait for the signal, so they would violate the signal.
Spot F has a higher percentage than those in other spots. It can be seen that the installation
of the speed camera has a deterrent force that makes the drivers obey the signal. In this
experiment, we analyzed only behaviors of vehicles and pedestrians, not considering signal
phases together. Note that the coexistence of the passing vehicle and crossing pedestrian
implies that one of the traffic participants violates the traffic signal threatening driving
safety regardless of the signal.
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Meanwhile, in unsignalized spots, especially spots G and H, most drivers did not stop
before passing the crosswalk. Spot H had a relatively high stopping percentage, perhaps
due to its safety features such as a red urethane pavement and “school zone” lettering on
the road, as well as safety fences on both sides of the road. Spot G also had a high stopping
percentage. However, since there were no signal lights, drivers were less likely to perform
the required safe behavior (stopping before the crosswalk until pedestrians have cleared
the area). In particular, half or more of the drivers in spots D, E, and I failed to stop when
pedestrians were on the road, despite the designation of school zones. In these spots, the
further proactive response seems necessary to encourage stopping for pedestrians, and
prevent accidents before they occur.

6.3. Analyzing Car Behaviors with PSM and Car Stopping near the Unsignalized Crosswalk

In this sub-section, we analyzed driver-stopping behaviors with PSM values at
unsignalized crosswalks. PSM is a simple feature that can provide implicative information
for vehicle and pedestrian behaviors. Since PSM is the time difference between when a
pedestrian passed a certain point and when the vehicle arrived at the same point, a positive
PSM value means that the pedestrian crossed first, and a negative value means that the
vehicle passed first. Since the latter implies that the vehicle failed to yield to the pedestrian
in the crosswalk, negative PSM values generally present more risk than positive values.
In either case, collision risk increases as PSM approaches zero. We only considered scenes
in unsignalized spots in this sub-section, since yielding behavior and PSM at signalized
crosswalks greatly depend on the traffic signal at the time of encounter.

In our experiment, we studied scenes occurring within various ranges of PSM, and
measured the likelihood of a vehicle stopping before the crosswalk with a pedestrian
present (using 10 m as a baseline distance). First, we categorized the continuous PSM
values into eight groups by signs and quartiles, using a combined distribution accounting
for all scenes in the five unsignalized crosswalks.

However, simply merging these distributions would bias the result toward the dis-
tribution of higher-traffic areas. For example, if there were 100 and 800 scenes in two
regions A and B, respectively, the merged distribution across these two regions would be
more affected by scenes occurring in B. Thus, we calculated the weight of each distribution
relative to the whole:

wi = 1− |Di|
|D| (11)
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where |D| is the total number of scenes in unsignalized spots (spots D, E, G, H, and I)
and |Di| is the number of scenes in each spot. We then multiplied by wi to normalize the
scene frequencies in spot i. As a result, Figure 17a,b represent the combined, weighted
distributions of PSM values across all scenes in unsignalized crosswalks.
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From these distributions, we split between the positive and negative PSM values, and
within each by quartile, to yield the following PSM ranges: (1) under −4.92; (2) −4.92
to −3.04; (3) −3.04 to −2.03; (4) −2.03 to 0; (5) 0 to 1.25; (6) 1.25 to 2.29; (7) 2.29 to 3.91;
and (8) over 3.91, denoted by ranges 1 to 8, respectively. Then, we compared the stopping
percentages within each PSM range.

