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Abstract: Polyvinylidene fluoride (PVDF) is an emerging method for energy harvesting by fluid
motion with superior flexibility. However, the PVDF energy harvester, which has a high internal
impedance and generates a low voltage, has a large power transmission loss. To overcome this
problem, we propose an impedance-coupled voltage-boosting circuit (IC-VBC) that reduces the
impedance of the PVDF energy harvester and boosts the voltage. SPICE simulation results show that
IC-VBC reduces the impedance of the PVDF energy harvester from 4.3 MΩ to 320 kΩ and increases
the output voltage by 2.52 times. We successfully charged lithium-ion batteries using the PVDF
energy harvester and IC-VBC with low-speed wind power generation.
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1. Introduction

Recently, the demand for renewable energy and the internet of things (IoT) has in-
creased and this has urged the development of independent energy production technology
for wearable devices. For energy harvesting, research using piezoelectricity, thermoelec-
tricity, and triboelectricity is being conducted [1–6]. Especially, Piezoelectric elements are
emerging materials for miniaturized energy generation with small size and high energy
efficiency [7–9]. Polyvinylidene fluoride (PVDF) has been studied because it can generate
low-speed wind power with a small size compared to conventional wind power genera-
tors [10–16]. However, the PVDF, which has a high internal impedance with thin thickness
and generates a low voltage, causes a large leakage of power [17].

A rectifier circuit using a bridge diode is mainly used to deliver AC power generated
by piezoelectric elements [18,19]. However, the bridge diode rectifier circuit causes power
loss due to the forward voltage drop of diodes.

To overcome this power loss, a voltage doubler rectifier circuit was used [20,21]. The
voltage doubler rectifier circuit using two diodes and capacitors can double the voltage
produced by piezoelectric elements. However, it can cause power loss in energy harvesting
using PVDF because it increases the intrinsic impedance of the harvesting circuit.

A voltage multiplier circuit and voltage-controlled switch were used for efficient
power transfer of the PVDF energy harvester [22]. This method has practical limitations
in that power cannot be continuously transferred and additional power is consumed for
switching operation. Impedance coupling methods using a switch have been proposed
to transfer power from an energy source with high impedance [23–25]. However, these
methods have limited use for high-voltage sources and consume additional power for
switching operations. Liang et al. reduced the impedance of the energy source without
additional power consumption using capacitors and MOSFET transistors, but it can be
used limitedly in harvesters that generate high voltage [26]. A circuit using a transformer
for impedance matching was proposed by Zhu et al. [27]. This circuit can only be used for
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high input frequencies of several kHz and usually uses a large custom-made transformer
of high inductance.

Cockcroft-Walton cascade voltage doubler circuit and Karthaus-Fischer cascade volt-
age doubler circuit were used for low-power energy harvesting circuits adopting Piezoelec-
tric transducers [28]. Duque et al. proposed a voltage elevator circuit using two capacitors
and an active rectifier circuit reducing forward voltage drop [29]. A charge pump rectifier
circuit using many diodes and capacitors is used for low-power energy harvesting using
photovoltaic cells, thermoelectric generators, etc. [30,31]. These methods increase the volt-
age efficiently by using multiple capacitors, but increase the impedance of the harvester
and cause transmission loss of power.

To overcome this problem, we propose an impedance-coupled voltage-boosting circuit
(IC-VBC) that reduces the impedance of the PVDF energy harvester and boosts the voltage.
The proposed IC-VBC consists of a voltage-boosting stage that increases voltage and a
storing stage that transfers power by coupling impedance. The voltage-boosting stage stores
power in multiple capacitors connected in parallel and boosts the voltage by switching to a
series connection. The storing stage implements a switch without power consumption by
using MOSFET transistors and delivers power by matching the impedance to the electrical
load. The proposed IC-VBC reduced the internal impedance of the PVDF energy harvester
and increased the voltage to successfully generate low-speed wind power.

Our paper is organized as follows: Section 2 describes the IC-VBC. In Section 3, we
design IC-VBC and describe the SPICE simulation results. In Section 4, the experimental
results with low-speed wind generation are described and lithium-ion battery charging is
demonstrated. Conclusions are presented in Section 5.

