Impedance Coupled Voltage Boosting Circuit for Polyvinylidene Fluoride Based Energy Harvester
Abstract
:1. Introduction
2. IC-VBC
- (1)
- At positive , capacitors of are connected in parallel and the charged voltage is expressed as Equation (2).
- (2)
- At negative , the switches are closed and the capacitors are connected in series. These series connection increasing voltage times delivers the power to . The charged voltage is expressed as Equation (4). Note that the switches are opened and the capacitors connected in parallel are charged with negative at the same time.
- (3)
- When becomes positive again, the are connected in parallel and charged, and the are connected in series to deliver power to the .
3. Simulation Results
4. Experiment Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Determination of the Number of Capacitors and Capacitance
The Number of Capacitors () | Capacitance () | Matched Impedance () in SPICE Simulation |
---|---|---|
1 | 82 nF | 320 kΩ |
2 | 170 nF | 320 kΩ |
3 | 255 nF | 320 kΩ |
Appendix B. Impedance Model for Applications
Appendix C. Output Voltage of IC-VBC
References
- Song, R.; Shan, X.; Lv, F.; Xie, T. A study of vortex-induced energy harvesting from water using PZT piezoelectric cantilever with cylindrical extension. Ceram. Int. 2015, 41, S768–S773. [Google Scholar] [CrossRef]
- Mehmood, A.; Abdelkefi, A.; Hajj, M.; Nayfeh, A.; Akhtar, I.; Nuhait, A. Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder. J. Sound Vib. 2013, 332, 4656–4667. [Google Scholar] [CrossRef]
- Dai, H.; Abdelkefi, A.; Wang, L. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. J. Intell. Mater. Syst. Struct. 2014, 14, 1861–1874. [Google Scholar] [CrossRef]
- Nechibvute, A.; Chawanda, A.; Luhanga, P. Piezoelectric energy harvesting devices: An alternative energy source for wireless sensors. Smart Mater. Res. 2012, 2012, 853481. [Google Scholar] [CrossRef] [Green Version]
- Akaydin, H.D.; Elvin, N.; Andreopoulos, Y. Energy harvesting from highly unsteady fluid flows using piezoelectric materials. J. Intell. Mater. Syst. Struct. 2010, 21, 1263. [Google Scholar] [CrossRef]
- Erturk, A.; Delporte, G. Underwater Thrust and Power Generation Using Flexible Piezoelectric Composites: An Experimental Investigation toward Self-powered Swimmer-sensor Platforms. Smart Mater. Struct. 2011, 20, 125013. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D. Piezoelectric Energy Harvesting; John Wiley & Sons, Ltd.: West Sussex, UK, 2011; pp. 1–73. [Google Scholar]
- Kim, H.S.; Kim, J.-H.; Kim, J.H. A review of piezoelectric energy harvesting based on vibration. Int. J. Precis. Eng. Manuf. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Kim, H.W.; Batra, A.; Priya, S.; Uchino, K.; Markley, D.; Newnham, R.E.; Hofmann, H.F. Energy harvesting using a piezoelectric “Cymbal” transducer in dynamic environment. Jpn. J. Appl. Phys. 2004, 43, 6178. [Google Scholar] [CrossRef]
- Taylor, G.W.; Burns, J.R.; Kammann, S.M.; Powers, W.B.; Welsh, T.R. The energy harvesting eel: A small subsurface ocean/river power generator. IEEE J. Ocean. Eng. 2001, 26, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Akaydin, H.D.; Elvin, N. Andreopoulous, Y. The performance of a self-excited fludic energy harvester. Smart Mater. Struct. 2012, 21, 025007. [Google Scholar] [CrossRef]
- Nguyen, H.D.T.; Phan, H.T.; Wang, D.A. A miniature pneumatic energy generator using Kármán vortex street. J. Wind. Eng. Ind. Aerodyn. 2013, 116, 40–48. [Google Scholar] [CrossRef]
- Li, S.; Yuan, J.; Lipson, H. Ambient wind energy harvesting using cross-flow fluttering. J. Appl. Phys. 2011, 109, 026104. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fang, Z.; Shu, C.; Zhang, J.; Zhang, Q.; Li, C. A rotational piezoelectric energy harvester for efficient wind energy haravesting. Sens. Actuaors A Phys. 2017, 262, 123–129. [Google Scholar] [CrossRef]