In Figure 18, ranges 1, 2, 3, 6, 7, and 8 are relatively distant groups from zero, and
ranges 4 and 5 present the greatest risk, with safety margins within 1–2 s. We can observe
that as margins increase, vehicles are less likely to stop at the crosswalk.
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Ideally, for small but positive PSM scenes, we would want to see the highest stopping
percentages in order to minimize the risk of collision with pedestrians. However, within
range 5 (PSM between 0 and 1.25 s), most cars in spot E did not stop. This could result
from two possible behaviors: (1) drivers did not stop, but decelerated while passing ahead
of pedestrians; or (2) drivers did not stop nor decelerate, and narrowly avoided collisions
with pedestrians. Thus, Spot E represents an anomaly, since stopping percentages for other
spots in these low-margin ranges are at least 50%; since it presents a greater risk of collision,
we would want to understand why and proactively address the issue.
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Meanwhile, we can see that at larger PSM margins, especially ranges 2, 3, 7, and 8,
stopping percentages are highest in spots G and I. We hypothesize that this is because G
and I have no fences separating the road from the sidewalk, unlike the other unsignalized
spots. Without the fences, drivers may be forced to drive more cautiously through the area,
since pedestrians could potentially enter the road at any point along with the approach
to the crosswalk. In these areas, adding safety features such as sidewalk fences could
negatively affect the behavior of vehicles and pedestrians, by removing the uncertainty
that forces driver caution and more frequent stopping.

6.4. Discussions

The proposed approaches in this research had three main objectives: (1) to process
the video data as one sequence from the entire video footage; (2) to automatically extract
objects’ behaviors affecting the likelihood of potentially dangerous situations between
vehicles and pedestrians; and (3) to analyze behavioral features and relationships among
them by camera locations. Unlike our previous study [29], this research analyzed a variety
of potential collision risky behaviors, and expanded the scale to more cameras over longer
time frames by capturing diverse road environments, such as signalized and unsignalized
crosswalks. This study is an extension of our previous work [21], being similar to the
object detection and tracking parts. However, this study handled more video data from
multiple spots, unlike the previous one, and further aimed at extracting behavioral features
including risky behavioral characteristics such as PSM as well as simple features such as
speed and position. Furthermore, this study focused on analyzing these features in terms
of potential risks between vehicle and pedestrian, unlike our previous one [21].

In our experiments, we extracted time- and distance-based various behavioral features
affecting potential risks such as vehicle’s speed, pedestrian’s speed, vehicle’s acceleration,
and PSM. In order to observe how sensitive drivers were to the risk of pedestrian collision,
we categorized scenes as car-only vs. vehicle–pedestrian interactive scenes. Then, we
performed three analyses: (1) distributions of the average car speeds and PSMs by spots;
(2) percentages of vehicles stopping when pedestrians are present in or near the crosswalk;
and (3) stopping behaviors relative to PSM. We observed how vehicle speeds responded to
road environments, and how they changed when approaching pedestrians.

One limitation of this system is the lack of an interface to perform a comprehensive
analysis of various situations. For example, the size and complexity of the generated
dataset make it difficult to answer questions such as: “at unsignalized crosswalks, when the
average vehicle speed is between 30 and 40 km/h, between 8 am and 9 am, and pedestrians
are present, what is the acceleration state of the vehicles in each spot?” or “when PSM is
in range of −1 to 0, what were vehicle speeds in school zones in the evening?” In order
to address these challenges, we need to classify the given behavioral features according
to their characteristics to enable multidimensional analysis, such as an online analyti-
cal process (OLAP) and data mining techniques. This would allow administrators (e.g.,
transportation engineers or city planners) to interpret the behavior features, understand
existing areas, design alternative roads/crosswalks/intersections, and test the impact of
these physical changes.

7. Conclusions

In this study, we proposed a new approach to obtain the potential risky behaviors of
vehicles and pedestrians from CCTV cameras deployed on the roads. The keys are: (1) to
process the video data as one sequence from motioned-scene partitioning to object tracking;
(2) to extract automatically the behavioral features of vehicles and pedestrians affecting
the likelihood of potential collision risks between them; and (3) to analyze behavioral
features and relationships among them by camera locations. We validated the feasibility of
the proposed analysis system by applying it to actual crosswalks in Osan City, Republic
of Korea.
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This study was motivated by a lack of a vision-based analysis approach for road users’
risky behaviors, by automatically using video processing and deep learning-based tech-
niques. These analyses can provide powerful and useful information for decision makers to
improve and make road environments safer. However, our approaches themselves would
not identify the best control or traffic calming measures to prevent traffic accidents. We
hypothesize that it can provide practitioners with enough clues to support further inves-
tigation through other means. Furthermore, traffic safety administrators and/or policy
makers must collaborate using these clues to improve the safety of the spaces. Our goal
in developing this system was to aid in this collaboration, by making it faster, cheaper,
and easier to collect objective information about the behavior of drivers at places where
pedestrians face the greatest risks.

