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Abstract: With the proliferation of 5G mobile networks within next-generation wireless communi-
cation, the design and optimization of 5G networks are progressing in the direction of improving
the physical layer security (PLS) paradigm. This phenomenon is due to the fact that traditional
methods for the network optimization of PLS fail to adapt new features, technologies, and resource
management to diversified demand applications. To improve these methods, future 5G and beyond
5G (B5G) networks will need to rely on new enabling technologies. Therefore, approaches for PLS
design and optimization that are based on artificial intelligence (AI) and machine learning (ML)
have been corroborated to outperform traditional security technologies. This will allow future 5G
networks to be more intelligent and robust in order to significantly improve the performance of
system design over traditional security methods. With the objective of advancing future PLS research,
this review paper presents an elaborate discussion on the design and optimization approaches of
wireless PLS techniques. In particular, we focus on both signal processing and information-theoretic
security approaches to investigate the optimization techniques and system designs of PLS strate-
gies. The review begins with the fundamental concepts that are associated with PLS, including a
discussion on conventional cryptographic techniques and wiretap channel models. We then move
on to discuss the performance metrics and basic optimization schemes that are typically adopted in
PLS design strategies. The research directions for secure system designs and optimization problems
are then reviewed in terms of signal processing, resource allocation and node/antenna selection.
Thereafter, the applications of AI and ML technologies in the optimization and design of PLS systems
are discussed. In this context, the ML- and AI-based solutions that pertain to end-to-end physical
layer joint optimization, secure resource allocation and signal processing methods are presented. We
finally conclude with discussions on future trends and technical challenges that are related to the
topics of PLS system design and the benefits of AI technologies.

Keywords: physical layer security; optimization approaches; information theory; signal processing
techniques; resource allocation; AI techniques

1. Introduction

Currently, 5G wireless networks are fully commercialized worldwide and B5G net-
works are in the process of development and are supposed to be deployed within the
next few years. With the fast adoption of 5G technology, the number of users who utilize
wireless mobile networks has increased exponentially over the last few years. It is expected
that this rapid growth will continue to increase enormously due to the deployment of more
smart applications and new enabling technologies within the upcoming B5G networks.
Future wireless networks will not only provide much higher spectral efficiency/data rates
and lower latency but will also provide new services and technologies that can be applied
in various vertical industries [1]. The presence of ubiquitous connections and the growing
number of devices that are connected to the internet are expected to cause a challenge for
efficient and reliable resource management systems [2–4]. Moreover, the rapid growth of
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the massive number of new devices that are connected to the internet and the Internet
of Things (IoT) is expected to cause a serious risk to network security if not manipulated
properly [5]. Therefore, when considering all of these capabilities, it can be seen that there
is a need for robust security mechanisms across all segments of 5G and B5G networks.

Conventionally, high-layer cryptography-based techniques have been widely adopted
to deal with any discrepancies that are associated with information confidentiality, which in-
clude data authentication, secret key establishment and secret dissemination [6]. However,
with the advancement in the computing capacities of eavesdropping devices, the above-
mentioned techniques may not be sufficient or may even become unsuitable when an extra
secure channel is required for secret key generation [7]. Recently, physical layer security
(PLS) has emerged as a promising means of addressing the eavesdropping computational
capability of secure transmission problems [8–12]. Compared to complex cryptography
techniques, PLS does not depend on the computational capacity of the eavesdropping
devices and, therefore, it has the benefit of reducing computational costs and resource con-
sumption. From the perspective of information-theoretic fundamentals, it has been found
that PLS can achieve secure and reliable communication even when network intruders have
very strong computing capabilities [13]. This approach to information security is especially
effective since it does not rely on underlying computational capabilities, but rather on
the characteristics of the transmission media, such as noise, fading and interference, and
it provides security guarantees that are independent from the computing power of the
eavesdropper. In general, the PLS approach presents distinct advantages and is well suited
for distributed processing systems and dynamic network configurations. Therefore, the
PLS approach can be used as an alternative supplement for computationally demanding
high-layer technologies to further ensure data security.

Although the PLS can be precisely evaluated using popular performance metrics,
such as secrecy capacity, secrecy rate, secrecy throughput, etc., which are discussed in
detail in the literature, security performance is quantified by maximizing the performance
difference between legitimate channels and wiretap channels [14–17]. This is intuitive since
PLS aims to enhance the received signal quality at the intended receiver or reduce the
performance of the wiretap channel relative to the legitimate channel. In this circumstance,
there is a need to allocate transmission power based on the states of the legitimate and
eavesdropper channels in order to improve the PLS, as transmission power affects the
signal quality at the intended receiver and eavesdropper. However, the allocation of
power in PLS is a challenging task. It relies heavily on the prior information that the
transmitter has on the channel state information (CSI) of the intended receiver and the
eavesdropper. Most of the optimization functions in PLS are non-convex because of the
characteristics of the logarithmic subtraction in security performance metrics. For instance,
when the transmission power increases, the capacity and reliability of the main channel
improve [13]. On the other hand, the capacity of the eavesdropper channel may also
improve and the probability of eavesdropping increases. Therefore, there is no universal
approach to achieving a global optimization for non-convex power allocation. Several
research works have been conducted to formulate and solve these optimization problems
in order to obtain stronger security [18]. In [19], instead of maximizing the secrecy capacity
of the main channel, suboptimal power allocation was presented to minimize the SINR at
an unintended receiver. However, the minimization of the SINR at an unintended receiver
is not assessed by direct performance metrics and the security measure cannot ensure
a non-negative rate of transmission. Moreover, a joint subcarrier and power allocation
mechanism were proposed in [20] for maximizing the secrecy capacity of OFDMA-based
wireless networks. Nevertheless, the performance of secrecy gain can be enhanced by
limited power allocation. Consequently, it is hard to achieve global quality of service (QoS)
constraints for secure transmission systems.

The mainstream studies on PLS as a method for characterizing an achievable se-
curity performance against eavesdropping have been extensively investigated from the
fundamental viewpoints of information theory for different communication scenarios and
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channel types and under different assumptions on the knowledge of CSI. These studies
have inspired the development of many signal processing design techniques [21–24]. In this
context, a large number of research works have been conducted, which have contributed
insightful thoughts and opportunities to the understanding of practical security designs,
optimization techniques, technology status, etc. For example, in [25–27], key technolo-
gies, technical challenges, and countermeasures were reviewed from the fundamental
viewpoints of design strategies that involve physical-layer authentication, secret key gen-
eration, wiretap coding, and multi-antenna techniques, and relay cooperation. Moreover,
the authors in [28,29] presented an extensive investigation of multi-antenna techniques
in multi-user wireless networks using different assumptions on the availability of CSI.
Providing security for multi-antenna techniques is an effective and powerful approach in
PLS that can offer higher spatial degrees of freedom. The survey paper in [30] also provided
a comprehensive overview of secure transmission designs from the viewpoints of informa-
tion theory and optimization problems using security performance metrics. Furthermore, a
comprehensive overview of fundamental classification and applications of existing PLS
techniques was presented by [31]. On the other hand, the challenges that face PLS were
reviewed in [32]. It can be seen that the hurdles facing PLS are issued from different
assumptions regarding the characteristics of wireless channels and eavesdropper models.

Naturally, the concept of optimization techniques in PLS plays a pivotal role in practi-
cal security design and thus, has received considerable attention from the research com-
munity. In this review paper, due to the importance of secure transmission design in most
practical scenarios, we were motivated to conduct a systematic overview of this research
direction. It has to be noted that these studies have been extensively investigated and
have been published in many PLS research works. Nevertheless, we outline a summary
of some of the interesting studies in Table 1. In contrast to the aforementioned works, our
review paper provides a brief overview of recent results and technical challenges for the
system design and optimization techniques for 5G wireless networks. The main focus of
this review paper is the existing techniques and design strategies for PLS optimization,
optimization problems, and the solutions that are related to wireless PLS. Moreover, it
inclusively discusses the applications of several enabling and computing technologies that
could improve the corresponding research challenges. In order to address the limitations of
existing optimization challenges, ML and AI technologies need to be efficiently integrated
into 5G networks in order to produce better security and resource management. The use of
ML and AI technologies within the field of mobile communication infrastructure has made
significant progress in ensuring security, reliability, and resource allocations in a dynamic,
robust and trustworthy way [33–36].

The contributions of this review paper are as follows. First, we introduced funda-
mental principles and different channel models. In this context, we briefly reviewed the
common scenarios and limitations of different security methods to understand the basic
theories that are related to PLS. Second, the information-theoretic security metrics and
application scenarios in PLS were investigated to provide a brief insight into secure design
strategies. Third, the potential research directions and technical challenges in PLS from
the perspectives of security design and optimization approaches were widely discussed.
Finally, we reviewed the potential advantages of using ML and AI enabling technologies
to further improve conventional security technologies. In summary, this review paper
identifies optimization challenges in terms of secure resource allocation and signal pro-
cessing techniques and presents potential solutions through the introduction of AI- and
ML-based technologies.

The structure of this review paper is outlined as follows. The abbreviations that
are used throughout the paper are described in Table 2. Then, Section 2 introduces the
fundamental concepts of PLS; specifically, the general system model, adversary model
and different types of wiretap channel models. The performance metrics that are used in
PLS to evaluate the security design strategies are discussed in Section 3. In Section 4, the
research directions and technical challenges are investigated; specifically, the main issues
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and technical challenges of system design and optimization techniques, which are discussed
from the viewpoints of secure resource management and signal processing techniques.
Section 5 explains the paradigms of ML and AI within 5G networks and their applications
in physical layer design and optimization. In Section 6, we present notable future directions
and open challenges, followed by a conclusion in Section 7.

Table 1. Summary of related studies.

Existing Papers Research Issues Important Content

[12]
Examine the security threats and

corresponding defense methods in
PHY security.

