Soil Deformation after Water Drop Impact—A Review of the Measurement Methods
Abstract
:1. Introduction
2. Review of Work Focusing on Soil Deformation by the Splash Phenomenon
3. Crater Measurement Methods
3.1. Basic Measurement Methods
3.2. Photography
3.3. High-Speed Imaging
3.4. Profilometry
3.5. 3D Surface Modelling
3.6. Computed Tomography (CT)
4. Potential Use of Crater Measurement Methods in Water Erosion Research
5. Challenges and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and Function of the Global Topsoil Microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuźniar, A.; Banach, A.; Stępniewska, Z.; Frąc, M.; Oszust, K.; Gryta, A.; Kłos, M.; Wolińska, A. Community-Level Physiological Profiles of Microorganisms Inhabiting Soil Contaminated with Heavy Metals. Int. Agrophysics 2018, 32, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Walkiewicz, A.; Brzezińska, M.; Bieganowski, A.; Sas-Paszt, L.; Frąc, M. Early Response of Soil Microbial Biomass and Activity to Biofertilizer Application in Degraded Brunic Arenosol and Abruptic Luvisol of Contrasting Textures. Agronomy 2020, 10, 1347. [Google Scholar] [CrossRef]
- Assouline, S.; Rouault, Y. Modeling the Relationships between Particle and Pore Size Distributions in Multicomponent Sphere Packs: Application to the Water Retention Curve. Colloids Surf. A Physicochem. Eng. Asp. 1997, 127, 201–210. [Google Scholar] [CrossRef]
- Lamorski, K.; Pastuszka, T.; Krzyszczak, J.; Sławiński, C.; Witkowska-Walczak, B. Soil Water Dynamic Modeling Using the Physical and Support Vector Machine Methods. Vadose Zone J. 2013, 12, 1–12. [Google Scholar] [CrossRef]
- Voltz, M.; Dagès, C.; Prévot, L.; Bruand, A. Soils and Regulation of the Hydrological Cycle. In Soils as a Key Component of the Critical Zone 1; Berthelin, J., Valentin, C., Munch, J.C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 59–80. ISBN 978-1-119-43806-9. [Google Scholar]
- Smith, P.; Cotrufo, M.F.; Rumpel, C.; Paustian, K.; Kuikman, P.J.; Elliott, J.A.; McDowell, R.; Griffiths, R.I.; Asakawa, S.; Bustamante, M.; et al. Biogeochemical Cycles and Biodiversity as Key Drivers of Ecosystem Services Provided by Soils. SOIL 2015, 1, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Doetterl, S.; Berhe, A.A.; Nadeu, E.; Wang, Z.; Sommer, M.; Fiener, P. Erosion, Deposition and Soil Carbon: A Review of Process-Level Controls, Experimental Tools and Models to Address C Cycling in Dynamic Landscapes. Earth-Sci. Rev. 2016, 154, 102–122. [Google Scholar] [CrossRef]
- Berhe, A.A.; Barnes, R.T.; Six, J.; Marín-Spiotta, E. Role of Soil Erosion in Biogeochemical Cycling of Essential Elements: Carbon, Nitrogen, and Phosphorus. Annu. Rev. Earth Planet. Sci. 2018, 46, 521–548. [Google Scholar] [CrossRef]
- Watros, A.; Lipińska, H.; Lipiński, W.; Tkaczyk, P.; Krzyszczak, J.; Baranowski, P. Mineral Nitrogen Content in Hydrographic Areas of Poland Depending on Land Use. Int. Agrophys. 2019, 33, 481–491. [Google Scholar] [CrossRef]
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The Role of Soil in Regulation of Climate. Phil. Trans. R. Soc. B 2021, 376, 20210084. [Google Scholar] [CrossRef]
- Guerrero, R.; Valenzuela, J.L.; Torres, J.L.; Lozano, J.; Asensio, C. Soil Wind Erosion Characterization in South-Eastern Spain Using Traditional Methods in Front of an Innovative Type of Dust Collector. Int. Agrophys. 2020, 34, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Šarapatka, B.; Bednář, M. Assessment of Potential Soil Degradation on Agricultural Land in the Czech Republic. J. Environ. Qual. 2015, 44, 154–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocek-Płóciniak, A.; Skowrońska, M. Water—An Important Element Not Only of the Soil Environment. Soil Sci. Ann. 2021, 72, 134620. [Google Scholar] [CrossRef]
