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Abstract: Knowledge-based synergistic automation is a potential intermediate option between
the opposite extremes of manual and fully automated robotic labor in agriculture. Disruptive
information and communication technologies (ICT) and sophisticated solutions for human-robot
interaction (HRI) endow a skilled farmer with enhanced capabilities to perform agricultural tasks
more efficiently and productively. This research aspires to apply systems engineering principles
to assess the design of a conceptual human-robot synergistic platform enabled by a sensor-driven
ICT sub-system. In particular, this paper firstly presents an overview of a use case, including a
human-robot synergistic platform comprising a drone, a mobile platform, and wearable equipment.
The technology framework constitutes a paradigm of human-centric worker-robot logistics synergy
for high-value crops, which is applicable in operational environments of outdoor in-field harvesting
and handling operations. Except for the physical sub-system, the ICT sub-system of the robotic
framework consists of an extended sensor network for enabling data acquisition to extract the
context (e.g., worker’s status, environment awareness) and plan and schedule the robotic agents
of the framework. Secondly, this research explicitly presents the underpinning Design Structure
Matrix (DSM) that systematically captures the interrelations between the sensors in the platform and
data/information signals for enabling synergistic operations. The employed Systems Engineering
approach provides a comprehensible analysis of the baseline structure existing in the examined
human–robot synergy platform. In particular, the applied DSM allows for understanding and
synthesizing a sensor sub-system’s architecture and enriching its efficacy by informing targeted
interventions and reconfiguring the developed robotic solution modules depending on the required
farming tasks at an orchard. Human-centric solutions for the agrarian sector demand careful study
of the features that the particular agri-field possesses; thus, the insight DSM provides to system
designers can turn out to be useful in the investigation of other similar data-driven applications.

Keywords: human–robot synergy; human–robot collaboration; human-centric agriculture; data and
information flows; systems engineering; decision structure matrix

1. Introduction

Harvesting and handling operations in high-value crops horticulture are labor-intensive,
accounting, in many crops, for about 50% of the total production costs [1]. At the same
time, agricultural worker availability is of great concern in many European countries [2]
greatly vary in the labor productivity in the sector [3]. In addition, considering the share
of employment in agriculture across the globe, it could be argued that agricultural labor
productivity is lower compared to other industries [4]. Recently, mobility restrictions due to
the COVID-19 pandemic resulted in additional disruptions in agricultural production, hence
calling for innovative interventions to ensure resilience and sustainability in the agricultural
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value chain [5]. To this end, adopting digital technologies and the Internet of Things (IoT),
such as automated machinery and agricultural robotics, offer innovative solutions contribut-
ing to the efficiency, sustainability, flexibility, agility, and resilience of agricultural supply
chain operations [6]. However, replacing manual labor in agriculture production with fully
automated machine-based systems, following the paradigm of the industrial manufacturing
domain, has proven to require additional research to be effectively applied [7].

Most significantly, societal challenges that associate automation with unemployment
growth typically hinder the adoption of digital technologies in rural communities [8].
Hence, knowledge-based synergistic automation as an intermediate option between the
opposite extremes of manual and robotic labor could be a viable option [9]. Nevertheless,
integrating automated mechanization in agricultural operations prior to maturing the
technology could cause cost overruns and schedule deviations [10]. This observation
is typical for electro-mechanical and software product and service platforms designed
“from the ground up” without prior design knowledge [11]. A typical challenge of novel
products and de novo designs refers to the poor analysis of the functional interactions
between the modules of complex products [12]. However, the function of a product
represents its operational purpose and is imperative to satisfy customer requirements [13]
in order to ensure market success. In this respect, the product function in novel products is
typically recognized at a late product development stage, resulting in time-consuming and
costly interventions to avoid failures and ensure operational performance [14]. In addition,
innovative technological systems may consist of multiple modules, each performing specific
sub-functions and controlling a nexus of interrelations [15].

Human–robot interaction (HRI) systems comprise complex technology platforms
representing endeavors that necessitate systematic conceptualization and designing for
delivering the anticipated functionality and operational performance. The information and
communication technology (ICT) modules (e.g., robotic fleet management, HRI for optimal
logistics operations, and farmer activity recognition) have a crucial role in such knowledge-
based platforms to ensure enhanced operational efficiency [16]. In such a synergy, human
safety enabled via exploiting input information is apparently a prime factor, providing
a harmonic coexistence of humans and robots [17,18].