Author Contributions: B.N. and H.P. conceptualized and designed the experiments; B.N. and S.L.
designed and implemented the detection system; H.P. and S.-H.N. validated the proposed method;
B.N., H.P., S.L. and S.-H.N. wrote the paper. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3056668).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ho, G.T.S.; Tsang, Y.P.; Wu, C.H.; Wong, W.H.; Choy, K.L. A computer vision-based roadside occupation surveillance system for

intelligent transport in smart cities. Sensors 2019, 19, 1796. [CrossRef] [PubMed]
2. Lytras, M.D.; Visvizi, A. Who uses smart city services and what to make of it: Toward interdisciplinary smart cities research.

Sustainability 2018, 10, 1998. [CrossRef]
3. Akhter, F.; Khadivizand, S.; Siddiquei, H.R.; Alahi, M.E.E.; Mukhopadhyay, S. Iot enabled intelligent sensor node for smart city:

Pedestrian counting and ambient monitoring. Sensors 2019, 19, 3374. [CrossRef] [PubMed]
4. Yang, Y.; Ning, M. Study on the Risk Ratio of Pedestrians’ Crossing at Unsignalized Crosswalk. CICTP 2015 Efficient, Safe, and

Green Multimodal Transportation. In Proceedings of the 15th COTA International Conference of Transportation Professionals,
Beijing, China, 24–27 July 2015; pp. 2792–2803. [CrossRef]

5. Gandhi, T.; Trivedi, M.M. Pedestrian protection systems: Issues, survey, and challenges. IEEE Trans. Intell. Transp. Syst. 2007, 8,
413–430. [CrossRef]

6. Gitelman, V.; Balasha, D.; Carmel, R.; Hendel, L.; Pesahov, F. Characterization of pedestrian accidents and an examination of
infrastructure measures to improve pedestrian safety in Israel. Accid. Anal. Prev. 2012, 44, 63–73. [CrossRef]

7. Olszewski, P.; Szagała, P.; Wolański, M.; Zielińska, A. Pedestrian fatality risk in accidents at unsignalized zebra crosswalks in
Poland. Accid. Anal. Prev. 2015, 84, 83–91. [CrossRef]

8. Haleem, K.; Alluri, P.; Gan, A. Analyzing pedestrian crash injury severity at signalized and non-signalized locations. Accid. Anal.
Prev. 2015, 81, 14–23. [CrossRef]

9. Fu, T.; Hu, W.; Miranda-Moreno, L.; Saunier, N. Investigating secondary pedestrian-vehicle interactions at non-signalized
intersections using vision-based trajectory data. Transp. Res. Part C Emerg. Technol. 2019, 105, 222–240. [CrossRef]

10. Fu, T.; Miranda-Moreno, L.; Saunier, N. A novel framework to evaluate pedestrian safety at non-signalized locations. Accid. Anal.
Prev. 2018, 111, 23–33. [CrossRef]

11. Ke, R.; Lutin, J.; Spears, J.; Wang, Y. A Cost-Effective Framework for Automated Vehicle-Pedestrian Near-Miss Detection Through
Onboard Monocular Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
Honolulu, HI, USA, 21–26 July 2017; pp. 898–905. [CrossRef]

12. Murphy, B.; Levinson, D.M.; Owen, A. Evaluating the Safety in Numbers effect for pedestrians at urban intersections. Accid. Anal.
Prev. 2017, 106, 181–190. [CrossRef]

13. Kadali, B.R.; Vedagiri, P. Proactive pedestrian safety evaluation at unprotected mid-block crosswalk locations under mixed traffic
conditions. Saf. Sci. 2016, 89, 94–105. [CrossRef]

