
Citation: Sieberg, P.M.; Schramm, D.

Ensuring the Reliability of Virtual

Sensors Based on Artificial

Intelligence within Vehicle Dynamics

Control Systems. Sensors 2022, 22,

3513. https://doi.org/10.3390/

s22093513

Academic Editor: Felipe Jiménez

Received: 7 March 2022

Accepted: 30 April 2022

Published: 5 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Ensuring the Reliability of Virtual Sensors Based on Artificial
Intelligence within Vehicle Dynamics Control Systems
Philipp Maximilian Sieberg * and Dieter Schramm

Chair of Mechatronics, Faculty of Engineering, University of Duisburg-Essen, 47051 Duisburg, Germany;
dieter.schramm@uni-due.de
* Correspondence: philipp.sieberg@uni-due.de; Tel.: +49-(0)-203-379-1862

Abstract: The use of virtual sensors in vehicles represents a cost-effective alternative to the installation
of physical hardware. In addition to physical models resulting from theoretical modeling, artificial
intelligence and machine learning approaches are increasingly used, which incorporate experimental
modeling. Due to the resulting black-box characteristics, virtual sensors based on artificial intelligence
are not fully reliable, which can have fatal consequences in safety-critical applications. Therefore, a
hybrid method is presented that safeguards the reliability of artificial intelligence-based estimations.
The application example is the state estimation of the vehicle roll angle. The state estimation is
coupled with a central predictive vehicle dynamics control. The implementation and validation
is performed by a co-simulation between IPG CarMaker and MATLAB/Simulink. By using the
hybrid method, unreliable estimations by the artificial intelligence-based model resulting from
erroneous input signals are detected and handled. Thus, a valid and reliable state estimate is available
throughout.

Keywords: artificial intelligence; artificial neural network; control systems; hybrid state estimation;
reliability; vehicle dynamics

1. Introduction

Active safety systems are a key factor in achieving the objective of no accidents
incorporating vehicles, as addressed by [1]. These active safety systems include driver
assistance systems and vehicle dynamics control systems. Driver assistance systems address
the driving task of guidance, in contrast vehicle dynamics control systems operate at the
level of stabilization [2]. Both types of systems require information about the environment
and the states of the vehicle dynamics. One possibility to obtain the necessary knowledge
is the direct acquisition by sensors. Virtual sensors are additionally used especially in the
field of vehicle dynamics control. These are based on mathematical models that determine
the required states on the basis of already known quantities.

In addition to the classical theoretical modeling approach, it is also possible to generate
these mathematical models through experimental modeling. Machine learning methods
and artificial intelligence in general are frequently used for this purpose [3]. The application
of physical-based models within virtual sensors, for example by using Kalman filters, is
a well-researched field. In [4], a Kalman filter is utilized to predict the roll and pitch
angle. By integrating a second measurement update, the estimation accuracy is enhanced.
Ref. [5] compare the performance of an extended and an unscented Kalman filter for vehicle
dynamics state estimation. The unscented Kalman filter outperforms the extended Kalman
filter, especially due to linearization errors at larger sampling times. All approaches share
one superior requirement in common. The determination of the states must be reliable and
valid. If not, the safety is compromised especially in connection with vehicle dynamics
control systems. This also applies to models based on artificial intelligence. These have
the potential to improve the accuracy of the estimation significantly while reducing the
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modeling effort [6,7]. In [8] for example, an artificial neural network is used to predict
the roll angle, in order to be able to realize a vehicle roll control system. Ref. [9] apply a
deep learning approach to simultaneously estimate the roll angle and the side-slip angle
of a vehicle. However, most artificial intelligence-based models, such as artificial neural
networks, belong to the class of black-box models, whose modes of operation are not fully
comprehensible and therefore not reliable [10].

In addition to purely physical and artificial intelligence-based estimators, respectively,
combinations of both approaches can be utilized. In [11], a hybrid method is used, where
an unscented Kalman filter accounts for a pseudo-measurement derived by an artificial
neural network. From this integration, the noise within the estimation can be reduced and
the estimation quality is enhanced. Similar results are achieved by [12], where an observer
is used instead of a Kalman filter. A different hybrid method is employed by [13], where
a pseudo-measurement quantity derived by a physical model is used as an input into an
artificial neural network. Using this integration, the estimation accuracy of the artificial
neural network is improved. However, the focus of these hybrid methods is on increasing
the accuracy and not on ensuring the reliability.