In this regard, this research proposes a baseline human–robot synergy as the tech-
nology platform for agricultural operations in high-value crops. A human–robot synergy
platform has to consist of: (i) The physical sub-system, i.e., a drone for mapping an agri-field
and a mobile platform to execute the logistics operations; and (ii) the ICT sub-system for
gathering data and managing data streams about the status of the agri-field and the farmer.
This research especially analyzes the information sub-system of a human–robot synergistic
system consisting of an extended network of sensors for enabling data acquisition to extract
the context (e.g., worker’s status and environment awareness) and planning and scheduling
the action agents of the platform. In this context, this research attempts to address the
following Research Queries.

• Research Query #1—What could be a viable option in agricultural operations between
the extremes of manual work and fully automated machine-based systems in agriculture?

• Research Query #2—How can the transition from conceptualization to the technology de-
velopment of a human–robot synergy information sub-system in agriculture be realized?

Considering the exposure of supply chains to severe disruptions and the need to
use data-driven digital technologies for supply chain security, cost-competitive resilience,
and sustainability [19], it is critical to respond to the aforementioned research questions.
Responding to Research Query #1, this research conceptualizes a human–robot synergy
system for harvesting high-value crops. To address Research Query #2, this study fo-
cuses on the ICT sub-system and adopts a system engineering perspective to scrutinize it.
In particular, this study applies the Design Structure Matrix (DSM), a technique developed
by Steward [20] that provides a chaste and handy matrix format representation of the
intra-system interactions of a complex engineering system.
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Considering the low technology readiness level of automated systems for outdoor
farming activities, this research contributes to the Systems Engineering field by providing
an overarching analysis of the structure underpinning the data-enabled processes in human–
robot synergy platforms. Notably, in the same vein as Tekinerdogan and Verdouw [21],
this research proposes a catalog of data acquisition components that can be reused in the
broad context of Systems Engineering. This catalog may support the Systems Engineering
life cycle process regarding human–robot synergy platforms and is exemplified using a
well-defined technology system in agriculture.

The rest of this paper is organized as follows: Section 2 inserts the relevant research
background. Section 3 outlines the materials and methods for conducting this study.
Section 4 conceptualizes the envisioned human–robot synergy system and provides an
analysis of the structure of the developed robotic platform in a matrix format, particularly in
terms of the information sub-system. The findings regarding the developed DSM model are
also discussed. Finally, Section 5 presents conclusions, academic and practical implications,
limitations, and future research avenues.

2. Research Background

Due to the advent of Industry 4.0 and the digitalization of the economy, technology-
based implementations underlined by hardware and software configurations have been
outlined for a plethora of operations in diverse fields. Indicatively, fully autonomous
unmanned aerial vehicles combined with real-time computer vision algorithms have been
investigated for human detection in search and rescue missions [22]. Specifically, the use
of mobile robots in agriculture has a racted the focus of interest in recent years, with the
ultimate objective of developing technology-based solutions for supporting/executing
agricultural operations that are typically labor-intensive, time-consuming, and resource-
demanding [7]. Considering the nascent character of agricultural digitalization, a common
technical lexicon for autonomous applications in agriculture is not yet adopted [23], hence
creating readership confusion. Lately, a stream of research studies has focused on technical
details and modeling aspects of autonomous machines in agriculture.

In terms of planning the operations of mobile robots in agricultural environments,
Moysiadis et al. [23] reviewed and synthesized the pertinent literature and identified several
planning attributes for mobile robots, classified across three main categories, namely:
(i) high-level control-specific attributes, (ii) operation-specific attributes, and (iii) physical
robot-specific attributes. However, outdoor agricultural environments are complex and
characterized by dynamic environmental conditions, as opposed to indoor manufacturing
spaces [24]. Therefore, in order to enable the navigation of autonomous ground vehicles
and inform subsequent operations, several data gathering and analysis techniques are
required, including, for example, remote sensing, agri-field mapping, computer vision,
data-driven segmentation, and classification algorithms. Besides, Anagnostis et al. [25]
considered and tested a deep learning algorithm (named U-net) to accurately identify and
segment tree canopies in orchards based on images captured via drones. In the same vein,
regarding the autonomous navigation of mobile robots in semi-deterministic agricultural
environments, Katikaridis et al. [26] documented a systematic manner in using drones to
support the route planning of mobile robots in a real-world orchard of walnuts. The study
developed and applied machine learning and noise reduction techniques for accurately
representing an agri-field and exploring alternative navigation scenarios for the mobile
robot. Furthermore, recognizing the need to address the spatial and temporal variability in
outdoor environments, spatial mapping using unmanned ground vehicles equipped with
depth cameras and drones for capturing corresponding three-dimensional orthomosaics
has been developed [27]. The fusion of the collected datasets then informed the precise
robot localization and navigation. Lastly, a method for constructing the local environment
map and a reactive path tracker to accurately detect the tree row-end in an orchard and
safely maneuver from one row to the other has been proposed by exploiting extreme
alterations in the statistical distribution of points acquired by a depth camera compared
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to the points inside the row [28]. Besides, the human-centric philosophy acknowledges
the essential notion of growing productivity without pi ing robots against workers for
dominance of one or the other. Instead, robots should intertwist with humans and perform
as partners rather than rivals [29].