14. Jiang, X.; Wang, W.; Bengler, K.; Guo, W. Analyses of pedestrian behavior on mid-block unsignalized crosswalk comparing
Chinese and German cases. Adv. Mech. Eng. 2015, 7, 1687814015610468. [CrossRef]

15. Oxley, J.A.; Ihsen, E.; Fildes, B.N.; Charlton, J.L.; Day, R.H. Crossing roads safely: An experimental study of age differences in gap
selection by pedestrians. Accid. Anal. Prev. 2005, 37, 962–971. [CrossRef] [PubMed]

16. Onelcin, P.; Alver, Y. The crossing speed and safety margin of pedestrians at signalized intersections. Transp. Res. Procedia 2017,
22, 3–12. [CrossRef]

17. Wu, J.; Xu, H.; Zheng, Y.; Tian, Z. A novel method of vehicle-pedestrian near-crash identification with roadside LiDAR data.
Accid. Anal. Prev. 2018, 121, 238–249. [CrossRef] [PubMed]

http://doi.org/10.3390/s19081796
http://www.ncbi.nlm.nih.gov/pubmed/30991680
http://doi.org/10.3390/su10061998
http://doi.org/10.3390/s19153374
http://www.ncbi.nlm.nih.gov/pubmed/31374837
http://doi.org/10.1061/9780784479292.257
http://doi.org/10.1109/TITS.2007.903444
http://doi.org/10.1016/j.aap.2010.11.017
http://doi.org/10.1016/j.aap.2015.08.008
http://doi.org/10.1016/j.aap.2015.04.025
http://doi.org/10.1016/j.trc.2019.06.001
http://doi.org/10.1016/j.aap.2017.11.015
http://doi.org/10.1109/CVPRW.2017.124
http://doi.org/10.1016/j.aap.2017.06.004
http://doi.org/10.1016/j.ssci.2016.05.014
http://doi.org/10.1177/1687814015610468
http://doi.org/10.1016/j.aap.2005.04.017
http://www.ncbi.nlm.nih.gov/pubmed/15993827
http://doi.org/10.1016/j.trpro.2017.03.002
http://doi.org/10.1016/j.aap.2018.09.001
http://www.ncbi.nlm.nih.gov/pubmed/30265910


Sensors 2022, 22, 3451 24 of 24

18. Stoker, P.; Garfinkel-Castro, A.; Khayesi, M.; Odero, W.; Mwangi, M.N.; Peden, M.; Ewing, R. Pedestrian safety and the built
environment: A review of the risk factors. J. Plan. Lit. 2015, 30, 377–392. [CrossRef]

19. Wu, J.; Xu, H.; Zhang, Y.; Sun, R. An improved vehicle-pedestrian near-crash identification method with a roadside LiDAR sensor.
J. Saf. Res. 2020, 73, 211–224. [CrossRef]

20. Matsui, Y.; Hitosugi, M.; Takahashi, K.; Doi, T. Situations of car-to-pedestrian contact. Traffic Inj. Prev. 2013, 14, 73–77. [CrossRef]
21. Noh, B.; Ka, D.; Lee, D.; Yeo, H. Analysis of Vehicle–Pedestrian Interactive Behaviors near Unsignalized Crosswalk. Transp. Res.

Rec. 2021, 2675, 494–505. [CrossRef]
22. Kim, U.H.; Ka, D.; Yeo, H.; Kim, J.H. A Real-time Vision Framework for Pedestrian Behavior Recognition and Intention Prediction

at Intersections Using 3D Pose Estimation. arXiv preprint 2020, arXiv:2009.10868.
23. Noh, B.; No, W.; Lee, J.; Lee, D. Vision-based potential pedestrian risk analysis on unsignalized crosswalk using data mining

techniques. Appl. Sci. 2020, 10, 1057. [CrossRef]
24. National Law Information Center. Available online: http://www.law.go.kr/lsSc.do?tabMenuId=tab18&query=#J5:13] (accessed

on 5 May 2020).
25. Liu, H.; Dai, J.; Wang, R.; Zheng, H.; Zheng, B. Combining background substraction and three-frame difference to detect moving

object from underwater video. In OCEANS 2016-Shanghai; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5.
26. Sengar, S.S.; Mukhopadhyay, S. Moving object detection based on frame difference and W4. Signal Image Video Process. 2017, 11,