- Choo, H.; Park, K.-H.; Won, J.; Burns, S.E. Resistance of Coarse-Grained Particles against Raindrop Splash and Its Relation with Splash Erosion. Soil Tillage Res. 2018, 184, 1–10. [Google Scholar] [CrossRef]
- Szypłowska, A.; Lewandowski, A.; Jones, S.B.; Sabouroux, P.; Szerement, J.; Kafarski, M.; Wilczek, A.; Skierucha, W. Impact of Soil Salinity, Texture and Measurement Frequency on the Relations between Soil Moisture and 20 MHz–3 GHz Dielectric Permittivity Spectrum for Soils of Medium Texture. J. Hydrol. 2019, 579, 124155. [Google Scholar] [CrossRef]
- Jozefaciuk, G.; Adamczuk, A.; Skic, K.; Boguta, P. New Method for Quantifying Water Stability of Soil Aggregates from Air Bubbling after Immersion. Measurement 2020, 155, 107569. [Google Scholar] [CrossRef]
- Cantón, Y.; Solé-Benet, A.; de Vente, J.; Boix-Fayos, C.; Calvo-Cases, A.; Asensio, C.; Puigdefábregas, J. A Review of Runoff Generation and Soil Erosion across Scales in Semiarid South-Eastern Spain. J. Arid. Environ. 2011, 75, 1254–1261. [Google Scholar] [CrossRef]
- de Vente, J.; Poesen, J.; Verstraeten, G.; Govers, G.; Vanmaercke, M.; Van Rompaey, A.; Arabkhedri, M.; Boix-Fayos, C. Predicting Soil Erosion and Sediment Yield at Regional Scales: Where Do We Stand? Earth-Sci. Rev. 2013, 127, 16–29. [Google Scholar] [CrossRef]
- Prasuhn, V.; Liniger, H.; Gisler, S.; Herweg, K.; Candinas, A.; Clément, J.-P. A High-Resolution Soil Erosion Risk Map of Switzerland as Strategic Policy Support System. Land Use Policy 2013, 32, 281–291. [Google Scholar] [CrossRef]
- Haddad, S.; Bouhadef, M. Contribution to Runoff Erosion of Earthen Channels. pjss 2018, 51, 313. [Google Scholar] [CrossRef]
- Kathwas, A.K.; Patel, N. Geomorphic Control on Soil Erosion—A Case Study in the Subarnarekha Basin, India. pjss 2021, 54, 1–24. [Google Scholar] [CrossRef]
- Ahn, S.; Doerr, S.H.; Douglas, P.; Bryant, R.; Hamlett, C.A.E.; McHale, G.; Newton, M.I.; Shirtcliffe, N.J. Effects of Hydrophobicity on Splash Erosion of Model Soil Particles by a Single Water Drop Impact: Splash erosion of hydrophobic particles by a single water drop impact. Earth Surf. Process. Landf. 2013, 38, 1225–1233. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Raga, M.; Palencia, C.; Keesstra, S.; Jordán, A.; Fraile, R.; Angulo-Martínez, M.; Cerdà, A. Splash Erosion: A Review with Unanswered Questions. Earth-Sci. Rev. 2017, 171, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Hardy, R.A.; James, M.R.; Pates, J.M.; Quinton, J.N. Using Real Time Particle Tracking to Understand Soil Particle Movements during Rainfall Events. Catena 2017, 150, 32–38. [Google Scholar] [CrossRef]
- Sachs, E.; Sarah, P. Effect of Raindrop Temperatures on Soil Runoff and Erosion in Dry and Wet Soils. A Laboratory Experiment: Effect of Rain Temperature on Interrill Flow and Erosion. Land Degrad. Develop. 2017, 28, 1549–1556. [Google Scholar] [CrossRef]
- Zambon, N.; Johannsen, L.L.; Strauss, P.; Dostal, T.; Zumr, D.; Cochrane, T.A.; Klik, A. Splash Erosion Affected by Initial Soil Moisture and Surface Conditions under Simulated Rainfall. Catena 2021, 196, 104827. [Google Scholar] [CrossRef]
- Beczek, M.; Ryżak, M.; Mazur, R.; Sochan, A.; Polakowski, C.; Bieganowski, A. Influence of Slope Incline on the Ejection of Two-Phase Soil Splashed Material. PLoS ONE 2022, 17, e0262203. [Google Scholar] [CrossRef]
- Terry, J.P. A Rainsplash Component Analysis to Define Mechanisms of Soil Detachment and Transportation. Soil Res. 1998, 36, 525–542. [Google Scholar] [CrossRef]