Summary of the security requirements and threats in wireless
networks considering the network protocols at various levels of

data layers. Additionally, a comprehensive review of
state-of-the-art PHY security and existing security protocols for

13 various wireless networks.

[25]
A comprehensive survey on the basic

theories and key technologies of
PHY security.

Discussion of the key technologies, limitations, and solutions of
PHY security from the perspective of security coding,

physical-layer authentication, secret key generation, and
multi-antenna techniques.

[26] Security threats and the corresponding
countermeasure techniques.

Technologies, security attacks, and defense mechanisms in PHY
security using game-theoretic approaches.

[27] Overview of the key technologies of
PHY security.

Recent technologies, optimization techniques, and limitations of
PHY security from the perspective of information-theoretic

security and wiretap channels.

[28] A comprehensive investigation of
multi-antenna techniques.

Survey of multi-antenna techniques in multi-user networks for
improving the security performance of PHY security, but not

considering CSI accuracy.

[29] A brief survey on multi-antenna
techniques.

Investigation on multi-antenna techniques in PHY security for
improving secrecy performance considering the accuracy

of CSI.

[30]
A comprehensive overview of the

optimization and design strategies of
PHY security.

Survey on security designs and optimization techniques from
the viewpoints of information theory and security metrics in

wireless PHY security.

[31] Comprehensive overview of all existing
PHY security techniques.

Classification of the existing PHY security techniques and brief
discussion of the big picture they can be easily understood and

applied in different communication systems.

[32] Challenges of PHY security in real-world
systems.

Identification of the existing assumptions and opportunities for
applying PHY security in practical applications.

[34]
A comprehensive investigation of AI

and edge
computing (EC) for PLS.

Identification of the existing challenges in the design and
optimization of PLS and design of an enhancement scheme for

PLS application.

Table 2. Abbreviations and their full form definitions.

Acronyms Full-Form Definition

5G Fifth-generation mobile networks
AI Artificial intelligence
AF Amplify-and-forward

ANN Artificial neural networks
AWGN Additive white Gaussian noise

B5G Beyond fifth-generation networks
BER Bit error rate

BLER Block error rate
CNN Convolutional neural network
CSI Channel state information
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Table 2. Cont.

Acronyms Full-Form Definition

DF decode-and-forward
DL Deep learning

DNN Deep neural networks
FDD Frequency division duplexing
IoT Internet of Things

ILDP Interactive learning design paradigm
LDPC Low-density parity-check
LOS Line of sight

MISO Multiple-input single-output
MIMO Multiple-input multiple-output

ML Machine learning
mmWave Millimeter wave
NOMA Non-orthogonal multiple access

NDP Non-deterministic polynomial
QoS Quality of service
PLS PHY security/Physical layer security
PER Packet error rate

OFDM Orthogonal frequency division multiplexing
SDP Semi-definite programming
SOP Secrecy outage probability

SIMO Single-input multiple-output
SISO Single-input single-output
SDP Semi-definite programming
SNR Signal-to-noise ratio

SIPNR Signal-to-interference-plus-noise ratio
ReLU Rectified linear units

ZF Zero forcing

Note: In this paper, matrices are denoted by bold uppercase letters and vectors are denoted
by bold lowercase letters. The Euclidean norm, transpose, conjugate transpose, conjugate
transpose operation and mutual information are denoted by ‖. ‖, [.]T, [.]H, [.]† and I(.; .),
respectively. Without the loss of generality, x represents the set of optimization variables.

2. Fundamental Concepts

In this section, we provide insights into the general concepts and main preliminaries
that are associated with PHY security. First, we provide a brief overview of the basic system
model for PLS that is related to eavesdropping problems, as illustrated in Figure 1. Then,
we consider and discuss the hurdles of PLS from the perspective of the adversary model
that could prevent it from succeeding. The last part of this section presents several wiretap
channel models that adopt the common notations and scenarios that are considered in the
rest of the discussion.

2.1. Generic System Model

The typical network is where problems with PLS arise, which consists of a transmitter,
a legitimate (intended) receiver and a malicious eavesdropper, represented by Alice, Bob
and Eve, respectively. Figure 1 shows the general Alice–Bob–Eve model of a PLS system,
in which the transmitter and receiver communicate through the legitimate channel and
the eavesdropper makes a limited set of observations through a wiretap channel [37]. In
this setup, the eavesdropper aims to decode or obtain sensitive information from historical
observations of received signals. In other words, the objective of Alice is to use a secure
transmission strategy that can send a confidential message to Bob while making sure
that the eavesdropper is kept ignorant and is not able to glean any useful information
from the transmitted signals. In order to achieve security in this case, PLS techniques are
appropriately designed by exploiting the channel characteristics, such as noise, dispersion,
fading, interference, etc., along with efficient secure transmission strategies, such that the
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information being sent from source to receiver is kept confidential from both active and
passive eavesdroppers.
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As illustrated in Figure 1, the transmitted message signal M is encoded into X with a
length n and transmitted via a wireless medium. The signals that are received by Eve and
Bob are designated by RE and RB, respectively. The entropy function of the transmitting
signal is denoted by H(M), while the residual uncertainty of Eve’s observations is given
by H(M/RE). Taking the environment and scenarios into consideration, the availability of
CSI at Alice, Bob and Eve varies from full or partial channel knowledge to zero information.
The a priori knowledge that is available to Alice regarding the channel information of the
legitimate and eavesdropper channels is crucial for the determination of the corresponding
secrecy optimization scheme and PLS design. Nevertheless, in practical scenarios, it is
logical to assume that the Alice is aware of the statistical information of the eavesdropper
but not of its instantaneous realizations. Such information includes the type of channel
distribution, the average gain of the received signal, the spatial direction and the line-of-
sight (LOS) component.

2.2. Wireless Adversary Models

Due to the inherent characteristics of wireless communication, such as broadcast
nature, openness and the superposition of the transmission medium, wireless networks are
extremely vulnerable to security attacks. Within the field of security, an adversary refers
to a wireless attacker who aims to disrupt or prevent transmitted signals from reaching
the intended receiver. Therefore, it is important to consider adversaries when designing
a secure strategy in order to measure the effectiveness of the proposed security system.
Security attacks on wireless networks can be mainly classified into two types: active attacks
and passive attacks [38]. The concept of passive or active attacks is typically to do with
whether the adversary is actively injecting into the communication system or is merely
listening to the ongoing transmissions [39]. Due to the various types of adversaries and the
vast nature of attacks, there is a need to identify the assumptions, goals and capabilities
on which these different types of PLS are designed and the potential challenges that could
prevent PLS from succeeding.

A relevant set of goals is important for the modeling of a rigorous and strong adversary
model. Naturally, a stronger adversary, i.e., with prior knowledge or more resources, could
be able to attack the wireless network more successfully. With the adversary model, the
assumptions of the adversary include its environment and resources, such as competency,
knowledge, equipment, devices, etc. The adversary aims to compromise and obtain secret
data content from within the communication system. These sets of data can be the legitimate
transmission data or the property of the authorized user, e.g., energy consumption [40,41].
Due to their exposure to various types of attacks, communication channels are required
to have determined capacities that enable them to resist and alleviate wireless attacks.
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These capabilities provide the adversary with reliable interactions that are based on the
context of secure transmission systems. In fact, many of the PLS approaches assume that
Alice has no knowledge of the eavesdropper’s CSI as the adversary is passive (i.e., not
actively modifying the data, just silently reading and observing the communication system).
On the other hand, some studies have found that Alice is sometimes assumed to know
about the CSI of the eavesdropper [42–44]. Furthermore, active attacks have sometimes
been observed, such as the denial of service, replay and node malfunction attacks that
are employed against PHY security approaches. As a security community, we need to
adopt a strong adversary model in which the adversary is cleverer and more active. Under
the implications of an adversary being an active attack, intruders use more intrusive and
aggressive methods that aim to deteriorate the received signal quality for the intended user.

The essential characteristics of a secure transmission system include authentication,
availability, integrity, access control, and secret dissemination [38]. These can be established
through appropriately designed signal processing strategies and channel coding techniques.
The adversary model that is used in most PLS approaches is different from that used
by the traditional cryptography and security community. Therefore, for the purpose of
addressing the challenges that face PLS, it is important to bridge the gaps between the
various adversary models that are used by the different communities. In the current review
paper, the PLS mainly focuses on the premise that the eavesdropper is passive, i.e., it does
not communicate with the other nodes in order to conceal its presence.

2.3. Wiretap Channel Models

The secrecy problem of a physical layer system involves the transmission of infor-
mation signals through the legitimate channel without conveying the information via
the wiretap channel. The PLS achieves perfect secrecy by exploiting an advantage of a
legitimate transmission channel in the presence of an eavesdropper. Therefore, the wiretap
channel model is a significant representative design that examines the relationship between
the physical layer secrecy and channel capacity within a wireless transmission system. In
general, the wiretap channel model consists of MIMO channels, multiple-access channels,
multi-user broadcast channels and other channels, such as relay channels, interference
channels, etc. [39].

2.3.1. MIMO Wiretap Channels

A MIMO network structure consists of multiple transmit and receive antennae that
allow for simultaneous secure broadcasts with less inference and noise. Providing phys-
ical layer secrecy via adaptations to the multi-antenna technique is a typical and essen-
tial type of security method, which can be applied in practical wireless communication
systems [45–47].

In such multi-antenna scenarios, a typical MIMO wiretap channel model includes
SISO, SIMO and MISO channels. In this review paper, we consider the more general
setting that was studied in [39], in which the transmitter (Alice) wants to reveal the secret
information to the intended receiver (Bob) over the main channel while the eavesdropper
(Eve) acquires a noisy version of the transmitted signal via the wiretap channel, as shown
in Figure 2.