2. IC-VBC

Figure 1 shows the working principle of the proposed IC-VBC. The differential signal
Vs generated by the PVDF energy harvester is stored in K capacitors CP

k and CN
k of the equal

capacitance connected in parallel according to the current direction. Based on the clockwise
current flow, CP

k are charged while Vs is a positive voltage and CN
k are charged while Vs is

a negative voltage. The total capacitances of CP
parallel and CN

parallel of K parallel-connected
capacitors are computed by K times as Equation (1).

CP,N
parallel = ∑k CP,N

k = KC (1)

where we assume that the capacitance of single capacitor CP,N
k is equal to C so that

CP,N
k = C, k = 1, 2, · · · , K. The voltage charged to the K capacitors connected in

parallel is expressed as a function of time as follows:

VP, N
charge(t) = VS

(
1− e−

t
Z0KC

)
(2)

where Z0 is the internal impedance of the PVDF energy harvester. The electric charges
charged in CP

k and CN
k are transferred to Cstore by crossing two switches in the storing stage.

At the same time, the switches located in the voltage boosting stage operate alternately
according to the current direction. While CP

k and CN
k are charged, the switches are open

and the K capacitors are connected in parallel. On the other hand, while CP
k and CN

k are
discharged, the switches are closed and the K capacitors are connected in series. The total
capacitances of CP

series and CN
series of K series-connected capacitors are computed as follows:

CP,N
series =

(
∑k CP,N

k

)−1
=

C
K

(3)
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Figure 1. Working principle of IC-VBC.

The discharged voltage of the K capacitors connected in series is expressed as a
function of times, as follows:

VP,N
discharge(t) = KVS × e−

t
ZLC/K (4)

where ZL is the load impedance of Cstore. Therefore, the voltage is boosted K times while
CP

k and CN
k are discharged, and the power can be transferred to Cstore more quickly.

Cstore in IC-VBC has a large capacitance to store a lot of energy. Therefore, ZL is com-
puted as the inverse function of Cstore and has a low value. On the other hand, the PVDF
energy harvester has a high internal impedance with a thin thickness. This impedance
difference causes a large leakage in power transfer. The proposed IC-VBC delivers power
to the load by reducing the impedance of the PVDF energy harvester via a cross-switching
operation according to the current direction of Vs. The matched impedance ZM is deter-
mined as in Equation (5) by the capacitance and number of capacitors constituting the
voltage boosting stage.

ZM =
1

2π f C
K

(5)

where f is the fundamental frequency of Vs. The power stored in Cstore is supplied to
the electrical load ZA to drive applications such as sensors and electronic devices. The
cross-switching function of the IC-VBC is implemented using MOSFET transistors. Figure 2
shows the schematic circuit diagram of IC-VBC with K = 3.
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Figure 3 shows the working flow chart of IC-VBC. The working flow of IC-VBC is
as follows:
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(1) At positive Vs, K capacitors of CP
k are connected in parallel and the charged voltage is

expressed as Equation (2).
(2) At negative Vs, the switches are closed and the K capacitors are connected in series.

These series connection increasing voltage K times delivers the power to Cstore. The
charged voltage is expressed as Equation (4). Note that the switches are opened
and the K capacitors CN

k connected in parallel are charged with negative Vs at the
same time.

(3) When Vs becomes positive again, the CP
k are connected in parallel and charged, and

the CN
k are connected in series to deliver power to the Cstore.
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3. Simulation Results