- Ghadiri, H. Crater Formation in Soils by Raindrop Impact. Earth Surf. Process. Landf. 2004, 29, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Katsuragi, H. Physics of Soft Impact and Cratering; Lecture Notes in Physics; Springer: Tokyo, Japan, 2016; Volume 910, ISBN 978-4-431-55647-3. [Google Scholar]
- Marzen, M.; Iserloh, T. Processes of Raindrop Splash and Effects on Soil Erosion. In Precipitation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 351–371. ISBN 978-0-12-822699-5. [Google Scholar]
- Zhao, S.C.; de Jong, R.; van der Meer, D. Raindrop Impact on Sand: A Dynamic Explanation of Crater Morphologies. Soft Matter 2015, 11, 6562–6568. [Google Scholar] [CrossRef]
- Marston, J.O.; Thoroddsen, S.T.; Ng, W.K.; Tan, R.B.H. Experimental Study of Liquid Drop Impact onto a Powder Surface. Powder Technol. 2010, 203, 223–236. [Google Scholar] [CrossRef]
- de Jong, R.; Zhao, S.C.; van der Meer, D. Crater Formation during Raindrop Impact on Sand. Phys. Rev. E 2017, 95, 042901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emady, H.N.; Kayrak-Talay, D.; Litster, J.D. A Regime Map for Granule Formation by Drop Impact on Powder Beds. AIChE J 2013, 59, 96–107. [Google Scholar] [CrossRef]
- Supakar, T.; Moradiafrapoli, M.; Christopher, G.F.; Marston, J.O. Spreading, Encapsulation and Transition to Arrested Shapes during Drop Impact onto Hydrophobic Powders. J. Colloid Interface Sci. 2016, 468, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Padmanathan, A.M.D.; Ravi, A.S.; Choudhary, H.; Varanakkottu, S.N.; Dalvi, S.V. Predictive Framework for the Spreading of Liquid Drops and the Formation of Liquid Marbles on Hydrophobic Particle Bed. Langmuir 2019, 35, 6657–6668. [Google Scholar] [CrossRef]
- Katsuragi, H. Length and Time Scales of a Liquid Drop Impact and Penetration into a Granular Layer. J. Fluid Mech. 2011, 675, 552–573. [Google Scholar] [CrossRef] [Green Version]
- Al-Durrah, M.M.; Bradford, J.M. The Mechanism of Raindrop Splash on Soil Surfaces. Soil Sci. Soc. Am. J. 1982, 46, 1086–1090. [Google Scholar] [CrossRef]
- Beczek, M.; Ryżak, M.; Lamorski, K.; Sochan, A.; Mazur, R.; Bieganowski, A. Application of X-Ray Computed Microtomography to Soil Craters Formed by Raindrop Splash. Geomorphology 2018, 303, 357–361. [Google Scholar] [CrossRef]
- Long, E.J.; Hargrave, G.K.; Cooper, J.R.; Kitchener, B.G.B.; Parsons, A.J.; Hewett, C.J.M.; Wainwright, J. Experimental Investigation into the Impact of a Liquid Droplet onto a Granular Bed Using Three-Dimensional, Time-Resolved, Particle Tracking. Phys. Rev. E 2014, 89, 032201. [Google Scholar] [CrossRef] [Green Version]
- Delon, G.; Terwagne, D.; Dorbolo, S.; Vandewalle, N.; Caps, H. Impact of Liquid Droplets on Granular Media. Phys. Rev. E 2011, 84, 046320. [Google Scholar] [CrossRef]
- Nefzaoui, E.; Skurtys, O. Impact of a Liquid Drop on a Granular Medium: Inertia, Viscosity and Surface Tension Effects on the Drop Deformation. Exp. Therm. Fluid Sci. 2012, 41, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Mihara, Y.; Tani, N.; Yabuki, M.; Hagihara, M. Studies on the Soil-Erosive Force of Precipitation. J. Agric. Meteorol. 1950, 6, 9–12. [Google Scholar] [CrossRef]
- Moss, A.; Green, T. Erosive Effects of the Large Water Drops (Gravity Drops) That Fall from Plants. Soil Res. 1987, 25, 9–20. [Google Scholar] [CrossRef]
- Terry, J.P. Splash Detachment Tests on Hydrophobic versus Wettable Soils. Swans. Geogr. 1990, 27, 71–83. [Google Scholar]