Regarding HRI, natural communication pathways are required to enable synergistic
ecosystems, as opposed to the conventional communication options between humans and
computers via devices such as a keyboard, mouse, joystick, and touch screen [30]. A key
constituent in HRI systems is safety while an automated machine is navigating in congestive
environments; hence, collision avoidance or detection is a fundamental requirement in
human–robot synergy platforms [31]. To this effect, novel local path planning methods have
been proposed in the literature, incorporating, for example, the support vector machines
theory [32]. Furthermore, activity recognition of workers is essential in HRI to enable the
so-called “social-aware robot navigation” [33] toward human-centric practices. In agriculture,
depth cameras and machine learning have been investigated to recognize hand gestures
and enable real-time HRI [34]. In particular, the Robot Operating System has been utilized
to “translate” human gestures into commands for the safe navigation of a robot in an
agri-field. To a greater extent, to overcome the computational challenges of state-of-the-art
human pose estimation architectures, alternative vision-based logarithmic approaches have
been applied for efficient human-computer interaction [35].

3. Materials and Methods

Digital supply chain operations enabled by autonomous vehicles shall be analyzed
based on an integrated multi-stage process involving conceptualization, simulation mod-
eling, and deployment of testbeds in the real-world [36]. Embracing the system view of
operations research, a challenging real-world issue has to be conceived, and a respective
conceptual model has to be devised to comprehend the different governing parameters
and variables and ultimately structure and delimit a viable solution [37]. To this end, this
research first conceptualizes a human–robot synergy system, particularly focusing on the
underpinning data and information flows. Then, a formalized method was adopted to
analyze the system. The steps of the pursued research process followed in this study, along
with the respective outcomes, are depicted in Figure 1.
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3.1. Human-Robot Synergy Platform—Information Sub-System Structure

This research aims to denote the complexity of the information sub-system of the
conceptualized human–robot synergy platform. The overall human–robot synergy system
consists of: (i) The physical sub-system and (ii) the information sub-system (Figure 2). This
research focuses on the information sub-system, mainly on the data gathering through the
platform’s sensors and on its flows and processing to generate information for delivering
the system’s function. In this regard, the information sub-system consists of the following:
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3.1.1. Context Extraction Block

In order to acquire data, sensors are installed at the user and action agents. Specifically,
user agents bear wearable devices that perform continuous sensing independently of the
agents’ attention and generate raw data. Overall, the data can refer to informed data,
structured data, or the actual current context (e.g., the current activity of agents and the
state of the surroundings). The human–robot synergy system, which this research explores,
does not consider a network of sensory devices installed in the agricultural environment.

The context extraction block extracts context from the collected sensor data. Indica-
tively, during agricultural operations such as harvesting, the context can represent the
worker’s current state (e.g., picking or loading a tray). In this regard, the wearables’
accelerometer data reveal the activity context of the worker.

3.1.2. Actuation Block

The actuation block determines, prioritizes, and schedules actions for each executing
agent in the system. Thus, if one agent in the field is blocked, the action scheduler plans an
alternative route for the agent to follow so as to execute the task. This block also generates
recommendations to user agents. For example, if one worker will be served in a delay, it
recommends a rest period for this worker. Finally, this block also controls data acquisition;
for example, if it detects a time period during which a worker exhibits low activity, then
it reduces data acquisition load (i.e., switches off specific non-critical sensors) to save the
energy on the worker’s wearable device.

3.2. Systems Engineering Analysis

The conceptual development of a human–robot information sub-system to support
an integrated human–robot collaborative framework requires full documentation of the
underlying process architecture, in particular the interrelations among the sub-system’s
processes. To this end, this research applied DSM to map out the data interfaces of the
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information sub-system [38]. In principle, DSM maps the interactions among a set of N
system elements as a square N × N matrix (Figure 3). This matrix represents the identified
components comprising the system under investigation. The components’ interfaces
are represented as marks in the matrix, which typically reveal patterns (modules or sub-
systems) representing the system’s architecture. Specifically, the off-diagonal marks indicate
the connections between a system’s elements.
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The selection of DSM relies on the several benefits the technique offers [38], including:

1. Conciseness—The DSM’s structured arrangement of elements and their interactions
in an N × N array offers a compact representation of a complex system.