This issue has been addressed and overcome by [14] using a hybrid method of state
estimation. By combining and safeguarding an artificial neural network with a reliable
physical model, a valid and reliable state estimation is obtained throughout. The roll angle
estimation of a passive vehicle has been used as an application example.

Within this contribution, the hybrid method of state estimation is adapted and val-
idated together with a central predictive vehicle dynamics control [15]. The application
example of the state estimation remains the roll angle estimation, as a possible rollover is a
particularly large hazard for the vehicle occupants.

The paper is structured as follows: Section 2 introduces the simulation framework
used to implement and validate the hybrid method of state estimation. Section 3 presents
the hybrid method of state estimation comprising the physical model and the artificial
intelligence-based model used. The validation of the reliability of the hybrid method of
state estimation is given in Section 4. The paper concludes in Section 5 with a summary as
well as an outlook on future research tasks.

2. Simulation Framework

To implement and validate the hybrid method of state estimation, a simulation frame-
work is utilized. This simulation framework is shown in Figure 1.
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The simulation framework is based on a co-simulation between IPG CarMaker and
MATLAB/Simulink. IPG CarMaker represents the vehicle by a multi-body simulation.
Furthermore, test tracks and driver models can also be adapted in IPG CarMaker.

MATLAB/Simulink is used for the central predictive vehicle dynamics control in-
cluding the generation of reference trajectories, the simulation of actuator models and the
state estimation itself. Here, the vehicle is equipped with two active stabilizers and four
semi-active dampers.

The focus of this contribution is on the task of vehicle dynamics state estimation.

3. Hybrid Method of State Estimation

The objective of the hybrid method of state estimation is to increase the estimation
quality compared to conventional physical virtual sensors and to ensure a reliable mode of
operation. Virtual sensors resulting from experimental modeling, such as artificial neural
networks, have the potential to increase the estimation quality. Unfortunately, the black-box
characteristic they exhibit results in state estimations that are not fully secure and reliable.
This issue is solved by the hybrid method of state estimation. Figure 2 illustrates the
structure of the hybrid method.
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Figure 2. Hybrid Method of State Estimation—Structure, according to [16].

In the hybrid method of state estimation, a physical model safeguards the artificial
neural network. The hybrid method consists of three steps:

In the first step, the state is estimated by the artificial neural network on the basis of
the actuating variables uA and measured variables sV,ANN. This results in the state xANN
estimated by the artificial neural network.

In the second step, the input data into the artificial neural network are used to quan-
tify the confidence in its estimation. This is achieved by determining a confidence level
τHSE [16].

In the third and final step, the state estimation xANN of the artificial neural network is
combined with a reliable physical model as a function of the confidence level and thereby
safeguarded. An unscented Kalman filter realizes the combination. This ultimately results
in a hybrid state estimation xHSE.

Regarding the functionality of the hybrid method, the used measurement quantities
are different for the artificial intelligence-based model with sV,ANN and for the physical
model sV,P.
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3.1. Artificial Neural Network

In order to implement an artificial neural network with an excellent estimation quality,
first a hyperparameter optimization is performed. The driving maneuvers simulated in [16]
are used as the database for hyperparameter optimization as well as training. During this
hyperparameter optimization the parameters of the artificial neural network are adjusted
and optimized, which remain unchanged during the actual training. Sequential model-
based global optimization is used as the optimization approach [17]. The acquisition
function within this informed optimization is based on the expected improvement [18]. In
principle, a recurrent neural network based on long short-term memory cells is used for
the estimation of the roll behavior, which is particularly suitable for mapping temporal
relationships [19].

During the hyperparameter optimization, some basic parameters are kept fixed. These
include the batch size, the number of training epochs and the utilized optimizer. Table 1
summarizes the fixed parameters.

Table 1. Hyperparameter Optimization—Fixed Parameters.

Parameter Value

Batch Size 1024
Evaluation Metric Mean Absolute Error
Number of Epochs 50

Optimizer Adam
Type of Layers Long Short-Term Memory

Within the optimization, among other things, the hyperparameters of the number of
recurrent layers, the number of neurons within the recurrent layers, the regularization and
the temporal lookback are adapted [16]. The results of the hyperparameter optimization
are shown in Table 2.

