A Low-Profile SIW-Based CTS Array with Reconfigurable Four Beams and Dual Polarizations for K-Band Sensing
Abstract
:1. Introduction
2. SIW-Based CTS Antenna Design and Analysis
2.1. Line Source Generator and Transformation Part
2.2. Transformation Part
2.3. Design of the Radiator
2.4. Simulations
3. Experimental Implementation and Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haefele, A.; Ruffieux, D. Validation of the 1290 MHz wind profiler at Payerne, Switzerland, using radiosonde GPS wind measurements. Met. Apps. 2016, 22, 873–878. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N. Analysis of Surface Cross-Sectional Data Taken During the 90° Yaw Experiment of the TRMM Precipitation Radar. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5729–5738. [Google Scholar] [CrossRef]
- Sinha, S.; Regeena, M.L.; Sarma, T.V.C.; Hashiguchi, H.; Tuckley, K.R. Doppler Profile Tracing Using MPCF on MU Radar and Sodar: Performance Analysis. IEEE Geosci. Remote Sens. Lett. 2018, 15, 508–511. [Google Scholar] [CrossRef]
- Sinha, S.; Sarma, T.V.C.; Regeena, M.L. Estimation of Doppler Profile Using Multiparameter Cost Function Method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 932–942. [Google Scholar] [CrossRef]
- Ermakova, O.S.; Sergeev, D.A.; Rusakov, N.S.; Poplavsky, E.I.; Balandina, G.N.; Troitskaya, Y.I. Toward the GMF for Wind Speed and Surface Stress Retrieval in Hurricanes Based on the Collocated GPS-Dropsonde and Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 4803–4808. [Google Scholar] [CrossRef]
- Lindseth, B.; Brown WO, J.; Hock, T.; Cohn, S.A.; Popović, Z. Wind Profiler Radar Antenna Sidelobe Reduction. IEEE Trans. Antennas Propag. 2014, 62, 56–63. [Google Scholar] [CrossRef]
- Lindseth, B.; Brown, W.O.J.; Jordan, J.; Law, J.; Hock, T.; Cohn, S.A.; Popovic, Z. A New Portable 449-MHz Spaced Antenna Wind Profiler Radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3544–3553. [Google Scholar] [CrossRef]
- Aljuhani, A.H.; Kanar, T.; Zihir, S.; Rebeiz, G.M. A 256-Element Ku-Band Polarization Agile SATCOM Transmit Phased Array with Wide-Scan Angles, Low Cross Polarization, Deep Nulls, and 36.5-dBW EIRP per Polarization. IEEE Trans. Microw. Theory Tech. 2021, 69, 2594–2608. [Google Scholar] [CrossRef]
- Yin, Y.; Ustundag, B.; Kibaroglu, K.; Sayginer, M.; Rebeiz, G.M. Wideband 23.5–29.5-GHz Phased Arrays for Multistandard 5G Applications and Carrier Aggregation. IEEE Trans. Microw. Theory Tech. 2021, 69, 235–247. [Google Scholar] [CrossRef]
- Ali, Q.; Shahzad, W.; Ahmad, I.; Safiq, S.; Bin, X.; Abbas, S.M.; Sun, H. Recent Developments and Challenges on Beam Steering Characteristics of Reconfigurable Transmitarray Antennas. Electronics 2022, 11, 587. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Park, J.-S.; Lee, W.-S. Beam-Reconfigurable Multi-Antenna System with Beam-Combining Technology for UAV-to-Everything Communications. Electronics 2020, 9, 980. [Google Scholar] [CrossRef]
- Milroy, W.W. Continuous Transverse Stub Element Devices and Methods of Making Same. U.S. Patent No. 5,266,961, 30 November 1993. [Google Scholar]