In this setup, the Alice, Bob and Eve are equipped with multi-antenna systems, which
are denoted by NA, NB and NE, respectively. Furthermore, the CSI of the main transmission
and eavesdropper channels are denoted by H and G, respectively. The general represen-
tations of the signals that are received by Bob and Eve, respectively, are described by the
following equations:

yB = Hxs + nB (1)

yE = Gxs + nE (2)

where xs is the nA × 1 transmitted signal with a covariance matrix of QX = E
[
xsxs

H] for
QX > 0. H ∈ {NB×NA and G ∈ {NE×NA are the MIMO channel matrices from Alice to
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Bob and Eve, respectively. Since the channels are discrete memoryless channels at the
transmitter, each element of H and G obey the complex Gaussian distribution with channel
gain coefficients of hij and gij between the ith source antenna and the jth intended receiver
and eavesdropper antennae. The noise vector of the received signal antennae is assumed
to be a complex Gaussian noise vector, with each element of nB and nE designed as an
independent and identically distributed (IID) complex noise vector with the variance of σ2

H
and σ2

G, where hij ∼ {N
(
0, σ2

H
)

and gij ∼ {N
(
0, σ2

G
)
.

It assumed that nB ∈ {NB×1 and nE ∈ {NE×1 are zero-mean AWGN vectors at the
legitimate receiver, as well as at an eavesdropper, with nB ∼ {N(0, I)∼CN(0,I) and
nE ∼ {N(0, I), respectively. The maximum power of the transmitted signal from Alice is
assumed to be P, where E

{∣∣∣∣xs
∣∣∣∣2 } ≤ P for a total power P. Initiatively, Equations (1) and

(2) are used as a basic optimization tool in PLS. Hence, the typical MIMO wiretap channel
model has been widely considered in PLS to ensure secure data transmission.
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2.3.2. Broadcast Wiretap Channels

In this channel model, Alice simultaneously transmits secret data content to mul-
tiple receivers in the presence of one or more unintended users, as shown in Figure 3.
The common scenario for broadcast channels is a multi-user cellular network, in which
the legitimate transmitter communicates with multiple intended receivers while being
protected from eavesdroppers in the downlink. It is assumed that one source Alice is
equipped with NA antennae and the intended I users and J eavesdroppers have NBi and
NEj antennae, respectively.

In such scenarios, the signals that are received by other users may interfere with
the desired signal due to the conditions under which each receiver obtains the mixed
signals from all users. Furthermore, the susceptibility of eavesdroppers may also increase
due to the opportunity for more information leakages in the downlink. Indeed, secrecy
performance is not only affected by the eavesdropper and the mixed signals but also by the
signals that are received by the other users [48]. Hence, a broadcast channel can be defined
as a mixed multi-channel, which is described by [49,50] as follows:

yBi = Hixs + nBi, f or i = 1, 2, . . . , I, (3)

yEj = Gjxs + nEj f or j = 1, 2, . . . , J, (4)

where xs is the nA × 1 transmitted signal for the confidential information with a covariance
matrix of QX = E

[
xsxs

H] for QX > 0. yBi and yEj are the signals that are received by the ith

intended user and jth eavesdropper, respectively. nBi and nEj are the complex noise vectors
at Bob and Eve, respectively. Hi ∈ {NBi×NA and Gj ∈ {NEj×NA are the matrices for channels
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H and G from Alice to the intended receiver i and unintended user j, respectively. Compared
to the traditional MIMO channel system, the design techniques for secure transmission over
broadcast channels are somewhat complicated. This is because the information leakages to
eavesdroppers and the inter-user interference need to be mitigated simultaneously.
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2.3.3. Multiple-Access Wiretap Channels

Multiple-access channels are another important form of multi-user network in which
more than one legitimate source sends information to a common destination user in the
presence of eavesdroppers that try to intercept and obtain the transmitted signals, as
illustrated in Figure 4.
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In this model, the transmitters are required to cooperate in order to guarantee secure
transmission over the multi-access channel. However, due to the geographic isolation, the
transmitters need to cooperate in a distributive manner. It is assumed that k transmitters
are equipped with NAk antennae and that one intended user and one eavesdropper have
NB and NE antennae, respectively. Thus, the signals that are received by the intended user
and an eavesdropper, respectively, are described as [51]:

yB =
k

∑
k=1

Hkxsk + nB (5)
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yE =
k

∑
k=1

Gkxsk + nE (6)

where xsk is the nAk× 1 transmitted signal with an average power constraint or a covariance
matrix constraint. Hk ∈ {NB×NAk and Gk ∈ {NE×NAk are the channel matrices from Alice to
the intended user and unintended user, respectively. nE and nB are the AWGN vectors at the
eavesdropper and intended receiver, respectively. In this survey, the secure multiple-access
scenario is investigated from the fundamental viewpoints of information-theoretic security.

2.3.4. Interference Wiretap Channels

An interference channel is one of the channel models that are used in PLS, in which
multiple legitimate parties (i.e., Alice and Bob) communicate with each other at the same
time and using the same channel [52], as illustrated in Figure 5. At the same time, the
communication between Alice and Bob is observed and decoded by an eavesdropper.
Since all of the legitimate users are in the broadcast domain of service, there is a high
probability of information leakage within this communication system. In order to avoid
leakages to intended users and to enhance the security performance of the system, several
multi-antenna techniques have been studied in the existing literature, such as interference
cancellation and mitigation techniques [53,54]. It is assumed that the channel model with
K transmitter and receiver pairs communicates with unintended users, where Alice k is
equipped with NAk source antennae and the destination receiver and unintended user each
have receiving antennae of NBk and NE, respectively. Hence, the signals that are received
by the intended user and Eve, respectively, are given by [27]:

yBk = Hkxsk +
k

∑
i 6=k

Hkixski + nBk (7)

yE =
k

∑
i=1

Gixsi + nE (8)

where xsi is the NAi × 1 encoded signal of Alice with an average power constraint or a
covariance matrix constraint. Hki ∈ {NBk×NAi and Gi ∈ {NE×NAi are the channel matrices
from Alice to the intended receiver and unintended user, respectively. nE and nBk are the
AWGN vectors at the eavesdropper and intended user, respectively. Furthermore, a typical
configuration for interference channels with an external eavesdropper and an interference
alignment was studied in [55]. It was shown that when an interference channel uses an
interference alignment with separate confidential messages to reduce interference, the
secrecy of the system can be improved. On the other hand, when an interference channel
uses an interference alignment with an external eavesdropper, it lacks knowledge about
the CSI of the eavesdropper and the secrecy of the system can be compromised. Therefore,
the authors concluded that an interference alignment with separately secure information
can provide more secure degrees of freedom than that with an unintended user.

2.3.5. Relay Wiretap Channels

Cooperative relaying is one of the multi-antenna techniques that have been presented
to improve the PLS by increasing the quality of channel capacity between the source node
and the destination receiver. In a secure relay network, the source and a relay node cooper-
ate to improve the system security while preventing eavesdroppers. The two commonly
adopted examples of relaying protocols are the AF (amplify-and-forward) [56–58] and
DF (decode-and-forward) [59–61] schemes. Examples of typical relaying networks are
shown in Figures 6 and 7, which consist of a source (Alice), an intended receiver (Bob), the
cooperative relay node and an eavesdropper (Eve). The relay node functions in a DF mode.
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Figure 7. A system model for a wiretap relay channel in the second time slot.

It is assumed that Alice, Bob, the relay node and Eve are equipped each with NA, NB,
NR and NE antennae, respectively. In the first case, Alice sends the NA × 1 information
signal vector xs to the relay node. Then, the received signals at Bob, the relay node and Eve,
respectively, are given as [62]:

yB(1) = HABxs + nB (9)

yR = HARxs + nR (10)

yE(1) = HAExs + nE (11)
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where HAB ∈ {NB×NA , HAR ∈ {NR×NA and HAE ∈ {NE×NA are the matrices from Alice to
the Bob, the relay node and Eve, respectively. Obviously, nB, nR and nE denote the AWGN
vectors at Bob, the relay node and Eve, respectively. The relay node decodes the original
message signal and forwards it on to Bob.

In the second case, the relay node transmits a new version of xs with a weighting
vector xr ∈ {NR×1 of the encoded signal. Hence, the signals that are received at Bob and
Eve are described as:

yB(2) = HRBxr + nB (12)

yE(2) = HRExr + nE (13)

where HRB ∈ {NB×NR and HRE ∈ {NE×NR are the matrices from the relay node to Bob
and Eve, respectively. Without loss of generality, we investigated the decode-and-forward
(DF) cooperative channel model. Another type of cooperative relaying protocol is the AF
channel scheme, which has a great impact on the capacity of physical layer secrecy. An
extensive investigation of such an AF scheme for secure relay communication is presented
in [63,64].

3. Performance Metrics and Application Scenarios in PLS

Physical layer secrecy ensures information confidentiality by enhancing the perfor-
mance difference between the main transmission and the wiretap channels. The selection of
appropriate metrics is essential for this approach to secure transmission design. One of the
critical steps that must be executed after the design of secure physical layer transmission
is the proper measurement of the level of security using the right metric. Therefore, it is
essential to select suitable performance metrics that can quantify the relevant aspects. The
performance evaluation must indicate the level of security that the wireless schemes or
techniques can provide. However, various challenges are commonly being brought up by
different performance requirements, especially when the sequence of channel coding has a
finite block length [65].

In this section, we present the basic secrecy metrics that are usually adopted in the
design of efficient secure transmission strategies. It needs to be noted that the performance
metrics that are used in the literature mainly focus on keyless PLS technologies, which
are termed SINR-based performance metrics. SINR-based metrics are used to measure the
achievable performance of a secure design under confidentiality constraints, namely the
metrics that are related to the secrecy capacity/rate, secrecy throughput, power/energy
consumption, secrecy outage probability (SOP) and quality of service (QoS). To be more
specific, security metrics, as mentioned above, are commonly taken as the design metrics
(criteria) for the design and optimization of PLS paradigms.