Table 2. Artificial Neural Network—Hyperparameters.

Hyperparameter Value

Number of Recurrent Layers 4
Number of Neurons within one Recurrent Layer 129

Regularization None
Temporal Lookback 4

Furthermore, the input data into the artificial neural network are composed of the
actuated manipulated variables uA and the measured variables sV,ANN. The measured
input quanitities sV,ANN into the artificial neural network are composed by the steering
wheel angle δ, the velocity v and the yaw rate

.
ψ:

sV,ANN =
[
δ, v,

.
ψ
]T

(1)

The final training is conducted for 100 epochs with a learning rate of 0.00245. During
the training, the options “reduce learning rate on plateau” and “early stopping” are acti-
vated [20,21]. The recurrent layers are followed by a dense layer, in order to retrieve the
output quantity xANN.

3.2. Confidence Level Determination

In a second step, the confidence in the estimation by the artificial neural network is
quantified by determining a confidence level τHSE. To determine the confidence level, the
input data used in the training of the artificial neural network are first classified into a kn

c
dimensional grid structure. The n input variables are sorted into kc individual segments
over the entire input space. Thus, each cell in the grid structure represents a certain part
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of the training of the artificial neural network. The number of data points indicates how
extensively the training has taken place in this part. A larger number of data points
correlates with a more extensive training and a better expected performance of the artificial
neural network for the specific area [22].

During operation of the hybrid method, the latest input data into the artificial neural
network are then used to determine the specific cell describing the actual vehicle dynamics
situation. The number of data points pc within this specific cell is used to describe the
extent of the training. Here, a larger number of data points also correlates with a higher
confidence level. The number of data points pc is then scaled by the maximum number of
data points pmax in a cell across the entire grid structure. This results in a confidence level
τHSE between zero and one:

τHSE =
pc

pmax
(2)

3.3. Physical Model

The artificial neural network is backed up within the hybrid method by a compre-
hensible physical model resulting from theoretical modeling. For the description of the
roll behavior, a non-linear roll model is therefore derived according to [16]. The free cut is
shown in Figure 3.
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The free cut of the vehicle body and setting up of the principle of angular momentum
around the roll axis provides:

hGRmay(k) cos ϕP(k) + hGRmg sin ϕP(k)− Tf(k)− Tr(k)
−2
(

s2
S,fcS,f + s2

S,rcS,r

)
sin ϕP(k)

−
(
(dfl(k) + dfr(k))s2

D,f

) .
ϕP(k) cos ϕP(k)

−
(
(drl(k) + drr(k))s2

D,r

) .
ϕP(k) cos ϕP(k) = Jxx

..
ϕP(k)

(3)

Tf and Tr present the counter roll torques at the front and rear axle, respectively.
Moreover, dfl, dfr, drl and drr denote the damping factors of the semi-active dampers
located at the suspension front left, front right, rear left and rear right, respectively. The
gravitational acceleration is represented by g. The springs are characterized by the spring
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stiffnesses cS,i and the lever arms sS,i from force application points to the vehicle center
plane. The index i indicates the respective vehicle axle. The lever arms of the semi-active
dampers are denoted by sD,i. The moment of intertia of the vehicle body around the
longitudinal axis is specified by Jxx and the distance between the center of gravity and the
roll center by hGR.

By physically describing the roll behavior, the roll acceleration
..
ϕP(k) at time k can

be determined using Equation (3). Integrating the roll acceleration
..
ϕP(k) twice using the

explicit Euler method [23], the roll rate
.
ϕP(k + 1) and roll angle ϕP(k + 1) are determined:

.
ϕP(k + 1) =

.
ϕP(k) +

..
ϕP(k)tS, (4)

ϕP(k + 1) = ϕP(k) +
.
ϕP(k)tS. (5)

tS denotes the fixed step sizes of the state estimation, which equals 0.001 s. The only
measured input variable is therefore the lateral acceleration ay:

sV,P = ay. (6)

3.4. Unscented Kalman Filter

The final step of the hybrid method is to combine the estimation by the artificial neural
network with the estimation by the physical model as a function of the confidence level
τHSE. An unscented Kalman filter implements this combination. The basic functionality of
the Kalman filter remains unchanged [24]. The estimation by the artificial neural network
is considered here as a measurement.