- You, Q.; Lu, Y.; You, Y.; Wang, Y.; Hao, Z.; Huang, J. Wideband Full-Corporate-Feed Waveguide Continuous Transverse Stub Antenna Array. IEEE Access 2018, 6, 76673–76681. [Google Scholar] [CrossRef]
- Lu, Y.; You, Q.; Wang, Y.; You, Y.; Huang, J.; Wu, K. Millimeter-Wave Low-Profile Continuous Transverse Stub Arrays with Novel Linear Source Generators. IEEE Trans. Antennas Propag. 2019, 67, 988–997. [Google Scholar] [CrossRef]
- Gao, Y.; Hong, T.; Jiang, W.; Gong, S.; Li, F. Low-Profile Wideband CTS Array Using Substrate-Integrated Waveguide Technology for K-Band Applications. IEEE Trans. Antennas Propag. 2019, 67, 5711–5716. [Google Scholar] [CrossRef]
- You, Y.; Lu, Y.; You, Q.; Wang, Y.; Huang, J.; Lancaster, M.J. Millimeter-Wave High-Gain Frequency-Scanned Antenna Based on Waveguide Continuous Transverse Stubs. IEEE Trans. Antennas Propag. 2018, 66, 6370–6375. [Google Scholar] [CrossRef]
- Qiu, H.; Yang, X.; Yu, Y.; Lou, T.; Yin, Z.; Gao, S. Compact Beam Scanning Flat Array Based on Substrate Integrated Waveguide. IEEE Trans. Antennas Propag. 2018, 68, 882–890. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Hong, W.; Wu, K. Millimeter-Wave Substrate Integrated Waveguide Multibeam Antenna Based on the Parabolic Reflector Principle. IEEE Trans. Antennas Propag. 2018, 56, 3055–3058. [Google Scholar] [CrossRef]
- Yang, X.; Di, L.; Yu, Y.; Gao, S. Low-Profile Frequency-Scanned Antenna Based on Substrate Integrated Waveguide. IEEE Trans. Antennas Propag. 2017, 65, 2051–2056. [Google Scholar] [CrossRef]
Ref. | Type | Frequency (GHz) | Gain (dBi) | Side Lobe (dB) | Size | Polarization | Scanning Range (°) |
---|---|---|---|---|---|---|---|
[13] | WG | 26~40 | >26.8 | <−12.1 | 126.5 × 79 × 30 mm3 | Single | N\A |
[14] | SIW | 24.5~29.5 | >20.6 | <−12.2 | 40 × 37 × 5.9 mm3 | Single | N\A |
[15] | SIW | 17.2~23.9 | <22.6 | −15 | 149.3 × 122 × 4.1 mm3 | Single | N\A |
[16] | WG | 26~42 | >22.9 | <−12.6 | 133 × 93 × 21 mm3 | Single | −56.2~−2.2 |
[17] | SIW | 11.8~14.2 | <20.6 | <−12.2 | 226 × 103 × 6 mm3 | Single | ±35 |
[18] | SIW | 36~39 | >15.8 | <−12 | 136 × 100 ×N\A mm3 | Single | ±30 |
This work | SIW | 22~26 | >25 | <−20 | 180 × 180 ×2 5 mm3 | Dual | Reconfigurable four beams in ±10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Chen, Y.; Ding, Y.; Zou, Z.; Qian, F.; Luo, Y.; Yang, G. A Low-Profile SIW-Based CTS Array with Reconfigurable Four Beams and Dual Polarizations for K-Band Sensing. Sensors 2022, 22, 3563. https://doi.org/10.3390/s22093563
Jin Y, Chen Y, Ding Y, Zou Z, Qian F, Luo Y, Yang G. A Low-Profile SIW-Based CTS Array with Reconfigurable Four Beams and Dual Polarizations for K-Band Sensing. Sensors. 2022; 22(9):3563. https://doi.org/10.3390/s22093563
Chicago/Turabian StyleJin, Yitong, Yuanqing Chen, Yafei Ding, Ziwen Zou, Feng Qian, Yong Luo, and Guangli Yang. 2022. "A Low-Profile SIW-Based CTS Array with Reconfigurable Four Beams and Dual Polarizations for K-Band Sensing" Sensors 22, no. 9: 3563. https://doi.org/10.3390/s22093563
APA StyleJin, Y., Chen, Y., Ding, Y., Zou, Z., Qian, F., Luo, Y., & Yang, G. (2022). A Low-Profile SIW-Based CTS Array with Reconfigurable Four Beams and Dual Polarizations for K-Band Sensing. Sensors, 22(9), 3563. https://doi.org/10.3390/s22093563