3.1. Secrecy Capacity Metrics

The goal of secrecy metrics is to quantify and evaluate the security performance of a
communication system or a user’s privacy under the consideration of a specific adversary.
The limits of PLS are characterized by the channel secrecy capacity or the more general
trade-off between the maximum transmission rate and the secrecy capacity equivocation
rate [66–68]. In PLS, the secrecy rate is described as the data that are transmitted via the
given transmission medium per second, which are available on Bob’s channel but are not
decoded on the eavesdropper channel. More precisely, to assess the security performance
of a system, the achievable secrecy rate and the Gaussian channel inputs have usually
been considered in pioneering works [69]. Therefore, the secrecy rate can be defined
as the performance difference between the capacities of the main transmission and the
wiretap channel. Considering the PLS system model in Figure 1, the achievable rate of a
transmission strategy is described as:

Rs = [RB − RE]
+ (14)
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where the conjugate transpose [x]+ , max{0, x}. RB and RE are the data transmission
rates of the Bob and eavesdropper channels from the source Alice to the legitimate user
and intruder, respectively. Basically, the rate of transmission Rs can be improved using
signal processing techniques and optimization approaches, which have been proven to
be the lower bounds of security channel capacity [69]. In the actual design of secure
transmission systems, a non-zero rate of transmission can be achieved using some multi-
antenna techniques, such as secure precoding, beamforming, adaptive resource allocation,
etc. Such techniques attempt to intentionally degrade the wiretap channel while enhancing
the channel quality for the intended receiver.

On the other hand, the performance metrics that are sometimes referred to as the upper
bounds of secrecy rate were defined by [70,71], which play a central role in PLS in terms of
secrecy capacity. More accurately, they describe the maximum transmission rate at which
confidential messages can be securely delivered to the intended user while preventing the
eavesdropper from decoding any important information within the communication. The
secrecy capacity of a wireless transmission is an essential theoretical tool for assessing the
performance of practical PLS system designs. By examining a channel’s secrecy capacity
and related features, information-theoretic security can provide common ground and
guidance for the design of secure wireless transmission systems. To maximize performance
capacity, the qualities of both legitimate and wiretap channels play a significant role in
AWGN channels [72]. This can be realized by optimizing the optimal input probability
distribution P(X) of mutual information [73], which can be expressed as:

Cs = max
p(X)

(I(X; Y)− I(X; Z)) (15)

where I(X; Y) = H(X) − H(X/Y) and I(X; Z) = H(X) − H(X/Z). X represents the
channel inputs that are sent by source Alice and Y and Z are the channel outputs that are
received and observed by Bob and the eavesdropper, respectively. It should be noted that
wiretap channels are degraded; therefore, the corresponding signals of X, Y and Z form a
Markov chain in any distribution of p(X) [67,70]. Based on [72], the secrecy capacity of an
AWGN channel is defined as the difference between the capacities of the main transmission
channel and the wiretap channel, which is mathematically given as:

Cs = CB − CE (16)

where CB and CE are the secrecy capacities of the legitimate and wiretap channels, respectively.
In this case, it is possible to obtain a non-zero security capacity when the eavesdropper channel
is downgraded relative to the Bob channel. Specifically, the intended receiver and eavesdropper
channels are supposed to have variances of σB

2 and σE
2, respectively.

It should also be noted that the secrecy capacity and secrecy rate that are discussed
above do not consider wireless fading channels. More precisely, it is assumed that Bob’s
channel is more substantial than the eavesdropper channel. However, in fading channel
environments, the channel gains for both legitimate and eavesdropper channels change
randomly over time while remaining constant in each time slot [70]. When considering the
features of fading channels, the average secrecy capacity must be assessed to improve the
resulting security. Consequently, the secrecy rate or secrecy capacity is a suitable metric
for these fading channel scenarios [66]. In order to assess the security within the actual
transceiver design, an achievable ergodic secrecy rate was proposed in [69] as a security
metric under the assumption of fading channels. When the transmitting power constraint
is P, the attainable secrecy rate can be defined as the maximum gap between the secrecy
rates of the main transmission and eavesdropper channels. When considering average
power, the secrecy rate of a secure transmission system is described as:

RS = log2

(
1 +

HAB P
σB2

)
− log

(
1 +

HAEP
σE2

)
(17)
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where σB
2 and σE

2 are the variance of noise vectors in the Bob and eavesdropping channels,
respectively. Therefore, the attainable rate of transmission is assumed to evaluate the secu-
rity performance of the designs for efficient transmission strategies under the consideration
of fading channels. However, the secrecy rate is different for different optimization and
signal design techniques. In order to evaluate better secrecy rate performances in multi-
antenna techniques, a novel approach to the optimization technique was discussed in [74].
Generally, the secrecy rate can be maximized through the allocation of power according to
the knowledge of the CSI of the transmitter. Therefore, when the combinations of CSI are
different at the source Alice, the attainable secrecy rate may be different.

In summary, the secrecy rate or secrecy capacity of an Alice–Bob–Eve channel is mainly
calculated using the difference between the capacities of the legitimate and eavesdropper
channels and the availability of the CSI of the transmitter. Although the secrecy rate and
secrecy capacity are well established and commonly used in information-theoretic security,
these metrics only reflect the achievable bounds of the random channel characteristics and
do not indicate the real security performance in practical design scenarios with various
service applications. In order to measure and improve the resulting secrecy in fading
channel environments, these metrics are extended to outage secrecy rate probability and
outage secrecy capacity [75].

3.2. Secrecy Outage Probability (SOP)

A secure transmission system may be affected by imperfect CSI and wireless fading
channels. Therefore, an appropriate secrecy metric needs to be adopted from the perspec-
tive of system design and signal processing approaches, which is referred to as secrecy
outage probability (SOP). The SOP mainly focuses on the difference between the error
probability rates of the legitimate user and the eavesdropper in order to achieve a practical
security performance. More precisely, it describes the probability that a detailed evaluation
of the secrecy rate for a specific secure transmission system is not achievable. This met-
ric specifically investigates the information security and reliability of data transmission.
Despite the importance of the conventional rate outage probability in characterizing and
evaluating the achievable secrecy performance of fading channels, the SOP has three main
weaknesses [76]: (1) the SOP cannot provide any insights into the capability of an eaves-
dropper to correctly identify secret messages; (2) the SOP cannot investigate the amount of
sensitive data that have been revealed to unintended users when a secrecy outage event
occurs; (3) the SOP cannot be related to the requirements of the quality of service (QoS) for
different application scenarios. Analogous to the traditional rate outage probability, the
SOP is used to estimate the probability that the instantaneous secrecy capacity Cs is below
than the actual secrecy rate R0

s [77–80]. The SOP of this definition is expressed as:

Pout (Rs) = Pr

{
Cs < R0

s

}
(18)

More specifically, the outage secrecy incidents
{

Cs < R0
s
}

in (18) indicate that the
rate of transmission cannot be executed by the main transmission channels and that the
secure communication would not be achieved. In this case, secure transmission would
only be achieved when the main transmission channel has a greater SNR than the wiretap
channel. On the other hand, the authors in [81] studied the SOPs and outage secrecy rates
of quasi-static flat fading channels. They showed that secure transmission can be ensured
even when the average SNR of the main transmission channel is less than the eavesdropper
channel. Furthermore, their results demonstrated that the instantaneous secrecy perfor-
mance of fading channel features would be greater than the secrecy performance of a
non-fading channel with the same average SNR. Basically, the instantaneous rate capacity
is different for the different realizations of fading channel scenarios. More precisely, the
average secrecy capacity is equal to the maximum instantaneous secrecy capacity for fading
channels. In order to maximize the secrecy performance of secure transmission strategies,
the transmission power is optimally allocated based on the statistical distribution of Bob’s
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channel and the instantaneous realization of the eavesdropper channel. Mathematically,
this can be defined as:

max{CB − E[CE]}; s.t. 0 ≤ ∅ ≤ 1 (19)

where ∅ represents the ratio of power distribution across the main transmission channel
and E[CE] is the expected capacity of the eavesdropper channel. The average secrecy
capacity (Cs) can be expressed as:

Cs = CB − E[CE] (20)

To be more specific, the Cs can be maximized through the allocation of power based
on the assumptions on the knowledge of CSI at the source node [82]. Therefore, the
Cs may be different when a source Alice has different knowledge about the CSI of the
legitimate channels. More generally, it has been shown that the CSI of a legitimate channel
is more important than the CSI of an Eve channel. An Alice can decide to send confidential
information when the condition of the legitimate channel is strong enough and when the
CSI is available at the transmitter. In this case, the CSI of the wiretap channel may not
be important for secrecy capacity. For example, when a source Alice only has the CSI of
the legitimate channel and not the CSI of the wiretap channel, the allocation of power can
be executed according to the information of the CSI of the legitimate channel. Thus, it
is possible to minimize the SOP by carefully modeling the achievable rate of the secrecy
capacity RS, the secrecy capacity of the legitimate channel RB and the conditions for secure
transmission [83].

In summary, the secrecy outage probability (SOP) is used in cases where the source
transmitter has very little information about the CSI of the intended receiver or the eaves-
dropper. The SOP is more applicable in conditions where the statistical CSI of a wiretap
channel is known to the source Alice. In general, the secrecy outage capacity/probability is
used to measure the reliability of secure transmission strategies.