- Furbish, D.J.; Hamner, K.K.; Schmeeckle, M.; Borosund, M.N.; Mudd, S.M. Rain Splash of Dry Sand Revealed by High-Speed Imaging and Sticky Paper Splash Targets. J. Geophys. Res. 2007, 112, F01001. [Google Scholar] [CrossRef]
- Katsuragi, H. Morphology Scaling of Drop Impact onto a Granular Layer. Phys. Rev. Lett. 2010, 104, 218001. [Google Scholar] [CrossRef] [Green Version]
- Emady, H.N.; Kayrak-Talay, D.; Schwerin, W.C.; Litster, J.D. Granule Formation Mechanisms and Morphology from Single Drop Impact on Powder Beds. Powder Technol. 2011, 212, 69–79. [Google Scholar] [CrossRef]
- Ryżak, M.; Bieganowski, A.; Polakowski, C. Effect of Soil Moisture Content on the Splash Phenomenon Reproducibility. PLoS ONE 2015, 10, e0119269. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Gao, M.; Zhao, R.; Cheng, X. Scaling of Liquid-Drop Impact Craters in Wet Granular Media. Phys. Rev. E 2015, 92, 042205. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.; Zhang, Q.; Tjugito, H.; Cheng, X. Granular Impact Cratering by Liquid Drops: Understanding Raindrop Imprints through an Analogy to Asteroid Strikes. Proc. Natl. Acad. Sci. USA 2015, 112, 342–347. [Google Scholar] [CrossRef] [Green Version]
- Lardier, N.; Roudier, P.; Clothier, B.; Willmott, G.R. High-speed Photography of Water Drop Impacts on Sand and Soil. Eur. J. Soil Sci. 2019, 70, 245–256. [Google Scholar] [CrossRef]
- Matsuda, Y.; Fukui, S.; Kamiya, R.; Yamaguchi, H.; Niimi, T. Impact Cratering on a Granular Bed by Hydrogel Spheres Having Intermediate Property between Solid and Liquid. Phys. Rev. E 2019, 99, 032906. [Google Scholar] [CrossRef] [PubMed]
- Wyser, E.; Carrea, D.; Jaboyedoff, M.; Pudasaini, S.P. Cratering Response during Droplet Impacts on Granular Beds. Eur. Phys. J. E 2019, 42, 1–11. [Google Scholar] [CrossRef]
- Matsuda, Y.; Kamiya, R.; Yamaguchi, H.; Uchiyama, T. Dynamics of Impact Cratering on Granular Bed by Hydrogel Sphere. Phys. Fluids 2020, 32, 067112. [Google Scholar] [CrossRef]
- Mazur, R.; Ryżak, M.; Sochan, A.; Marciszuk, K.; Beczek, M.; Lamorski, K.; Bieganowski, A. Surface Deformation and Displacement of Bed Elements during Splash—Model Tests. Catena 2020, 185, 104277. [Google Scholar] [CrossRef]
- de Jong, R.; Zhao, S.C.; Garcia-Gonzalez, D.; Verduijn, G.; van der Meer, D. Impact Cratering in Sand: Comparing Solid and Liquid Intruders. Soft Matter 2021, 17, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Mazur, R.; Ryżak, M.; Sochan, A.; Beczek, M.; Polakowski, C.; Przysucha, B.; Bieganowski, A. Soil Deformation after One Water-Drop Impact—The Effect of Texture and Soil Moisture Content. Geoderma 2022, 417, 115838. [Google Scholar] [CrossRef]
- Atherton, S.; Polak, D.; Hamlett, C.A.E.; Shirtcliffe, N.J.; McHale, G.; Ahn, S.; Doerr, S.H.; Bryant, R.; Newton, M.I. Drop Impact Behaviour on Alternately Hydrophobic and Hydrophilic Layered Bead Packs. Chem. Eng. Res. Des. 2016, 110, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Ellison, W.D. Some Effects of Raindrops and Surface-Flow on Soil Erosion and Infiltration. Trans. AGU 1945, 26, 415–429. [Google Scholar] [CrossRef]
- Mazurak, A.P.; Mosher, P.N. Detachment of Soil Particles in Simulated Rainfall. Soil Sci. Soc. Am. J. 1968, 32, 716–719. [Google Scholar] [CrossRef]
- Geißler, C.; Kühn, P.; Böhnke, M.; Bruelheide, H.; Shi, X.; Scholten, T. Splash Erosion Potential under Tree Canopies in Subtropical SE China. Catena 2012, 91, 85–93. [Google Scholar] [CrossRef]
- Tarasenko, I.; Bielders, C.L.; Guevara, A.; Delmelle, P. Surface Crusting of Volcanic Ash Deposits under Simulated Rainfall. Bull. Volcanol 2019, 81, 1–16. [Google Scholar] [CrossRef]