- Alam, M.M.; Ghosh, S.K.; Sultana, A.; Mandal, D. An effective wind energy harvester of paper Ahs-mediated rapidly synthesized ZnO nanoparticle-interfaced electrospun PVDF fiber. ACS Sustain. Chem. Eng. 2018, 6, 292–299. [Google Scholar] [CrossRef]
- Lu, L.; Ding, W.; Liu, J.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251. [Google Scholar] [CrossRef]
- Singh, H.H.; Sharma, H.B. Impedance spectroscopy and transport properties of polymer-based flexible nanocomposites. Solid State Commun. 2020, 319, 114012. [Google Scholar] [CrossRef]
- Ottman, G.K.; Hofmann, H.F.; Bhatt, A.C.; Lesieutre, G.A. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 2002, 17, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; You, Z. A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 2014, 14, 12497–12510. [Google Scholar] [CrossRef]
- Tabesh, A.; Fréchette, L.G. A low-power stand-alone adaptive circuit for harvesting energy from a piezoelectric micropower generator. IEEE Trans. Ind. Electron. 2009, 57, 840–849. [Google Scholar] [CrossRef] [Green Version]
- Kushino, Y.; Koizumi, H. Piezoelectric energy harvesting circuit using full-wave voltage doubler rectifier and switched inductor. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 2310–2315. [Google Scholar]
- Lee, J.; Ahn, J.; Jin, H.; Lee, C.H.; Jeong, Y.; Lee, K.; Seo, H.S.; Cho, Y. A funnel type PVDF underwater energy harvester with spiral structure mounted on the harvester support. Micromachines 2022, 13, 579. [Google Scholar] [CrossRef]
- Xi, F.; Pang, Y.; Li, W.; Jiang, T.; Zhang, L.; Guo, T.; Liu, G.; Zhang, C.; Wang, Z.L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176. [Google Scholar] [CrossRef]
- Niu, S.; Wang, X.; Yi, F.; Zhou, Y.S.; Wang, Z.L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmon, W.; Bamgboje, D.; Guo, H.; Hu, T.; Wang, Z.L. Self-driven power management system for triboelectric nanogenerators. Nano Energy 2020, 71, 104642. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, T.; Feng, Y.; Lu, P.; An, J.; Wang, Z.L. Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2002123. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, J.; Zhang, T.; Jing, Q.; Wang, Z.L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abidn, N.A.K.Z.; Nayan, N.M.; Azizan, M.M.; Ali, A. Analysis of voltage multiplier circuit simulation for rain energy harvesting using circular piezoelectric. Mech. Syst. Signal Process. 2018, 101, 211–218. [Google Scholar] [CrossRef]
- Duque, M.; Leon-Salguero, E.; Sacristan, J.; Esteve, J.; Murillo, G. Optimization of a piezoelectric energy harvester and design of a charge pump converter for CMOS-MEMS monolithic integration. Sensors 2019, 19, 1895. [Google Scholar] [CrossRef] [Green Version]
- Ballo, A.; Grasso, A.D.; Palumbo, G. A review of charge pump topologies for the power management of IoT nodes. Electronics 2019, 8, 480. [Google Scholar] [CrossRef] [Green Version]
- Kawauchi, H.; Tanzawa, T. A fully integrated clocked AC-DC charge pump for mignetostrictive vibration energy harvesting. Electronics 2020, 9, 2194. [Google Scholar] [CrossRef]
- Jabbar, H.; Song, Y.S.; Jeong, T.T. RF energy harvesting system and circuits for charging of mobile devices. IEEE Trans. Consum. Electron. 2010, 56, 247–253. [Google Scholar] [CrossRef]
- Peng, H.; Tang, N.; Yang, Y.; Heo, D. CMOS startup charge pump with body bias and backward control for energy harvesting step-up converters. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1618–1628. [Google Scholar] [CrossRef]
- High Voltage Products, Radial Leaded Capacitors. Available online: http://hvp.kr/sub/sub02_01.php?mode=list&cat_no=93 (accessed on 7 January 2013).