3.3. Quality of Service (QoS)-Related Metrics

Compared to existing wireless communication networks, 5G and B5G networks have
very high data rates and higher coverage rates with significantly improved QoS. One of
the main demerits of employing traditional secrecy outage probability-based metrics for
5G networks is that they are not directly linked to the QoS requirements for different
service applications. Without loss of generality, the QoS-related metrics that are used
in this survey include SINR-based, PER-based and BER-based metrics. The SINR-based
metrics are the most widely used metrics for describing the performance difference between
the capacities of Bob and Eve channels. The theoretical basis of the SINR-based metrics
can be characterized as the quantitative relationship between the noise powers of the
legitimate channel and the Eve channel [29,30]. Additionally, the performance of the main
transmission and wiretap channels is also described by the QoS. Thus, the SINR-based
metrics are instantly linked to the QoS and this can help with the optimization and modeling
of secure transmission strategies. A maximum SINR performance of communication from
the source Alice to Eve and a minimum SINR performance from Alice to Bob imply that
the system performance for receiving signals is good enough in terms of the reliability
and security aspects. This includes the method for efficient secure communication that is
capable of obtaining the required maximum and minimum error levels for Eve and Bob,
respectively. In order to enhance the capacity of a transmission link, it is important to adopt
PLS techniques, such as beamforming. An example of this definition is the packet error
rate (PER) [84] and bit error rate (BER) [85], which can be analogously related to secrecy
throughput [86] and, therefore, the SINR. For the foundation of a transmission channel, the
BER requirement must be greater than the minimum desired level. In general, the physical
layer techniques exploit optimization problems to enhance the security of a transmission
strategy by reducing the BER of eavesdroppers. As a result, the BER can be utilized to
estimate the performance of a secure transmission strategy, as well as the QoS requirements.
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Furthermore, the authors of [87] provided an alternative design for a secure precoding
scheme, which was based on the QoS and SINR metrics. This design contains an optimal
power allocation and standardization framework schemes, which also realize the trade-off
between minimizing SINR at the eavesdropper and maximizing SINR at the legitimate
receiver. Despite the existing knowledge-rich approaches, secure and reliable transmission
strategies are still a predominantly open problem within physical layer design and optimiza-
tion systems. In these cases, the appropriate metrics are commonly used during security
design to estimate the attainable performance of transmission systems. Specifically, the
secrecy metrics that are listed in Table 3 are mostly considered to be the design criteria and
optimization constraints that are necessary for efficient secure communication strategies.

Table 3. Summary of performance metrics for PHY security.

Metric Types Definition Optimization Problems

Secrecy capacity The maximum (upper bound)
of the secrecy rate [72].

Transmission effectiveness of
secure communication

strategies.Secrecy rate

The transmission rate that can
be genuinely supported by the

main transmission channel
but not decoded on the

eavesdropper channel [85].

Secrecy outage
probability (SOP)

The probability that the actual
or targeted transmission rate

is greater than the
instantaneous secrecy capacity

[86–88].

Reliability and security of
communication systems.

Quality of service (QoS)

The performance
improvement of secure

transmission strategies, which
includes the SINR-based,

PER-based and BER-based
metrics [27,31,89].

QoS and security of
transmission systems.

Power/energy consumption

The minimum power
consumption that is needed to

ensure secure QoS
requirements for different

services [90–93].

Resource consumption costs
for secrecy performance.

4. Research Directions for System Designs and Optimization Concepts

Mainstream studies on PLS system design can be generally summarized by two main
approaches. The first is related to secrecy features, which particularly focuses on the
characterization of security capacity and eavesdropping or the more general trade-off
between attainable secrecy capacity and confidentiality equivocation based on the concepts
of information-theoretic fundamentals. The second approach is related to secure system
design, which mainly focuses on the design and optimization of secure transmission
strategies through the use of signal processing techniques [37,69,94,95].

Many conventional technologies in physical layer security, without the consideration
of secrecy communication, can be reconstructed for secure data transmission under the fun-
damental framework of PLS. To realize the basic optimization problems and performance
metrics of PLS, the main issues and research directions are expected to include three candi-
dates for secure design strategies, as illustrated in Figure 8. These research topics are signal
processing techniques, secure resource allocation and secure antenna selection/cooperative
nodes. Improvements in secret communication within PLS can be supported by these
research topics [30]. The signal processing techniques utilize secure precoding and beam-
forming to achieve the design of efficient secure communication strategies. The secure
precoding and beamforming designs fully utilize the characteristics of multi-node and
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multi-antenna scenarios, which may form virtual or massive MIMO networks. Resource
allocation, which is usually adopted within conventional communication systems, includes
the allocation of power and subcarriers. It mainly focuses on resource management systems
that utilize multi-faceted wireless resources, including power, time slots and frequency.
Cooperative nodes or secure antenna selection, such as jammer selection, relay node selec-
tion and user selection, which are widely used in multiple node scenarios, have been fully
explored as promising methods to improve the design of PLS. Such techniques attempt
to select appropriate cooperative nodes or antennae from a candidate set to enhance the
efficiency of secure design strategies.
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Despite the unparalleled advantages of the research approaches that are mentioned
above, it is worth noting that some drawbacks do exist. To achieve a fine-grained security
performance, only using a single research approach may be difficult or even insufficient for
future wireless systems. Therefore, the joint use of some of the above techniques that is
based on several enabling technologies would be more efficient for ensuring the security of
the whole transmission system [34]. Typical examples include joint user scheduling and re-
source allocation and the trade-off between reliability, security performance, latency, energy
consumption, etc. Furthermore, considering joint strategies, examples of the application of
AI and ML technologies in physical layer security design and optimization are discussed in
detail in Section 5.

4.1. Main Technical Challenges in System Design

Keyless-based PLS techniques are well established transmission strategies that can
enhance the performance variation between the main transmission channel and wiretap
channels. Unlike conventional transmission methods, the optimization objectives, the
conditions of constrained optimization problems and the performance parameters that are
associated with SINR-based security techniques are based on the characteristics of wireless
channels and information theory secrecy metrics. For secure physical layer design and opti-
mization schemes, the selection of suitable performance metrics is crucial. As illustrated in
Figure 9, multi-dimensional security and resource management strategies typically contain
secure resource allocation and signal processing methods for cooperative wireless networks.
Resource allocation systems are employed by the network operator, which are shown in the
top position; simultaneously, the signal processing schemes are operated by transmitters,
which are positioned on the bottom. Multiple-antenna techniques have been widely used
in wireless networks due to their spatial degrees of freedom, which are offered by multi-
service networks. Although secure multi-antenna techniques are widely implemented
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in various design approaches, they can also be mathematically modeled as optimization
problems to find the most favorable transmission solutions. This can be realized and
optimized by using information-theoretic security metrics to design secure beamforming
and precoding, appropriate antenna or relay node selection and resource allocation. Most
of the problems in PLS are caused by non-convex optimization due to the characteristics
of quadratic programming functions in the performance metrics. Many researchers have
carried out extensive work on formulating and solving these optimization issues in order
to obtain the maximum level of security [96]. By considering the complexity of these
non-convex constraint functions, several signal processing techniques and optimization
methods have been developed to solve the corresponding optimization problems.
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Although many optimization methods have been developed to cope with the non-
convexity of the optimization problems in PLS schemes, there are still many challenges
to solve within the existing schemes; specifically, the basic assumptions that are related
to system design and channel coding models. Given the limited resources in wireless net-
works, such as energy and bandwidth, a common problem that is associated with resource
management is the adequate exploitation of the resource constraints to attain the condi-
tions of the information-theoretic security metrics. In a transmission system with limited
resources, design and optimization schemes must be considered for the resource allocation
to the various consumers who use the data over the network so as to achieve a good per-
formance. Several existing works have discussed the fundamental resource management
issues within multi-dimensional wireless networks, such as power allocation, subcarrier
allocation and joint power and subcarrier allocation [97–106]. The existing secure resource
allocation methods are generally based on communication nodes with three terminals (i.e.,
the Alice–Bob–Eve model) and lack sufficient investigation into multi-user scenarios and
heterogeneous networks. On the other hand, the existing design and optimization of signal
processing schemes are commonly based on the parallel fading channel and AWGN, with
few investigations on massive MIMO and millimeter wave channels. Therefore, the PLS
is still a great potential prospect for 5G wireless communication systems to mitigate all
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of these challenges. As discussed above, the complexity of networks and channels can
affect the corresponding optimization objectives, which results in additional non-convex
optimization problems that are hard to address. The major challenge in the existing signal
processing methods is the computational cost of implementing optimal secure precoding
and beamforming schemes in practice. When considering the challenges and problems
that are associated with system design, potential research directions and corresponding
enhancement schemes can be identified and evaluated by reaping the benefits of ML and
AI enabling technologies, which are discussed in detail in Section 6.

4.2. Optimization in PHY Security: Current Status and Main Issues

The information-theoretic studies on the investigation and characterization of attain-
able rates of security performance for multi-dimensional secure wireless networks that are
presented in [31,81,107,108] have inspired the optimization and system design of many
signal processing techniques. From the fundamental viewpoints of optimization objectives,
four representative techniques have been adopted in this area: (1) convex optimization;
(2) secure beamforming; (3) artificial noise (AN); and (4) zero-forcing (ZF) precoding.

4.2.1. Convex Optimization Techniques

Convex optimization has been widely used in PLS because it can effectively evaluate
information-theoretic security metrics to find the most favorable transmission solutions.
In PLS, the optimization problem refers to the problem of determining the performance
metrics, such as power consumption, secrecy outage probability, secrecy capacity or secrecy
rate, etc., which were discussed in Section 3. In the existing studies on PLS, there are some
convex optimization techniques that are widely used to resolve optimization problems,
such as in [109]. As mentioned earlier, due to the properties of the logarithmic subtraction
functions in the performance metrics, most of the optimization issues in PLS are either
non-convex or quadratic programming functions. These non-convex optimizations are
adopted to solve problems that are related to non-linear constraints and objective functions.
Therefore, non-convex optimization problems can be used in the design of complex global
and optimal solutions. Some common examples of non-convex optimization problems
include secure power allocation, power minimization and beamforming. In order to
achieve optimal solutions, the original non-convex problems need to be converted into
convex problems using other functions, such as SDP. Semi-definite programming (SDP)
can be used to optimize a linear constraint function under non-negative and linear equality
constraints. In general, in order to solve the problems of non-convexity optimization in
PLS system design, many optimization methods have been discussed in the literature, such
as semi-definite relaxation (SDR), alternating search, dual decomposition, etc. [37,97,110].