In order to perform the combination of the two individual virtual sensors depending
on the confidence level τHSE, the covariances of the transition QHSE and measurement RHSE
are manipulated:

QHSE = τHSEQN, (7)

RHSE = (1 − τHSE)RN. (8)

The covariances QHSE and RHSE are thus functions of the confidence level τHSE. Fur-
thermore, QN and RN are fixed neutral covariances that are defined before using the hybrid
method.

This definition of the covariances implies that at a confidence level of τHSE = 0,
the resulting estimation by the unscented Kalman filter xHSE is completely based on the
physical model. As the confidence level increases, the estimation of the artificial neural
network xANN is increasingly taken into account [16].

4. Results

In the following, the hybrid method of state estimation is validated in terms of its
reliability. It is used in the closed-loop simulation, which is shown in Figure 1.

For the validation, one driving maneuver from the test dataset of [16] is employed.
The driving maneuver used is based on steady-state circular driving according to [25].
Thereby, the steady-state behavior during cornering can be described. The velocity of the
vehicle is 90 km/h and the cornering radius equals 100 m. Furthermore, there is no lateral
road gradient. The steering direction is clockwise.

In order to validate the reliable operation of the hybrid method, three situations are
considered in the following, which would have fatal consequences for the safety of the
vehicle if the artificial neural network was not safeguarded. To generate these situations,
the input signal of the steering wheel angle δ is manipulated by a drift, an offset and
a complete failure, respectively. In addition to this test-driving maneuver, a lap on the
Hockenheimring racetrack is used to assess the hybrid method in a holistic way.
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4.1. Sensor Drift

Within the first validation scenario, the behavior of the hybrid method is examined for
the manipulation by a sensor drift [26]. The signal of the steering wheel angle δ, an input
signal into the artificial neural network, is manipulated by a drift of 3.5◦/s from second
10 onward. To evaluate the reliability, the roll angle curves are shown in the bottom part of
Figure 4.
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Figure 4. Hybrid Method of State Estimation-Sensor Drift: (Top): Confidence Level; (Bottom): Roll
Angle Curves.

Here, a black dotted line represents the hybrid state estimation ϕHSE. In addition, the
individual virtual sensors based on the artificial neural network and the physical model
are displayed. A green dashed line represents the estimation by the physical model ϕP and
a gray fine dashed line the estimation by the artificial neural network ϕANN. A red line
further illustrates the ground truth roll angle ϕGT.

The influence of the sensor drift in the input signal of the artificial neural network
on the estimation ϕANN becomes evident by also observing a drift in the estimation ϕANN.
Without any additional safeguarding of the artificial neural network, this sensor malfunc-
tion would result in an incorrect basis for the control and thus would compromise the
safety of the vehicle. However, by using the hybrid method, the sensor malfunction is
detected and reliably intercepted.

After the detection of the sensor drift, there is no more confidence in the artificial
neural network, which is implemented by a confidence level of τHSE = 0. The course of the
confidence level τHSE is shown in the top part of Figure 4.

At a confidence level of τHSE = 0, the hybrid method is completely based on the
reliable physical model, which is unaffected by the sensor drift due to redundant input
variables.

4.2. Sensor Offset

The second validation scenario evaluates the behavior of the hybrid state estimation
method in the presence of another typical sensor error which is an offset [27]. Analogous to
the sensor drift, the measurement signal of the steering wheel angle δ is also manipulated
for the sensor offset. For this purpose, an offset of 165◦ is applied to the steering wheel
angle signal in the period from 10 to 15 s. To evaluate the impact of the sensor offset, the
resulting roll angle curves are shown in the bottom part of Figure 5.
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The color scheme remains consistent with Figure 4. The offset in the steering wheel
angle signal also creates an offset in the roll angle estimation ϕANN by the artificial neural
network. This results in a positive roll angle estimation ϕANN between 10 and 15 s, although
a negative ground truth roll angle ϕGT is present. The offset is correctly detected by the
hybrid method of state estimation. The confidence level equals τHSE = 0 in this case. Thus,
the incorrect estimation ϕANN by the artificial neural network is intercepted and a valid
and reliable state estimation ϕHSE is provided, which does not compromise the safety of
the vehicle.