- SAMSUNG Electro-Mechanics. Multilayer Ceramic Capacitors. Available online: https://www.samsungsem.com/global/product/passive-component/mlcc.do (accessed on 25 July 2022).
- Seiko Instruments Inc. MS621FE. Available online: https://www.sii.co.jp/en/me/datasheets/ms-rechargeable/ms621fe/ (accessed on 1 February 2014).
- Ahn, J.; Kim, J.S.; Jeong, Y.; Hwang, S.; Yoo, H.; Jeong, Y.; Gu, J.; Mahato, M.; Ko, J.; Jeon, S.; et al. All-recycable triboelectric nanogenerator for sustainable ocean monitoring systems. Adv. Energy Mater. 2022, 12, 2201341. [Google Scholar] [CrossRef]
- Microchip. WLR089U0. Available online: https://www.microhip.com/en-us/product/WLR089U0 (accessed on 6 January 2022).
- ASAIR. HDS10. Available online: http://www.aosong.com/en/products-109.html (accessed on 17 October 2022).
- NXP. PC2202. Available online: https://www.nxp.com/products/sensors/ic-digital-temperature-sensors/ultra-low-power-1-8-v-1-deg-c-accuracy-digital-temperature-sensor-with-ic-bus-interface:PCT2202UK (accessed on 14 August 2015).
- Analog Devices. ADP5304. Available online: https://www.analog.com/en/products/adp5304.html (accessed on 11 February 2015).
- Texas Instruments. XTR101. Available online: https://www.ti.com/product/XTR101 (accessed on 3 August 2004).
- Honeywell. 500 Series. Available online: https://sps.honeywell.com/kr/ko/products/advanced-sensing-technologies/industrial-sensing/industrial-sensors/temperature-sensors/temperature-probes/500-series (accessed on 14 September 2021).
- Futurlec. NTC4K. Available online: https://www.futurlec.com/Components_Others/NTC4Kpr.shtml (accessed on 1 January 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Jeong, Y.; Lee, C.H.; Lee, J.; Seo, H.-S.; Cho, Y. Impedance Coupled Voltage Boosting Circuit for Polyvinylidene Fluoride Based Energy Harvester. Sensors 2023, 23, 137. https://doi.org/10.3390/s23010137
Lee K, Jeong Y, Lee CH, Lee J, Seo H-S, Cho Y. Impedance Coupled Voltage Boosting Circuit for Polyvinylidene Fluoride Based Energy Harvester. Sensors. 2023; 23(1):137. https://doi.org/10.3390/s23010137
Chicago/Turabian StyleLee, Kibae, Yoonsang Jeong, Chong Hyun Lee, Jongkil Lee, Hee-Seon Seo, and Yohan Cho. 2023. "Impedance Coupled Voltage Boosting Circuit for Polyvinylidene Fluoride Based Energy Harvester" Sensors 23, no. 1: 137. https://doi.org/10.3390/s23010137
APA StyleLee, K., Jeong, Y., Lee, C. H., Lee, J., Seo, H. -S., & Cho, Y. (2023). Impedance Coupled Voltage Boosting Circuit for Polyvinylidene Fluoride Based Energy Harvester. Sensors, 23(1), 137. https://doi.org/10.3390/s23010137