4.2.2. Secure Beamforming Techniques

The basic idea of beamforming is to transmit signals effectively in the direction of
Bob and Eve, which aims to enhance the signal quality of the main transmission channel
and degrade the quality of wiretap channels. Beamforming is a typical signal processing
method that has been shown to be a promising means to achieve PLS [95,111–113]. The
optimization concern of secure beamforming-based designs is to reduce the interference
signal at the intended receiver so that the desired recipient can receive the desired QoS via
the transmitted signal. For secure beamforming, the optimization problems are neither con-
cave nor convex due to the characteristics of the logarithmic functions in the performance
metrics. Due to this, optimization problems are solved using basic numerical calculations in
many situations, for example, as in [63,90,114–116]. However, the complexity of the numeri-
cal methods is computationally prohibitive, which affects the design of secure beamforming
within practical applications. In order to reduce the complexity, some low-computational
algorithms have been explored in the literature, which facilitate practical application sce-
narios, such as in [117–122]. Therefore, due to their simple design schemes, the developed
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algorithms are attractive alternatives that attempt to maximize secrecy performance and, at
the same time, minimize interference to the secure transmission.

4.2.3. Artificial Noise (AN) Techniques

AN is an effective technique for multi-antenna systems and has been extensively
considered within PLS in order to enhance communication security even further. The
essence of the AN technique is to generate noise in the null space of the main transmission
channel; simultaneously, it is also designed within the range of the wiretap channel [85]. The
basic idea is to generate an AN signal that is based on the assumptions of the eavesdropper
so that the intended receiver is not affected. This technique aims to degrade the quality of
the unintended receiver’s channel by adding a noisy signal, which is used to interrupt their
attacking abilities [123–125]. On the other hand, it is designed to avoid interference leakage
for the intended user. In multi-antenna scenarios, it is possible to adjust the directions of the
transmit and AN signal jointly through spatial beamforming by exploiting the degrees of
freedom to optimize the performance metrics. In practice, performance of the AN technique
depends on the knowledge of the CSI of the eavesdropper at the transmitter. Naturally,
knowledge of the full CSI of both the wiretap and legitimate channels is important for
practical security design and optimization schemes to attain the optimal performance
of secure transmission. When the CSI of the Eve channel is known at the source Alice,
the maximum spatial degrees of freedom are applicable, i.e., the beamformer is perfectly
designed. However, according to practical scenarios, the CSI of the eavesdropper is usually
either imperfect or unknown. Several methods have been proposed in the literature to
deal with these assumptions, such as those that are presented in [126,127]. They provide
the optimal power allocation and secure beamforming scheme between AN and transmit
signals in order to maximize the achievable secrecy performance. The major strength of the
AN design is that the offered secrecy performance matches the SNR well because when the
SNR increases at the eavesdropper, the power of the noise signal increases, along with the
transmitting power.

4.2.4. Zero-Forcing (ZF) Precoding Techniques

Precoding is another signal processing method that is used to deliver signals to the null
space of wiretap channels. In ZF precoding schemes, the source Alice that uses multiple
transmit antennae is based on the cancelation of unwanted signals at the destination node
in multi-user or multi-stream data transmission [128]. Some authors provided an iterative
algorithm to control the interference signals that are leaked to unauthorized users. The
design of secure precoding that is based on ZF beamforming was discussed in [129] and
requires both the complete CSI of the main transmission and wiretap channels at the
transmitter and that the number of intended user antennae is greater than that of the
eavesdropper. To be more specific, the security performance of ZF precoding becomes very
poor when knowledge of the CSI of the eavesdropper at the transmitter is limited, which
makes it less applicable.

In summary, the concepts of optimization objectives, constrained conditions and corre-
sponding performance parameters were discussed based on four basic signal processing
techniques in order to easily understand design and optimization problems. Although
optimization problems that use convex optimization achieve better secrecy performance
than the conventional secure beamforming and zero-forcing precoding techniques, convex
optimization is more complex and expensive to apply to different services within practical
scenarios. To tackle these network complexity and computational costs, service providers
should develop solutions to ensure reliability and provide secure resource management to
their customers in a robust, intelligent and reliable way. In the next section, we discuss the
use of AI and ML technologies as key enablers for achieving the above-mentioned system
performance metrics.
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5. Paradigms of AI for Physical Layer Optimization and System Design

In the face of new service requirements and heterogeneous networks, it is challenging
to meet the existing physical layer design and optimization techniques through the use
of one method alone. In order to solve the more complex optimization problems in PLS,
many enabling technologies will be used in B5G communication networks. As powerful
tools and intelligent problem-solving algorithms, ML and AI can be widely applied in the
design and optimization of physical layer security paradigms. In this section, examples
of ML- and AI-based solutions in physical layer design and optimization are discussed,
including point-to-point multi-antenna techniques, secure resource allocation and signal
processing methods.

5.1. Overview of AI and ML Enabling Technologies

As powerful and intelligent tools, AI and ML can be widely applied in the opti-
mization and system design of 5G network infrastructures in order to solve complex
problems [130–132]. AI and ML approaches have been widely used to solve complex
problems within the upper layers of open system interconnection models, such as the
deployment of wireless communication and cognitive radio relay networks, which pro-
duce significant performance improvements compared to secure wireless communication
systems that were designed using conventional methods [133]. However, considering
the recent success of current trends and the challenges of future wireless communication
systems, such as high-speed connection demands in complex scenarios with unknown
channel models, AI and ML approaches have now also been considered in the physical layer
of wireless transmission strategies [134–137]. Recent advances in AI and ML techniques,
especially deep learning (DL), reinforcement learning and convolutional neural networks
(CNN), have provided novel concepts and potential opportunities to solve these complex
problems. Extensive research has been conducted on the application of ML- and AI-based
methods in 5G and B5G networks, for example, as presented in [138–143]. Examples of
typical applications in the physical and data link layers include the use of DL or reinforce-
ment learning algorithms to evaluate and predict channel quality, the use of orthogonal
frequency division multiplexing (OFDM) for symbol detection at the receiving end, channel
encoding and decoding and dynamic spectrum random access, among other functions.
In channel quality assessment, deep neural network (DNN) algorithms analyze limited
pilot signals to help massive MIMO systems infer complete and accurate knowledge of CSI.
Therefore, performance enhancement, quality of service and low computational costs can
be achieved by applying CNN, DNN and reinforcement learning algorithms in channel
encoding and decoding.

Furthermore, AI learning-based methods have been used to design universal frame-
works for various technical challenges for base stations, characteristics and applications,
which have contributed to the enhancement of 5G wireless networks. AI algorithms can be
implemented to address various problems in resource utilization, network traffic and user
demand. They can make it possible to smartly coordinate 5G base stations (BSs) and other
core 5G network elements, such as user plane functions [144–146]. ML and AI schemes can
help to further improve reliability, security performance, energy efficiency and network
latency by developing integrated scheduling and efficient allocation schemes. Considering
the potential of PLS in the system design and optimization of 5G networks, the challenges
and corresponding opportunities for intelligent AI and ML technologies to achieve a high
level of security at the physical layer, as well as cross-layer applications, deserve to attract
more attention from the research community. AI and ML algorithms are suitable for the
analysis of future 5G networks and the adaption of resource management and network
protocols for different applications. These algorithms have their own different pros and
cons. An overview of some of the notable techniques and focused issues that are associated
with AI and ML technologies are presented in Table 4.
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Table 4. Overview of ML and AI techniques for physical layer design and optimization.

ML- and AI-Based Techniques Focused Issues Advantages Limitations

AI and edge
computing (EC) [34]

Investigation of the gap between
PHY security and AI–EC.

Robust PHY layer key generation
schemes and secure resource

management frameworks.

Complexity of training models for
various PLS issues.

Deep reinforcement learning [35] Enabling of secured visible light
communication (VLC).

Achievement of the optimal
solution between secrecy rate

and utility.

Avoidance of the
quantization error.

Integrated AI [36]
Integration of wireless power

transfers and cooperative
jamming for secure transmission.

Achievement of the trade-off
between security performance

and energy consumption.

Limitations of optimal scheme for
solving more complex problems.

Iterative water-filling algorithm
[147]

A comprehensive investigation of
MIMO eigenmode transmission.

Bridging of the gap between AI
and 5G technologies.

Challenging integration of AI and
5G networks.

Distributed AI federated learning
[148]

A brief survey on multi-antenna
techniques.

Contribution of robust and
fine-grained security metrics. Security issues at the device level.

Feed-forward DL model [149] RF beamforming
codeword prediction.

Promising results for
beamforming problems.

Lack of investigation into
security issues.

Adversarial DL model [150] Adversarial attacks for
beamforming prediction. Consideration of security issues. Complexity of adversarial

training approach.

In the next subsections, we discuss some ML- and AI-based applications in the design
and optimization of 5G networks, which cover three different problems within the physical
layer of wireless networks, including secure multi-antenna techniques, secure resource
management and the optimization of signal processing methods.

5.2. AI for End-to-End Multi-Antenna Techniques

In conventional physical layer modules, secure transmission design usually relies on
non-interactive random-coding arguments and mainly focuses on the establishment of the-
oretical achievements. In this case, it is possible to achieve a good security performance by
demonstrating the existence of PLS codes, such as low-density parity-check (LDPC) codes,
lattice codes and polar codes. However, the design of explicit security using these conven-
tional methods is less reliable in practical and realistic communication systems [151]. To be
more specific, the optimization problems of the physical layer of beyond 5G networks are
non-deterministic polynomial (NP) problems and are becoming more challenging as there
is a series of barriers between different signal processing blocks, such as non-orthogonal
multiple-access (NOMA) channel encoding and signal detection, the space–time processing
of multiple user MIMOs and channel decoding for polar or LDPC codes [152,153]. In such
scenarios, LDPC codes have a higher decoding complexity in large blocks or under poor
noise conditions, while polar codes require multiple iteration convergences to achieve
optimal performance.