1357–1364. [CrossRef]
27. COCO Dataset. Available online: http://cocodataset.org/#home (accessed on 3 September 2019).
28. Facebook AI Research. Available online: https://ai.facebook.com/ (accessed on 17 January 2020).
29. Noh, B.; No, W.; Lee, D. Vision-Based Overhead Front Point Recognition of Vehicles for Traffic Safety Analysis. UbiComp/ISWC

2018-Adjunct. In Proceedings of the 2018 ACM International Joint Conference on Pervasive and Ubiquitous Computing and 2018
ACM International Symposium on Wearable Computers, Singapore, 8–12 October 2018; pp. 1096–1102. [CrossRef]

30. Guan, Y.; Penghui, S.; Jie, Z.; Daxing, L.; Canwei, W. A review of moving object trajectory clustering algorithms. Artif. Intell.
Rev. 2017, 47, 123–144. Available online: https://link.springer.com/content/pdf/10.1007%2Fs10462-016-9477-7.pdf (accessed on
1 April 2022).

31. Besse, P.C.; Guillouet, B.; Loubes, J.M.; Royer, F. Review and Perspective for Distance-Based Clustering of Vehicle Trajectories.
IEEE Trans. Intell. Transp. Syst. 2016, 17, 3306–3317. [CrossRef]

32. Zuo, S.; Jin, L.; Chung, Y.; Park, D. An index algorithm for tracking pigs in pigsty. Ind. Electron. Eng. 2014, 1, 797–804. [CrossRef]
33. Haroun, B.; Sheng, L.Q.; Shi, L.H.; Sebti, B. Vision Based People Tracking System. Int. J. Comput. Inf. Eng. 2019, 13, 582–586.
34. Sun, X.; Yao, H.; Zhang, S. A refined particle filter method for contour tracking. Vis. Commun. Image Process. 2010, 7744, 77441M. [CrossRef]
35. Stocker. Pedestrian Safety and the Built Environment. 2015. Available online: https://www.researchgate.net/publication/281089

650_Pedestrian_Safety_and_the_Built_Environment_A_Review_of_the_Risk_Factors (accessed on 1 April 2022).
36. Jeppsson, H.; Östling, M.; Lubbe, N. Real life safety benefits of increasing brake deceleration in car-to-pedestrian accidents:

Simulation of Vacuum Emergency Braking. Accid. Anal. Prev. 2018, 111, 311–320. [CrossRef]
37. Figliozzi, M.A.; Tipagornwong, C. Pedestrian Crosswalk Law: A study of traffic and trajectory factors that affect non-compliance

and stopping distance. Accid. Anal. Prev. 2016, 96, 169–179. [CrossRef]
38. Fu, T. A Novel Apporach to Investigate Pedestrian Safety in Non-Signalized Crosswalk Environmets and Related Treatments; McGill

University: Montréal, QC, Canada, 2019.
39. Sisiopiku, V.P.; Akin, D. Pedestrian behaviors at and perceptions towards various pedestrian facilities: An examination based on

observation and survey data. Transp. Res. Part F Traffic Psychol. Behav. 2003, 6, 249–274. [CrossRef]
40. Sinclair, J.; Taylor, P.J.; Hobbs, S.J. Digital filtering of three-dimensional lower extremity kinematics: An assessment. J. Hum. Kinet.

2013, 39, 25–36. [CrossRef] [PubMed]
41. Widmann, A.; Schröger, E.; Maess, B. Digital filter design for electrophysiological data—A practical approach. J. Neurosci. Method.