For SPICE simulation, we measure the generated voltage of the PVDF energy harvester
according to wind power and estimate the source voltage. We measured the generated
signals according to wind speeds of approximately 4 m/s, 6 m/s and 8 m/s using a PVDF
energy harvester of 155.7 mm × 18.0 mm × 0.157 mm (height × width × thickness).
Figure 4 shows the generated signal and frequency spectrum of the PVDF energy harvester
measured at 10 MΩ with an oscilloscope (DSO7052B, Agilent Technologies, Santa Clara,
CA, USA). The PVDF generates unstable velocity distribution by vortex flow and increases
directional deformation proportional to fluid velocity [22]. Therefore the PVDF energy har-
vester generates a high voltage proportional to the wind speed and includes a fundamental
frequency of 2.9 Hz to 3.7 Hz and frequency components of 12 Hz and 35 Hz.
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The PVDF energy harvester is equivalent to a circuit model of internal capacitance C0
and source voltage V0, connected in series [22]. The determined internal capacitance using
an LCR meter, C0, is found to be 10.26 nF. The C0 is similar to the nominal capacitance of
11 nF of the used PVDF (LDT1-028K, TE Connectivity, Schaffhausen, Switzerland). The
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source voltage, V0, can be estimated using a first-order Butterworth inverse filter at the
measured voltage at 10 MΩ [22]. Figure 5 shows the estimated source using the measured
voltage at 8 m/s wind speed. In Figure 5b, the fundamental frequency of 3.7 Hz has a large
difference of more than 10 dB compared to the frequencies of 11 Hz and 35 Hz. The internal
impedance of the PVDF energy harvester is calculated and found to be 1/2π f C0 = 4.19 MΩ
with f = 3.7 Hz.
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8 m/s wind speed.

Conventional bridge diode rectifier circuits, voltage doubler rectifiers, and charge
pump rectifier circuits are used for energy harvesting [22,32,33]. Half wave rectifier, bridge
diode rectifier, voltage doubler, and charge pump rectifier circuits were considered as
shown in Figure 6 and their average powers according to load were compared with the IC-
VBC via SPICE simulation. For simulation, we set K = 2, C = 170 nF so that Zm = 500 kΩ
in Equation (5) and implemented the IC-VBC using Infineon’s BSP92P and IRL510 MOSFET
transistors and Vishay’s BAT43 diode. The comparison results are shown in Figure 7 by
using the same Vishay’s BAT43 diode for all rectifier circuits.
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Figure 6. (a) Half wave rectifier, (b) bridge diode rectifier, (c) voltage doubler rectifier and (d) charge
pump rectifier circuit.

Figure 7a shows the results obtained by using a source voltage of 3.7 Hz and assuming
constant directional deformation of PVDF over time. The proposed IC-VBC can match the
500 kΩ impedance of the PVDF and supply 1.6 times higher power than the bridge diode rec-
tifier circuit. Figure 7b showing the simulation with source voltage estimated from measured
data, shows that the IC-VBC reduces the impedance of the PVDF from 4.19 MΩ to 320 kΩ
and supplies 1.52 times higher power than the bridge diode rectifier circuit.
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The voltage multiplier circuits such as the voltage doubler rectifier and the charge
pump rectifier use two capacitors in series for voltage boosting. The connected capacitors
inevitably increase the impedance of the PVDF energy harvester and cause power transfer
loss. Therefore, the voltage multiplier circuits supply lower power than the IC-VBC and
the bridge diode rectifier circuit.

We set Cstore = 10 µF for various applications as described in Appendix B and com-
pared the charged voltage according to the number of capacitors in the voltage boosting
stage and wind speed. As described in Appendix A, C is set differently depending on the
number of capacitors so that Zm = 500 kΩ in Equation (5). Figure 8a shows the charged
voltage in Cstore according to the number of capacitors in the voltage-boosting stage. The
charged voltage is 1.49 V when a single capacitor is used in the voltage boosting stage. The
voltage is boosted 1.95 times to charge 2.90 V when two capacitors are used and boosted
2.52 times to charge 3.75 V when three capacitors are used. Conventionally, passive de-
vices can have a characteristic error within ±15% [34,35]. The characteristic error of the
internal resistance of the diodes and capacitors in the IC-VBC causes a deviation of the
voltage charged in Cstore. Therefore, the voltage charged in Cstore may have a deviation of
1.12 V due to the characteristic error of the passive devices when three capacitors are used.
Figure 8b shows the voltage charged in Cstore according to the wind speed. Three capacitors
were used in the voltage-boosting stage of the IC-VBC. The charged voltage is 1.98 V when
the wind speed is 4 ms, and we can charge approximately 0.9 V elevated voltage when the
wind speed increases by 2 m/s.
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4. Experiment Results