In order to cope with the existing gaps, AI and ML techniques have been applied to
simplify and handle physical layer modules [154–157]. Specifically, deep neural network
(DNN) algorithms have been widely implemented in various signal processing function
blocks, such as MIMO detection [158], polar code decoders [139], modulation recogni-
tion [159], etc. AI can be mainly applied to CSI processing, receiver design and end-to-end
link design at the physical layer. For example, neural networks in deep learning have
been used to learn the compressed representations of high-dimensional CSI in wireless
communication, thereby reducing the CSI feedback overhead. For the physical layer mod-
ules, there have been many related AI-based works that have addressed the design and
optimization problems of end-to-end multi-antenna systems. In [160], DNN was employed
for a joint optimization scheme in end-to-end communication. In contrast to conventional
channel equalizer and channel decoder approaches that follow non-interactive schemes,
the DNN-based joint optimization consists of an adaptive learning (encoding) module and
an end-to-end communication module, which are interactive. This approach is very useful
for reducing the computational cost of training and online tasks.
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Furthermore, an ANN-based autoencoder was proposed in [161] to generate end-to-
end system optimization, which comprises a model-based solution and adaptive learning
modules that can obtain important information in real-time scenarios. This framework
has established applications in multi-antenna MIMO channel systems, which consist of
three functional blocks: the transmitter, the MIMO channel generator and the receiver,
as illustrated in Figure 10. The results showed that the learning module aims to encode
the data inputs in an unsupervised fashion, which has the ability to redesign sets of
data inputs at the output module. The functionality of the autoencoder is obtained by
iteratively training the transmitter and receiver modules with block error rate (BLER),
which is represented as fully connected DNNs. The resulting system has advantages for
guaranteeing energy constraints. This scheme was later extended by other researchers to
include multiple user MIMOs [162] in order to achieve better enhanced BER performances
in the MIMO channels. This functionality is performed by learning from the input data and
training for different scenarios with multiple antennae and various levels of CSI knowledge.
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Therefore, existing optimization problems have proved the advantages of using AI,
specifically DNN-based schemes for end-to-end communication without the assumption
of several models in the existing conventional design concepts. Thanks to the potential of
autoencoders, the complicated issues that cannot be modeled by conventional methods can
be solved by training the scenarios and then optimizing the performance.

5.3. Applications of AI in Secure Resource Allocation

Resource management is a crucial issue for 5G networks, including inter-cell resource
block allocation, computing power and energy allocation, available spectrum and commu-
nication channels, massive MIMO user clustering and beamforming resource allocation in
distributed network structures [163–165]. Secure resource allocation in B5G networks is a
more challenging and multi-objective performance optimization problem. The essential
task of resource allocation in 5G networks is conducted to predict future service requests,
mobility and the location of users. Since the emergence of new technologies and services
in 5G that typically have limited power and restricted processing and are delay-sensitive,
it has become useful to match these multi-objective requirements with minimum valu-
able resource costs, such as power and energy. The existing secure resource management
and utilization schemes that have been widely adopted in traditional design concepts are
based on end-to-end performance metrics, with less focus on multi-dimensional wireless
networks. This requires the help of AI and other intelligent computing technologies to
overcome these gaps in the existing schemes. The application of AI and ML techniques has
great potential in these areas.

In this subsection, we consider typical multi-dimensional downlink resource alloca-
tion in a multi-cell, multi-user OFDMA-based scenario, as shown in Figure 11. In this
framework, since the OFDM resource block (RB) distribution to various users within the
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same cell is orthogonal, the intra-cell interference signals are removed over wireless chan-
nels. The detection of OFDM symbols at the receiver usually depends on a receiver that
uses maximum throughput estimation for evaluation, but this method is very sensitive
to CSI errors and the accuracy of the model itself. The design of RB allocation for users
is mostly carried out using non-linear programming, which involves non-deterministic
polynomial (NP) optimization problems [153]. Nevertheless, the high complexity of this
optimization method is prohibitively expensive; hence, it is hard to apply this method
in practical scenarios. Therefore, it is evident that the traditional method for reducing
computational cost is becoming less reliable. By applying AI to this NP problem, resource
allocation can be further improved compared to existing resource management schemes.
More specifically, reinforcement learning approaches (e.g., the Q-learning algorithm) can
help to allocate resources efficiently.
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The Q-learning algorithm was designed with the goal of maximizing the entire system
performance by avoiding the allocation of similar RBs to neighboring cells that are located
close to boundaries. The main motivation for applying Q-learning to RB allocation in
downlink OFDM systems was discussed in [153]. According to [149], the Q-learning
scheme can solve the NP combinatorial optimization problems that are hard to handle in
the existing static partitioning of networks. Intuitively, the Q-learning algorithm allows
an agent to interactively learn the optimal allocation policy by sharing resources with
neighboring cells.

The main strategies include: (1) the allocation of free RBs to users in the same cell
by assigning higher SIRs to the users; (2) the interactive updates of the allocated RBs for
each user, based on the Bellman equation [166], in order to improve the system throughput
performance; (3) the avoidance of allocating the same RB that has been assigned to users
in neighboring cells. Consequently, by employing the Q-learning algorithm, a system can
maximize its overall capacity by adjusting the RB allocation of each user. Additionally,
the Q-learning approach promotes the fair allocation of user power since the involved
users cannot acquire essential SIR from neighboring cells. Furthermore, a generalized Nash
equilibrium framework was proposed in [167] to provide power optimization for users
from multi-cells that are allocated to the same RB. Moreover, to design efficient resource
allocation policies for 5G, the possible applications of AI were discussed in [168,169].

5.4. AI for Signal Processing Design

One important study on PLS system design was issued to explore optimization tech-
niques and signal processing design fundamentals. The signal processing methods in
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5G networks, such as secure precoding and beamforming, have been utilized to enhance
various performance requirements in secure transmission systems. By optimizing these
techniques, the appropriate performance metrics of PLS can be achieved while the desired
QoS can also be ensured at the same time [170–175]. However, due to the complexity of
the hardware and mathematical models in these performance metrics, the optimization
problems of existing signal processing schemes become more and more complicated for
future network environments [64,90,114–116], which means that: (1) it is hard to solve
these problems using numerical methods because they are too sophisticated and have
many imperfections in practical applications; (2) in order to obtain optimal design schemes,
the hurdles between various signal processing barriers need to be reduced using optimal
solutions; (3) the vastly increasing complexity of the systems and hardware installation
that are needed to mitigate computational cost requires robust and intelligent algorithms
to make system design more practical.

To cope with these challenges, the assistance of modern computing technologies has
been used as a performance metric. On the other hand, ML and AI techniques can benefit
from the optimization of traditional signal processing techniques. Some of the application
examples include secure physical layer modules [176,177], channel estimation and equal-
ization [178], obstacle detection and localization [179,180], modulation recognition [159]
and channel coding and estimation [181,182]. The advantages of employing AI and ML
technologies in 5G networks compared to traditional signal processing methods are two-
fold. First, AI and ML approaches are designed to achieve optimal end-to-end performance
metrics, while conventional schemes are performed by logically discrete blocks that are
separately optimized. Second, artificial neural networks (ANNs) are known to be highly
reliable and self-adaptive and have also been shown to have computationally universal
functions [183]. ANNs are used to learn inverse mapping from received interference signals
to the original signals without the need for explicit channel estimation and equalization.
The joint optimization of transmitters and receivers within specific channel environments
can produce non-ideal effects in the wireless channel and consequently, transmission
performance is enhanced. By applying ANNs in signal processing schemes, we can im-
prove optimal performance metrics as long as a reliable hardware implementation model
exists. In summary, ML- and AI-based algorithms are more efficient and powerful for
hardware implementation and have extensive applications that are not limited to signal
processing schemes.

6. Discussions on Future Research Directions and Challenges

In the previous sections, it was shown that PLS has received significant research inter-
est within the fields of information-theoretic fundamentals and signal processing. However,
future wireless networks will become increasingly heterogeneous and will have new fea-
tures and more complex network environments. Even though the research community
has made great efforts in the existing works, many technical challenges still exist, namely
the basic assumptions regarding channel types, eavesdropper models, the availability of
CSI and application scenarios. Most of the existing assumptions that are used in PLS
may be insufficient or unreliable for future wireless communication in practical security
systems. Hence, there are still many technical challenges that need to be discussed in
order to facilitate the integration of PLS into practical design systems. In the following
section, we discuss some future directions and notable challenges, which are based on the
knowledge that has been gained from the existing literature. It should be noted that only a
few research directions are discussed in this section because the future work regarding PLS
is a pervasive field of study.

6.1. The Joint Optimization of Reliability, Security and Resource Allocation

An optimal global design for system security, reliability and secure resource allocation
is an important research idea that has not yet been well discussed in the literature. Newly
introduced features and technologies in the core 5G network make the design of secure
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transmission approaches necessary and challenging. To enhance the optimal adaptability of
user experience and network performance in wireless transmission systems, the reliability,
security and allocation of necessary resources should be considered jointly in secure system
design [12,184]. However, in many existing studies, except for some studies that have
investigated the trade-off between energy consumption and security performance, most
methods have been considered separately and individually to minimize the complexity of
security design [9]. Therefore, achieving a joint optimization between reliability, security
performance and resource consumption with low latency is a challenging problem. In this
case, when the three optimization factors interact with each other, the proposed security
mechanisms become potentially optimal and trustworthy. In order to achieve global opti-
mization performance, some researchers [34] proposed an AI-based integrated scheduling
system that can realize an optimal power allocation scheme and improve the security and
reliability of legitimate transmission. The proposed scheme was designed based on the
integration of AI and edge computing to reduce the computation latency within transmis-
sion channels. The proposed framework can be applied to the PLS paradigm to design
signal processing techniques and secure resource allocation schemes. However, the energy
dynamics within the storage capacities of smartphone devices and the distributed resource
management in edge cloud computing make this framework challenging to offload tasks
for users. Therefore, this area of research is still in its infancy and many issues need to be
investigated in future research.