- Range, K.; Feuillebois, F. Influence of Surface Roughness on Liquid Drop Impact. J. Colloid Interface Sci. 1998, 203, 16–30. [Google Scholar] [CrossRef]
- Laburda, T.; Krása, J.; Zumr, D.; Devátý, J.; Vrána, M.; Zambon, N.; Johannsen, L.L.; Klik, A.; Strauss, P.; Dostál, T. SfM-MVS Photogrammetry for Splash Erosion Monitoring under Natural Rainfall. Earth Surf. Process. Landf. 2021, 46, 1067–1082. [Google Scholar] [CrossRef]
- Vinci, A.; Todisco, F.; Brigante, R.; Mannocchi, F.; Radicioni, F. A Smartphone Camera for the Structure from Motion Reconstruction for Measuring Soil Surface Variations and Soil Loss Due to Erosion. Hydrol. Res. 2017, 48, 673–685. [Google Scholar] [CrossRef]
- Vinci, A.; Todisco, F.; Vergni, L.; Torri, D. A Comparative Evaluation of Random Roughness Indices by Rainfall Simulator and Photogrammetry. Catena 2020, 188, 104468. [Google Scholar] [CrossRef]
- Moons, T.; Van Gool, L.; Vergauwen, M. 3D Reconstruction from Multiple Images Part 1: Principles. FNT Comput. Graph. Vis. 2008, 4, 287–404. [Google Scholar] [CrossRef]
- Geng, J. Structured-Light 3D Surface Imaging: A Tutorial. Adv. Opt. Photon. 2011, 3, 128–160. [Google Scholar] [CrossRef]
- Pears, N.; Liu, Y.; Bunting, P. 3D Imaging, Analysis and Applications; Springer: London, UK, 2012; ISBN 978-1-4471-4062-7. [Google Scholar]
- Harding, K. Handbook of Optical Dimensional Metrology; Taylor & Francis Group: Boca Raton, FL, USA, 2013; ISBN 978-1-4398-5482-2. [Google Scholar]
- Aguilar, M.A.; Aguilar, F.J.; Negreiros, J. Off-the-Shelf Laser Scanning and Close-Range Digital Photogrammetry for Measuring Agricultural Soils Microrelief. Biosyst. Eng. 2009, 103, 504–517. [Google Scholar] [CrossRef]
- Zumr, D.; Mützenberg, D.V.; Neumann, M.; Jeřábek, J.; Laburda, T.; Kavka, P.; Johannsen, L.L.; Zambon, N.; Klik, A.; Strauss, P.; et al. Experimental Setup for Splash Erosion Monitoring—Study of Silty Loam Splash Characteristics. Sustainability 2019, 12, 157. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Jin, X.; Li, S. Application of Handheld 3D Scanner in Quantitative Study of Slope Soil Erosion. IOP Conf. Ser. Earth Environ. Sci. 2018, 170, 022178. [Google Scholar] [CrossRef]
- Zaimovic-Uzunovic, N.; Lemes, S. Influences Of Surface Parameters On Laser 3d Scanning. In Proceedings of the IMEKO International Symposium on Measurement and Quality Control, Osaka, Japan, 5–9 September 2010; pp. D024–D026. [Google Scholar]
- Ketcham, R.A.; Carlson, W.D. Acquisition, Optimization and Interpretation of X-Ray Computed Tomographic Imagery: Applications to the Geosciences. Comput. Geosci. 2001, 27, 381–400. [Google Scholar] [CrossRef]
- Mees, F.; Swennen, R.; Geet, M.V.; Jacobs, P. Applications of X-Ray Computed Tomography in the Geosciences. SP 2003, 215, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Taina, I.A.; Heck, R.J.; Elliot, T.R. Application of X-Ray Computed Tomography to Soil Science: A Literature Review. Can. J. Soil. Sci. 2008, 88, 1–19. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Y.; Li, G.; Ren, Y.; Li, Z.; Ma, G. Microcharacteristics of Soil Pores after Raindrop Action. Soil Sci. Soc. Am. J. 2020, 84, 1693–1704. [Google Scholar] [CrossRef]
- Kaestner, A.; Lehmann, E.; Stampanoni, M. Imaging and Image Processing in Porous Media Research. Adv. Water Resour. 2008, 31, 1174–1187. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Raindrop impact—Induced erosion processes and prediction—A review. Hydrol. Process. 2005, 19, 2815–2844. [Google Scholar] [CrossRef]
- Beczek, M.; Ryżak, M.; Sochan, A.; Mazur, R.; Polakowski, C.; Hess, D.; Bieganowski, A. Methodological apects of using high-speed cameras to quantify soil splash phenomenon. Geoderma 2020, 378, 114592. [Google Scholar] [CrossRef]