We implemented IC-VBC connected to the PVDF energy harvester and verified the
integrated system through experiments as sown in Figure 9. The PVDF energy harvester
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and the IC-VBC was implemented identically to the SPICE simulation. Figure 10 shows
the charged into Cstore, which is obtained by an average of 10 experiments by changing the
number of capacitors and PVDFs. Figure 10a shows the voltage charged in Cstore according
to the number of capacitors at a wind speed of approximately 8 m/s. The charged voltages
are 1.43 V and 2.68 V when a single and two capacitors are used in the voltage boosting
stage. The charged voltage is 3.38 V, which is 2.36 times higher than when a single capacitor
is used, or when three capacitors are used. These results are within the range of deviation
due to a characteristic error of ±15% in the SPICE simulation. The voltage charged in
Cstore reaches the maximum voltage after approximately 600 s regardless of the number of
capacitors in the voltage boosting stage.
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Multiple PVDFs were attached as shown in Figure 9a and connected in series to the
IC-VBC. Figure 10b shows the voltage charged in Cstore according to the number of PVDFs.
We used three capacitors in the voltage boosting stage of IC-VBC and measured the voltage
at a wind speed of approximately 8 m/s. Subsequently, we can charge a voltage of 3.73 V
using three PVDF energy harvesters.

For a practical application of the suggested IC-VBC, we demonstrated the charging
of a conventional lithium-ion battery. We charged Seiko’s MS621FE lithium-ion battery
using the IC-VBC which includes the voltage boosting stage with three capacitors and three
PVDFs generating a voltage of 3.73 V as shown in Figure 10b. The MS621FE lithium-ion
battery is charged using a voltage of 2.85 V to 3.8 V [36]. We use Analog’s ADP5304 switch
to transfer power from IC-VBC to a lithium-ion battery [37]. Figure 11a shows the output
voltage of the IC-VBC and the current transferred to the lithium-ion battery. A power of
304 µW is transferred to the lithium-ion battery when the output voltage of the IC-VBC
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reaches 3.8 V. The battery charging system implemented with the PVDF energy harvester
and the IC-VBC has a power transfer cycle of approximately 58 s.
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As described in Section 2, the voltage charged in Cstore increases by 0.9 V as the wind
speed increases by 2 m/s. Therefore, the output voltage of IC-VBC, which uses three PVDFs
and three capacitors in the voltage boosting stage, according to the wind speed is estimated
as Equation (6) based on the output voltage of 3.73 V at 8 m/s wind speed as described
in Appendix C.

Vout(s) = 3.73− 0.45(8− s) (6)

where s is wind speed. Figure 11b shows the output voltage of IC-VBC according to
the wind speed and the applications that can be utilized. The lithium-ion battery can be
charged at a wind speed of approximately 5.9 m/s or higher, as shown in the previous
experimental results. We can generate a 1.8 V driving voltage for a wireless communication
module for IoT applications at wind speeds over 3.7 m/s [38]. In addition, we can drive
temperature and humidity determination sensors capable of low voltage operation with
low-speed wind power generation of 3.7 m/s or less [39,40].

5. Conclusions

We propose the IC-VBC for efficient power transfer of the PVDF energy harvester with
high internal impedance and low voltage output. The proposed IC-VBC consists of the
voltage boosting stage with multiple capacitors and the storing stage that delivers power to
the electrical load. Capacitors of the voltage boosting stage are connected in parallel to the
charge, and are connected in series via MOSFET switching to transfer power. Capacitors
connected in series transfer power efficiently by boosting the voltage and reducing the total
capacitance. The MOSFET transistors in storing stage automatically couple the impedance
between the PVDF energy harvester and the electrical load. Therefore, the IC-VBC can
reduce the impedance of the PVDF energy harvester during the power transfer process.
SPICE simulation results show that IC-VBC reduces the impedance of the PVDF energy
harvester from 4.3 MΩ to 320 kΩ and increases the output voltage by 2.52 times. We
successfully charged lithium-ion batteries using the PVDF energy harvester and IC-VBC
with low-speed wind power generation.
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Appendix A. Determination of the Number of Capacitors and Capacitance

The capacitors of CN
k , CP

k in IC-VBC can reduce overall impedance including the PVDF
and IC-VBC. The overall impedance ZM reduced by the IC-VBC can be computed with
Equation (5). By setting ZM = 500 kΩ and f = 3.7 Hz, we can determine the capacitance C
with K capacitors as follows:

C
K

=
1

2π f Zm
=

1
2π × 3.7× (500× 103)

= 85× 10−9 (A1)

we can reduce internal impedance from 4.19 MΩ to 320 kΩ as shown in Table A1.