2014, 250, 34–46. [CrossRef] [PubMed]
42. Avinash, C.; Jiten, S.; Arkatkar, S.; Gaurang, J.; Manoranjan, P. Evaluation of pedestrian safety margin at mid-block crosswalks in

India. Saf. Sci. 2018, 119, 188–198. [CrossRef]
43. Chu, X.; Baltes, M.R. Pedestrian Mid-Block Crossing Difficulty Final Report; National Center for Transit Research, University of South

Florida: Tampa, FL, USA, 2001; p. 79.
44. Lobjois, R.; Cavallo, V. Age-related differences in street-crossing decisions: The effects of vehicle speed and time constraints on

gap selection in an estimation task. Accid. Anal. Prev. 2007, 39, 934–943. [CrossRef] [PubMed]
45. Almodfer, R.; Xiong, S.; Fang, Z.; Kong, X.; Zheng, S. Quantitative analysis of lane-based pedestrian-vehicle conflict at a

non-signalized marked crosswalk. Transp. Res. Part F Traffic Psychol. Behav. 2016, 42, 468–478. [CrossRef]
46. Bullough, J.D.; Skinner, N.P. Pedestrian Safety Margins under Different Types of Headlamp Illumination; Rensselaer Polytechnic

Institute, Lighting Research Center: Troy, NY, USA, 2009; pp. 1–14.

http://doi.org/10.1177/0885412215595438
http://doi.org/10.1016/j.jsr.2020.03.006
http://doi.org/10.1080/15389588.2012.678511
http://doi.org/10.1177/0361198121999066
http://doi.org/10.3390/app10031057
http://www.law.go.kr/lsSc.do?tabMenuId=tab18&query=#J5:13]
http://doi.org/10.1007/s11760-017-1093-8
http://cocodataset.org/#home
https://ai.facebook.com/
http://doi.org/10.1145/3267305.3274165
https://link.springer.com/content/pdf/10.1007%2Fs10462-016-9477-7.pdf
http://doi.org/10.1109/TITS.2016.2547641
http://doi.org/10.2495/iciee140931
http://doi.org/10.1117/12.863450
https://www.researchgate.net/publication/281089650_Pedestrian_Safety_and_the_Built_Environment_A_Review_of_the_Risk_Factors
https://www.researchgate.net/publication/281089650_Pedestrian_Safety_and_the_Built_Environment_A_Review_of_the_Risk_Factors
http://doi.org/10.1016/j.aap.2017.12.001
http://doi.org/10.1016/j.aap.2016.08.011
http://doi.org/10.1016/j.trf.2003.06.001
http://doi.org/10.2478/hukin-2013-0065
http://www.ncbi.nlm.nih.gov/pubmed/24511338
http://doi.org/10.1016/j.jneumeth.2014.08.002
http://www.ncbi.nlm.nih.gov/pubmed/25128257
http://doi.org/10.1016/j.ssci.2018.12.009
http://doi.org/10.1016/j.aap.2006.12.013
http://www.ncbi.nlm.nih.gov/pubmed/17275774
http://doi.org/10.1016/j.trf.2015.07.004

	Introduction 
	Materials and Methods 
	Vehicle–Pedestrian’s Risky Behavior Analysis 
	Vision-Based Traffic Safety System 

	Data Arrangement 
	Data Sources 
	Preprocessing 
	Motioned-Scene Partitioning 
	Object Detection in Overhead View 
	Object Tracking 


	Potential Collision Risky Behavior Extraction 
	Performance Evaluation 
	Experimental Design 
	Result 
	Evaluation of Object Tracking Algorithm 
	Evaluation of Behavior Extraction Method 


	Analysis of Potential Collision Risky Behaviors 
	Analyzing Vehicles’ Speeds and PSMs by Spots 
	Analyzing Pedestrian’s Potential Risk near Crosswalks Based on Car Stopping Behaviors 
	Analyzing Car Behaviors with PSM and Car Stopping near the Unsignalized Crosswalk 
	Discussions 

	Conclusions 
	References