4.3. Sensor Failure

Within the third validation scenario, a failure of the steering wheel angle sensor is set
up. The sensor failure occurs at second 10. After the failure, the steering wheel angle signal
is no longer available. Thus, the artificial neural network is no longer capable of estimating
the roll angle. The resulting roll angle curves are illustrated in the bottom part of Figure 6.
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Figure 6. Hybrid Method of State Estimation-Sensor Failure: (Top): Confidence Level; (Bottom): Roll
Angle Curves.
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The signal failure is detected successfully by the hybrid method. The confidence level
τHSE shown in the top part of Figure 6 constantly adopts a value of τHSE = 0 after the
failure. This is equivalent to no confidence in the artificial neural network. From the sensor
failure onward, the hybrid state estimation ϕHSE is thus completely based on the physical
model ϕP.

By using the hybrid method and the redundant input variables, even the critical case
of a sensor failure can be safeguarded. The central predictive vehicle dynamics control
system therefore relies on a valid and reliable state estimation ϕHSE for this critical scenario
as well and can perform its tasks unaffected.

4.4. Hockenheimring Racetrack

The performance of the hybrid method of state estimation is additionally evaluated for
a lap on the Hockenheimring racetrack. For this purpose, the roll angle courses resulting
from the individual virtual sensors are plotted in the bottom part of Figure 7.
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Figure 7. Hybrid Method of State Estimation-Hockenheimring Racetrack: (Top): Confidence Level;
(Bottom): Roll Angle Curves.

Moreover, the course of the confidence level during the lap on the Hockenheimring is
illustrated in the top part of Figure 7.

As can be observed from the confidence level, the vehicle dynamic states present
are unknown to the artificial neural network for a majority of the time. Basically, the
performance of the physical virtual sensor is superior to that of the artificial neural network.
Nevertheless, there are also regions where the performance of the artificial neural network
is superior to that of the physical model. Therefore, by combining the two models within
the hybrid method, an improvement of the estimation quality is achieved compared to both
individual models.

This conclusion is confirmed by examining the deviation of the individual virtual
sensors from the ground truth roll angle ϕGT. These deviations are shown in Figure 8.

To confirm this subjective impression quantitatively, the deviation of the individual
virtual sensors from the ground truth is determined by the root mean squared error. The
artificial neural network exhibits a larger root mean squared error of 0.0093 rad than the
physical model with a root mean squared error of 0.0047 rad. By using the hybrid method,
the estimation quality can be improved by 50% compared to the artificial neural network
and about 16% compared to the physical model. Here, a root mean squared error of 0.0047
rad is present. Table 3 summarizes the root mean squared errors.
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Figure 8. Hybrid Method of State Estimation-Hockenheimring Racetrack: Roll Angle Deviation
Curves.

Table 3. Estimation Quality Validation.

Virtual Sensor Root Mean Squared Error

Artificial Neural Network 0.0093 rad
Hybrid Method 0.0047 rad
Physical Model 0.0056 rad

5. Conclusions

This contribution focuses on safeguarding the reliability of artificial neural networks
employed for the task of state estimation. The application example is the roll angle estima-
tion of a vehicle. Due to the black-box characteristic of the artificial neural network, the
reliability cannot be guaranteed throughout. For this purpose, the hybrid state estimation
method is presented, which safeguards the artificial neural network by a fully compre-
hensible and reliable physical model. The implementation and validation is based on a
simulation framework comprising IPG CarMaker and MATLAB/Simulink. Within this
simulation framework, the state estimation is in a closed loop with a central predictive
vehicle dynamics control, actuator models and the vehicle itself. Thus, an invalid or unreli-
able state estimate would directly affect the vehicle safety. For validation, three aggravated
scenarios are set up that directly affect the artificial neural network by manipulating an
input signal. These scenarios include a sensor drift, a sensor offset, and a sensor failure,
respectively. In all scenarios, the estimation by the artificial neural network is distorted,
which would bear fatal consequences in combination with the central predictive control. All
sensor malfunctions are detected and handled successfully by the hybrid method, resulting
in a valid and reliable estimate besides the malfunctions. In addition, the performance of
the hybrid method is evaluated for a lap on the Hockenheimring racetrack. Ultimately, the
vehicle safety is maintained and the estimation accuracy is improved. Future work will
focus on the generalizability of the proposed hybrid method.
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