- Zhang, S. High-Speed 3D Shape Measurement with Structured Light Methods: A Review. Opt. Lasers Eng. 2018, 106, 119–131. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Y.; Xiong, Z. High-Speed Structured Light Based 3D Scanning Using an Event Camera. Opt. Express 2021, 29, 35864–35876. [Google Scholar] [CrossRef]
Authors | Measuring Method | Measuring Scope | Complementary Description of Measuring Scope | |||||
---|---|---|---|---|---|---|---|---|
Qualitative Description of Craters | Diameter of Crater | Depth of Crater | Volume of Crater | Dynamics of Crater Formation | Additional Quantities | |||
Mihara et al., 1950 [45] | Photography, high-speed photography | X | X | X | X | |||
Al-Durrah and Bradford, 1982 [40] | High-speed recording | X | Qualitative description of the craters (diameter and depth) and analysis of the mechanism of crater formation | |||||
Moss and Green, 1987 [46] | Qualitative observations | X | Qualitative description of craters as complementary information to the main measurements | |||||
Terry, 1990 [47] | Qualitative observations | X | Qualitative description of craters as complementary information to the main measurements | |||||
Terry, 1998 [29] | Qualitative observations, photography | X | Qualitative description of crater morphology, analysis of the mechanism of crater formation, images of cratering | |||||
Ghadiri, 2004 [30] | Surface profiler, basic research methods | X | X | X | X | Additional calculation of crater area, visualisation of the craters’ diversity of shape | ||
Furbish et al., 2007 [48] | High-speed recording | X | Information about the occurrence of craters during the experiments; description of the mechanism related to the formation of craters | |||||
Katsuragi, 2010 [49] | High-speed recording, profilometry, 3D surface modelling | X | X | X | X | Mechanism of crater formation, presentation of the shape of craters on profiles and 3D height maps; supplementary dimensionless parameters describing the crater | ||
Marston et al., 2010 [34] | Photography, high-speed recording | X | X | Mechanics of crater formation, analysis of the material moistened by the drop | ||||
Delon et al., 2011 [43] | Photography, high-speed recording | X | X | X | Measurement of the diameter of the material wetted by the drop; changes of the crater size during drop impact | |||
Emady et al., 2011 [50] | Photography, high-speed recording | X | X | Analysis of the mechanism of crater formation and the shape of the material moistened by the drop | ||||
Katsuragi, 2011 [39] | High-speed recording, profilometry, 3D surface modelling | X | X | X | X | Information on the morphology of the craters; presentation of the shape (depth, diameters) of craters on profiles and 3D height maps; supplementary dimensionless parameters describing the crater | ||
Nefzaoui and Skurtys, 2012 [44] | Photography, high-speed recording | X | X | X | Mechanics of crater formation and description of the material wetted by the drops (including dimensionless coefficients) | |||
Ahn et al., 2013 [23] | Photography, high-speed recording | X | Area, circularity and roundness of wetted perimeters generated by a drop impact | |||||
Emady et al., 2013 [36] | Photography, high-speed recording | X | Analysis of the mechanism of crater formation and the shape of the material wetted by the drop | |||||
Long et al., 2014 [42] | High-speed recording, profilometry (photogrammetry), 3D surface modelling | X | X | X | X | Mechanics and crater formation, information on rim height and dimensionless parameters for crater description | ||