Table A1. Capacitance C set according to the number of capacitors K.

The Number of Capacitors (K) Capacitance (C) Matched Impedance (ZM) in SPICE Simulation

1 82 nF 320 kΩ

2 170 nF 320 kΩ

3 255 nF 320 kΩ

The K capacitors connected in parallel at the voltage boosting stage are converted into
a series connection by cross-switching and then their power is transferred to Cstore. This
series capacitor connection increases total voltage K times as expressed in Equation (4).

The magnitude of the voltage, however, is limited by the input power. The power
transfer model of the IC-VBC proposed is equivalent as shown in Figure A1. The input
power Pin to the IC-VBC can be computed by input voltage VS and input impedance Zin of
the voltage boosting stage and can be described as follows:

Pin =
V2

S
Zin

(A2)

where Zin can be computed by capacitance C and fundamental frequency f of VS, i.e.,

Zin =
1

2π f C
(A3)

With boosted voltage KVS and load impedance ZL, the output power Pout delivered to
Cstore can be described as.

Pout =
(KVS)

2

ZL
(A4)

where ZL can be computed as follows:

ZL =
1

2π f Cstore
(A5)

Since Pout < Pin, the following relationship can be derived

K <
ZM + ZL√

ZinZL
(A6)

We set C = 85 nF, Cstore = 10 µF and ZM = 320 kΩ and obtain optimum K = 3 via
SPICE simulations.
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Appendix B. Impedance Model for Applications

By SPICE simulations of IC-VBC for charging and electronic device, ZM of 320 kΩ is
obtained. Also, it is obtained that the ZM matched PVDF energy harvester can deliver high
power loads ranging from 230 kΩ to 420 kΩ with a deviation of 3.8 nW.

The impedance model of the IC-VBC including the electrical load can be depicted
equivalently as shown in Figure A2. Here, ZL is the load impedance of Cstore and ZA is
the electrical load. Since ZM and ZL are connected in parallel, equivalent load ZH can be
written as follows:

ZH =
ZMZL

ZM + ZL
(A7)

We set Cstore = 10 µF because Cstore should be much bigger than C/K for energy
transfer using multiple capacitors [26], i.e., Cstore � C/K. Then ZH becomes 4.24 kΩ with
ZL = 4.3 kΩ and f = 3.7 Hz.
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In this paper, we consider Seiko’s MS621F lithium-ion battery [36] charging and imple-
ment the IC-VBC with Analog’s ADP5304 switch [41]. Since the integrated impedance of
the switch and the battery is 4.25 kΩ, the IC-VBC can efficiently transfer power. Note that
the application of the IC-VBC is not limited as long as the electrical load is approximately
4 kΩ so that charging pressure and temperature sensors [42–44] become feasible applica-
tions of the IC-VBC.

Appendix C. Output Voltage of IC-VBC

The output voltage Vout obtained using the PVDF and the IC-VBC as a function of the
wind speed s can be expressed as follows:

Vout(s) = Vmax −Vinc(smax − s) (A8)
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where Vmax is the maximum voltage with maximum wind speed smax and Vinc is increased
voltage with a 1 m/s wind speed increment.

From the experimental results in Figure 10, we set smax and Vmax as 8 m/s and 3.73 V,
respectively. Then the equation above can be written as follows:

Vout(s) = 3.73−Vinc(8− s) (A9)

We obtain Vinc = 0.9/2 = 4.5 by using the results in Figure 8b which shows that output
voltage increases by 0.9 V with a 2 m/s speed increment. Consequently, the output voltage
can be written as follows:

Vout(s) = 3.73− 0.9
2
(8− s) = 3.73− 0.45(8− s) (A10)
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