The Effect of Sun Tan Lotion on Skin by Using Skin TEWL and Skin Water Content Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Skin Measurement Devices
2.2. Machine Learning Algorithms
2.3. Measurement Procedure
3. Results
3.1. Skin Water Loss Results
3.2. Skin Water Content Results
3.3. Machine Learning PCA Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bioengineering of the Skin: Water and the Stratum Corneum (Dermatology: Clinical & Basic Science Book 23), 2nd ed.; Fluhr, J.W.; Elsner, P.; Berardesca, E.; Maibach, H.I. (Eds.) CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Bioengineering of the Skin: Methods and Instrumentation, Volume III (Dermatology: Clinical & Basic Science Book 9), 1st ed.; Berardesca, E.; Elsner, P.; Wilhelm, K.-P.; Maibach, H.I. (Eds.) CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Taylor, H.E. Bioengineering Techniques for Skin Health Surveillance. Ph.D. Thesis, London South Bank University, London, UK, 2008. [Google Scholar]
- Mukai, K.; Ogai, K.; Ishino, S.; Kamijo, S.; Kurata, F.; Sugitani, A.; Tachibana, W.; Nishiyama, A.; Fukuyama, A.; Wada, K.; et al. Effects of skin moisturizer on the skin barrier dysfunction model: An evaluation of the heel via tape-stripping in healthy, young adults. J. Tissue Viability 2021, 30, 439–445. [Google Scholar] [CrossRef]
- Kis, N.; Kovács, A.; Budai-Szűcs, M.; Erős, G.; Csányi, E.; Berkó, S. The effect of non-invasive dermal electroporation on skin barrier function and skin permeation in combination with different dermal formulations. J. Drug Deliv. Sci. Technol. 2022, 69, 103161. [Google Scholar] [CrossRef]
- Uchegbulam, I.; Danby, S.G.; Lewis, R.; Carré, M.J.; Maiti, R. Effect of seasonal change on the biomechanical and physical properties of the human skin. J. Mech. Behav. Biomed. Mater. 2022, 127, 105058. [Google Scholar] [CrossRef]
- Denzinger, M.; Rothenberger, J.; Held, M.; Joss, L.; Ehnert, S.; Kolbenschlag, J.; Daigeler, A.; Krauss, S. A quantitative study of transepidermal water loss (TEWL) on conventional and microclimate management capable mattresses and hospital beds. J. Tissue Viability 2019, 28, 194–199. [Google Scholar] [CrossRef]
- Léveque, J.L.; Querleux, B. SkinChip, a new tool for investigating the skin surface in vivo. Ski. Res. Technol. 2003, 9, 343–347. [Google Scholar] [CrossRef]
- Batisse, D.; Giron, F.; Léveque, J.L. Capacitance imaging of the skin surface. Ski. Res. Technol. 2006, 12, 99–104. [Google Scholar] [CrossRef]
- Singh, H.; Xiao, P.; Berg, E.P.; Imhof, R.E. In-Vivo Skin Imaging for Hydration and Micro Relief Measurements. In Proceedings of the SCV Conference, Cardiff, UK, 11–13 July 2007. [Google Scholar]
- Pan, W.; Zhang, X.; Lane, M.E.; Xiao, P. The Occlusion Effects in Capacitive Contact Imaging for In-vivo Skin Damage Assessments. Int. J. Cosmet. Sci. 2015, 37, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Ou, X.; Pan, W.; Xiao, P. In-Vivo Skin Capacitive imaging Analysis by using Grey Level Co-occurrence Matrix (GLCM). Int. J. Pharm. 2014, 460, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Xiao, P.; Abdalghafor, H.; Lane, M.E. Membrane Solvent Penetration Measurements Using Contact Imaging, Book Chapter. In Advances in Dermatological Science; RSC Publishing: London, UK, 2014; pp. 355–360. ISBN 978-1-84973-398-4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Bontozoglou, C.; Chirikhina, E.; Lane, M.E.; Xiao, P. Capacitive Imaging for Skin Characterizations and Solvent Penetration Measurements. Cosmetics 2018, 5, 52. [Google Scholar] [CrossRef]
- Bontozoglou, C.; Zhang, X.; Xiao, P. Micro-relief analysis with skin capacitive imaging. Ski. Res. Technol. 2019, 25, 165–170. [Google Scholar] [CrossRef]
- Navaraj, W.; Dahiya, R. Fingerprint-Enhanced Capacitive-Piezoelectric Flexible Sensing Skin to Discriminate Static and Dynamic Tactile Stimuli. First published: 20 September 2019. Adv. Intell. Syst. 2019, 1, 1900051. [Google Scholar] [CrossRef]
- Rowe, R.K.; Nixon, K.A.; Butler, P.W. Multispectral Fingerprint Image Acquisition. In Advances in Biometrics; Springer: London, UK, 2008; pp. 3–23. [Google Scholar]