6.2. The Joint Design of Classic Cryptographic and PHY Securities

Another promising and futuristic research topic, which has not yet been investigated
deeply in the literature, is the joint design of PLS and classic cryptographic techniques. The
upcoming B5G networks require high security to ensure the most secure service applica-
tions. High-layer cryptographic techniques, such as privacy-preserving, authentication and
encryption, will still be the main safeguarding mechanisms in data privacy and network
security for B5G. Such techniques are usually implemented at the higher layers of data
processing stacks. However, the advancements in wireless networks and the limitations
of energy consumption in the mobile devices, hardware and processing capability in B5G
networks require lower cost and more efficient data privacy and network security solutions.
Dynamic and robust security solutions, such as secure service-oriented and group-based
authentication systems [185,186], will be the major future directions for classic crypto-
graphic security and privacy. In addition to the upper layer cryptographic techniques,
the PLS is required to offer another layer for safeguarding data confidentiality in B5G
networks [186–188]. PLS is emerging as a promising technique for managing the high
costs of computational complexity and the resource consumption problems. Nowadays,
PLS techniques have been widely adopted to provide secure transmission in emerging
technologies, such as massive MIMO, advanced channel coding, terahertz (THz), millimeter
wave (mmWave), etc. However, employing only PLS techniques may not be sufficient to
ensure efficient and robust security in future 5G and 6G networks. PLS can be integrated
into classic cryptographic techniques to improve the requirements of future wireless com-
munication systems. Therefore, the basic issue is the joint utilization of the benefits of PLS
and classic cryptographic security techniques.

To this end, cross-layer security design approaches aim to integrate higher layer
security and PLS to provide secure strategies for each layer of data processing protocol.
This can be performed by utilizing the mechanisms and functionalities of the two layers
for security purposes. In order to achieve this challenging task, there are still many
issues that are expected to be solved in future research. For example, secure coding
techniques, network protocols, adaptive modulation, hybrid encryption algorithms and
other techniques can be adopted as joint mechanisms for security. However, the structures
of B5G networks are typically decentralized and transmission nodes are expanded with
different characteristics. This requires a joint security scheme to adopt the same variety of
nodes and heterogeneous architecture of B5G networks. In order to satisfy the requirements
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of service-related and user-related elements in B5G networks, dynamic, robust and efficient
secure joint security techniques need to be developed [186].

6.3. The Impacts of ML on Channel Estimation

Channel state information (CSI) has a significant impact on the design of secure
transmission strategies. However, the availability of CSI at the communication entities
differs from full knowledge or partial knowledge to zero information. The acquisition of the
CSI of an eavesdropper for the transmitter is not a simple task in actual security design. Due
to the hidden nature of eavesdroppers and CSI feedback, it is difficult to obtain the CSI of
wiretap channels at the transmitter. On the other hand, the CSI of legitimate channels can be
obtained through CSI feedback from the legitimate receiver in FDD systems. To obtain the
optimal performance of secure communication, correct channel estimation is indispensable
for guaranteeing the quality of service (QoS). Nevertheless, it is not easy to obtain perfect
CSI due to the limited feedback and estimation errors. In many situations, CSI can be
imperfect or even unknown. Therefore, the challenges that are raised by channel estimation
aspects are due to the difficulties in the perfect channel estimation of eavesdroppers and
the considerations of CSI feedback delay, node mobility and channel correlations.

Recently, there have been plenty of efforts to use ML and DL techniques in channel
estimation [189–192]. Based on these investigations, issues regarding the estimation of the
proper channel of an eavesdropper and the tackling of imperfect CSI in system design still
remain. It has been proven that the existing channel estimation schemes that are based
on channel modeling are insufficient for obtaining perfect and timely CSI. By introducing
ML techniques into channel estimations, the performances of existing channel estima-
tion techniques can be improved, with low complexity in the practical applications [193].
Furthermore, DL has been employed for channel estimation in mmWave massive MIMO
systems [194]. By applying intelligent denoising-based message passing techniques, the
system can learn channel structures from training datasets and estimate accurate channels.
In [195], an off-grid channel estimation algorithm was proposed for orthogonal time fre-
quency space (OTFS) systems. This algorithm can adopt the sparse Bayesian learning model
to accurately exploit channel sparsity. From the above discussions, the development of
generalized ML- and DL-based channel estimation schemes for different scenarios remains
a major challenge for future research. In order to design these generalized schemes, a
large number of training datasets need to be used by the DL and ML algorithms to learn
channel features.

6.4. The Influences of AI and ML on B5G Security and Privacy

The advent of new network features, technologies and services in B5G networks will
reveal potential security and privacy challenges. These challenges are not only from the per-
spective of the consumer but also from the viewpoints of vendors, network operators and
service providers in terms of developing perfect deployment of service scenarios. Service
providers should produce solutions to ensure the security, privacy and allocation of essen-
tial resources to their customers robustly and reliably in order to tackle these challenges.
Enabling technologies, such as AI and ML, are integrated into 5G and B5G networks and
are expected to meet the security and privacy requirements to a certain extent. However,
the adoption of AI and ML technologies in wireless networks will raise concerns about
privacy and security issues, such as those raised in [196–199]. In order to address these
problems in B5G networks, proactive privacy and security measures need to be developed.
Such techniques will employ novel AI technologies and algorithms and subsequently,
physical layer security may become one of the major areas of application for AI [200]. Due
to the increase in data rates in B5G networks, the processing performance of such network
elements will be further expanded, which will facilitate the strong combination of AI and
future communication security design [201]. An ML-based autoencoder was proposed
in [202] to reconstruct detection errors in order to discover irregular traffic data in future
networks. ML-based PLS techniques, especially those regarding device authentication,
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were discussed in [203] to achieve a robust and highly reliable authentication for B5G
networks. In [204], a big data analytics technique was applied to facilitate the rapid growth
of B5G network data in specific scenarios. However, big data analytics can help to address
abnormal user detection applications.

6.5. The Impacts of Adversarial Attack Models for Beamforming Systems

Adversarial attacks and adversary models are important issues that also need to be
considered in secure physical layer transmission. In the existing research, most secure
design strategies assume that adversarial attacks are passive. In this case, there is no coop-
eration or active exchange of information with other nodes within the system. However, in
practical security design, there can be active cooperation and communication in confidential
information exchanges [205]. Some strong adversaries may aim to estimate the environ-
ment in order to build up their advantages and threaten secure transmission [206,207].
Considering these observations, the design of secure strategies for PLS techniques face
great challenges. One of the major challenges of this direction, specifically in beamforming
systems, is information leakage into the subspace of eavesdroppers. The basic idea of
beamforming is to transmit signals in the direction of legitimate channels. When transmis-
sion power is allocated between intended and unintended directions, most of the power is
allocated to the main side lobes and a small portion of the power is allocated to the minor
lobe beam. Transmitting signals are then leaked through the eavesdropper channel [113].
According to [125], beamforming techniques attempt to enhance the quality of signals at
the main channel. In this case, the design of beamforming does not consider the possibility
of eavesdroppers when its channel gain is higher than that of the main channel. Therefore,
it is challenging to design a beamformer that is optimal for the legitimate user under the
favorable channel settings of an eavesdropper. It is computationally expensive to achieve a
perfect balance between optimal signal power and signal leakages. The challenges of the
existing channel training and narrow beam scanning in multi-antenna techniques can be
addressed through the use of ML and AI algorithms to achieve optimal solutions with less
complexity [149]. Unfortunately, there are also potential security concerns in the integration
of ML algorithms into future 5G technologies. A recent study on beamforming prediction
tackled the security problems of using ML algorithms [51]. It was shown that in order
to investigate beamforming prediction, adversarial attack strategies should be studied
according to the loss maximization-based attacks that are relative to AI models.

7. Conclusions

Recently, PLS has attracted broad research interest in terms of the design of efficient
and secure transmission strategies for 5G wireless networks. This review paper provided
detailed discussions on the basic optimization schemes and system design of PLS, based
on both information-theoretic security and signal processing fundamentals. To understand
the advantages of PLS, we first provided a comparison between the traditional crypto-
graphic and PLS techniques. Then, we introduced different wiretap channel models and
their mathematical expressions in order to understand the common scenarios of practical
security design. From the information-theoretic security perspective, we reviewed pop-
ular performance evaluation metrics, including the rate of transmission metrics, secrecy
capacity, secrecy throughput, secrecy outage probability, secure resource allocation and
QoS-related metrics. Then, we reviewed optimization problems and security solutions
from the viewpoints of system design and signal processing methods, such as convex
optimization, secure beamforming, artificial noise (AN) and zero-forcing (ZF) precoding.
Regarding research directions, we discussed candidates for future research topics within
PLS, including resource allocation, signal processing techniques, secure node/antenna
selection and cooperative networks. Thereafter, AI and ML applications were reviewed to
solve different problems for optimization and security design. Specifically, we discussed
the paradigms of AI and ML in terms of some promising research directions, such as signal
processing design, end-to-end multi-antenna techniques and OFDM-based RB allocation
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applications. We also discussed other research directions and the open challenges that face
PLS in future wireless networks. In summary, our review incorporated different aspects
that are related to the optimization and design of PLS systems, including secure resource
allocation, channel estimation and the integration of AI into practical strategies to help
PLS. We believe that this paper can provide the research community with guidance for
advancing the considerations of future PLS research.
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