Ryżak et al., 2015 [51] | High-speed recording | X | Notes on crater occurrence as supplementary information to the main experiments | |||||
Zhang et al., 2015 [52] | High-speed recording, profilometry, 3D surface modelling | X | X | X | Mechanics of crater formation, dimensionless parameters describing the crater | |||
Zhao et al., 2015 [53] | High-speed recording, profilometry | X | X | X | X | Mechanics of crater formation, size of granular residues, dimensionless parameter (aspect ratio α equal to depth to diameter ratio) | ||
Zhao et al., 2015 [33] | Photography, high-speed recording, profilometry | X | X | X | Mechanics of crater formation | |||
Supakar et al., 2016 [37] | High-speed recording | X | Considering the importance of craters in the context of the formation of liquid marbles | |||||
De Jong et al., 2017 [35] | Photography, high-speed recording, profilometry, 3D surface modelling | X | X | X | X | X | Dimensionless parameters related to diameter, depth and volume of transient and final crater, slope of crater wall | |
Beczek et al., 2018 [41] | Profilometry (microtomography) | X | X | X | X | Crater aspect ratio α equal to depth to diameter ratio, height of the rim | ||
Lardier et al., 2019 [54] | High-speed recording, 3D surface modelling | X | X | Mechanics of crater formation, dimensionless parameters | ||||
Matsuda et al., 2019 [55] | High-speed recording | X | X | Dynamics of the crater formation process after the impact of hydrogel spheres | ||||
Padmanathan et al., 2019 [38] | Photography, high-speed recording | X | Investigating the importance of craters in the context of the formation of liquid marbles | |||||
Wyser et al., 2019 [56] | High-speed recording, profilometry, 3D surface modelling | X | X | X | X | X | Mechanics of crater formation, distributions of deposited volume; presentation of diameters, depths of craters and rims heights on profiles; dimensionless parameters | |
Matsuda et al., 2020 [57] | Photography, high-speed recording | X | X | Analysis of the origin of material displaced within the crater; dynamics of the crater formation process after the impact of hydrogel spheres | ||||
Mazur et al., 2020 [58] | High-speed recording, profilometry | X | X | X | X | Analysis of the origin of material displaced within the crater; shape of the material wetted by the drop; rim size, mechanics of crater formation | ||
De Jong et al., 2021 [59] | High-speed recording, profilometry | X | X | X | Dimensionless parameters related to diameter, depth and volume of crater | |||
Mazur et al., 2022 [60] | 3D surface modelling | X | X | X | X | Circularity of crater |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, R.; Ryżak, M.; Sochan, A.; Beczek, M.; Polakowski, C.; Bieganowski, A. Soil Deformation after Water Drop Impact—A Review of the Measurement Methods. Sensors 2023, 23, 121. https://doi.org/10.3390/s23010121
Mazur R, Ryżak M, Sochan A, Beczek M, Polakowski C, Bieganowski A. Soil Deformation after Water Drop Impact—A Review of the Measurement Methods. Sensors. 2023; 23(1):121. https://doi.org/10.3390/s23010121
Chicago/Turabian StyleMazur, Rafał, Magdalena Ryżak, Agata Sochan, Michał Beczek, Cezary Polakowski, and Andrzej Bieganowski. 2023. "Soil Deformation after Water Drop Impact—A Review of the Measurement Methods" Sensors 23, no. 1: 121. https://doi.org/10.3390/s23010121
APA StyleMazur, R., Ryżak, M., Sochan, A., Beczek, M., Polakowski, C., & Bieganowski, A. (2023). Soil Deformation after Water Drop Impact—A Review of the Measurement Methods. Sensors, 23(1), 121. https://doi.org/10.3390/s23010121