- Sharma, A.; Arya, S.; Chaturvedi, P. A Novel Image Compression Based Method for Multispectral Fingerprint Biometric System. Procedia Comput. Sci. 2020, 171, 1698–1707. [Google Scholar] [CrossRef]
- Berg, E.P.; Pascut, F.C.; Ciortea, L.I.; O’Driscoll, D.; Xiao, P.; Imhof, R.E. AquaFlux—A New Instrument for Water Vapour Flux Density Measurement. In Proceedings of the 4th International Symposium on Humidity and Moisture; Center for Measurement Standards, ITRI: Taipei, China, 2020; pp. 288–295. ISBN 957-774-423-0. [Google Scholar]
- Imhof, R.E.; Berg, E.P.; Chilcott, R.P.; Ciortea, L.I.; Pascut, F.C.; Xiao, P. New Instrument for the Measurement of Water Vapour Flux Density from Arbitrary Surfaces. IFSCC Mag. 2002, 5, 297–301. [Google Scholar]
- Chirikhina, E.; Chirikhin, A.; Xiao, P.; Dewsbury-Ennis, S.; Bianconi, F. In Vivo Assessment of Water Content, Trans-Epidermial Water Loss and Thickness in Human Facial Skin. Appl. Sci. 2020, 10, 6139. [Google Scholar] [CrossRef]
- Xiao, P.; Ciortea, L.I.; Singh, H.; Cui, Y.; Berg, E.P.; Imhof, R.E. Opto-thermal In-vivo Skin Hydration Measurements—A Comparison Study of Different Measurement Techniques. J. Phys. Conf. Ser. 2009, 214, 012026. [Google Scholar] [CrossRef]
- Imhof, R.E.; de Jesus, M.E.P.; Xiao, P.; Ciortea, L.I.; Berg, E.P. Closed-chamber transepidermal water loss measurement: Microclimate, calibration and performance. Int. J. Cosmet. Sci. 2009, 31, 97–118. [Google Scholar] [CrossRef]
- Template Matching. Available online: https://docs.opencv.org/3.4/d4/dc6/tutorial_py_template_matching.html (accessed on 16 March 2022).
- Brunelli, R. Template Matching Techniques in Computer Vision: Theory and Practice; Wiley: New York, NY, USA, 2009; ISBN 978-0-470-51706-2. [Google Scholar]
- Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philos. Mag. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Principal Component Analysis. Available online: https://en.wikipedia.org/wiki/Principal_component_analysis (accessed on 16 March 2022).
- Toledo-Pérez, D.C.; Martínez-Prado, M.A.; Gómez-Loenzo, R.A.; Paredes-García, W.J.; Rodríguez-Reséndiz, J. A Study of Movement Classification of the Lower Limb Based on up to 4-EMG Channels. Electronics 2019, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Niu, J.; Kang, S.; Singh, S.K.; Du, T. A hybrid PCA-SEM-ANN model for the prediction of water use efficiency. Ecol. Model. 2021, 460, 109754. [Google Scholar] [CrossRef]
- He, M.; Zhang, Y.; Wen, D.; Wang, Y. Forecasting crude oil prices: A scaled PCA approach. Energy Econ. 2021, 97, 105189. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, Y. Dimension reduction of image deep feature using PCA. J. Vis. Commun. Image Represent. 2019, 63, 102578. [Google Scholar] [CrossRef]
- Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 2021, 40, 100378. [Google Scholar] [CrossRef]
- Biagetti, G.; Crippa, P.; Falaschetti, L.; Luzzi, S.; Turchetti, C. Classification of Alzheimer’s Disease from EEG Signal Using Robust-PCA Feature Extraction. Procedia Comput. Sci. 2021, 192, 3114–3122. [Google Scholar] [CrossRef]
- Sun, Y.; Li, L.; Zheng, L.; Hu, J.; Li, W.; Jiang, Y.; Yan, C. Image classification base on PCA of multi-view deep representation. J. Vis. Commun. Image Represent. 2019, 62, 253–258. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Chen, D. The Effect of Sun Tan Lotion on Skin by Using Skin TEWL and Skin Water Content Measurements. Sensors 2022, 22, 3595. https://doi.org/10.3390/s22093595
Xiao P, Chen D. The Effect of Sun Tan Lotion on Skin by Using Skin TEWL and Skin Water Content Measurements. Sensors. 2022; 22(9):3595. https://doi.org/10.3390/s22093595
Chicago/Turabian StyleXiao, Perry, and Daqing Chen. 2022. "The Effect of Sun Tan Lotion on Skin by Using Skin TEWL and Skin Water Content Measurements" Sensors 22, no. 9: 3595. https://doi.org/10.3390/s22093595
APA StyleXiao, P., & Chen, D. (2022). The Effect of Sun Tan Lotion on Skin by Using Skin TEWL and Skin Water Content Measurements. Sensors, 22(9), 3595. https://doi.org/10.3390/s22093595