2. Visualization—The DSM allows a designer to distinguish system modules or sub-
systems of interest through congregating components and marking out regions of
intense elements’ interactions, which in turn allow the indicative assignment of
specific system components to a module to be deducted.

3. Comprehension—The DSM is easy to review and facilitates the understanding of the
hierarchy and complexity of a system.

4. Analysis and Optimization Potential—The DSM allows power analyses and matrix
mathematics to optimize a system’s structure, modularity, and other significant patterns.

4. Results

This section firstly presents the operations scenario for the conceptualized human–
robot synergy platform as the object of inquiry and secondly analyses the design structure
of the ICT sub-system.

4.1. Operations Scenario and System’s Functionality

Human–robot synergy in logistics operations for high-value crops requires the coordi-
nation and collaboration of the human and mechanized agents in the agri-field. Preferably,
the environment should be semi-structured, e.g., orchards, to avoid encountering ran-
dom and unexpected conditions that hinder the system’s functionality. In the conceptual
system under consideration, the underpinning logic is to assist farmers in harvesting oper-
ations. Thus, the efficiency of the overall operation shall increase by minimizing a worker’s
non-productive time, while the farmer’s well-being will be promoted by eliminating the
required manual effort to carry heavy loads across the agri-field.

The manually operated drone, equipped with an RGB camera, performs flights over
the agri-field of interest (preferably a structured orchard for ensuring stable environmental
conditions to the overall portfolio of operations). The drone’s flights aim to map the orchard
and help identify entities and any obstacles (e.g., trees and unknown objects like rocks).
The acquired map is transmitted to a Farming Operating System (FMIS), where possible
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agri-field tracks for the routing of the mobile robot are extracted. The embedded algorithms
then calculate the optimal path for the mobile robot.

Then, the mobile robot autonomously traverses the agri-field following the optimal
route plan generated by the FMIS. The mission of the mobile robot is to safely approach
the farmer, wait for a tray to be loaded onto the vehicle, transport the tray of high-value
crops toward the exit of the farm, and then return to the next tree that the farmer serves
until harvesting operations are completed (subject also to the generated permutation of the
trees to serve in the optimal plan and the battery level of the mobile robot). For navigating
within the agri-field, the autonomous vehicle is equipped with a Real-Time Kinematic GPS,
while a LiDAR sensor also helps to avoid obstacles and recognize the status of the farmer.

Moreover, the human agent performs picking/harvesting operations of high-value
crops (e.g., fruits). The farmer is equipped with five wearable sensors (viz., inertial mea-
surement units—IMUs) that produce signals regarding the farmer’s body posture and
movement. The signals are transmitted to the mobile robot for the automatic awareness
of the situation and activity to ensure safety and facilitate interaction in an efficient and
fenceless manner [40]. Specifically, the mobile robot can automatically identify the sta-
tus of the farmer (e.g., work rate, task completion progress, abnormality detection) and
react accordingly.

Last, to gather signals and develop “activity signatures” of potential farmers, ex-
perimental sessions of participants shall be organized [25]. The situation and activity
recognition will be automatically registered in the FMIS. Notably, the experimental sessions
would be required for every platform’s module and for the entire system, at both laboratory
and actual agri-field environments, for validation, verification, and calibration purposes.
The operations scenario that illustrates the functionality of the conceived human–robot
synergy system is depicted in Figure 4.
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4.2. Information Sub-System’s Decomposition

The information sub-system’s decomposition is presented in Figure 5. The resulting
diagrammatic tree’s structure contains: (i) Form (objects); (ii) three levels of hierarchy,
including level zero; and (iii) components, only regarding data acquisition and not the
entire electro-mechanical system as this extends beyond the scope of this research.
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A process DSM is provided below (Figure 6) to identify tasks and respective data
generated regarding:

• System tasks that can be executed in parallel.
• The sequence in which the system tasks have to be executed.
• System tasks, which have to be executed together due to any underlying dependencies.
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4.3. Discussion

The process architecture DSM model in Figure 6 represents the information sub-system
of a human-centric worker-robot logistics synergy for supporting harvesting in high-value
crop agriculture. It is a 15 × 15 matrix, meaning that there are fifteen data-driven tasks
performed based on the respective flows (indicated by a unique ID on the left-hand side
of Figure 6). The data and data/information analyses and flows regard all the agents in
the system, namely the drone, the mobile robot, and the user. The drone sensors provide
data regarding the status of the flying platform itself and the geolocation of the trees in
an agri-field. The mobile platform sensors generate data about the vehicle itself (as in the
drone) and about the presence of any unexpected object in the agri-field to navigate safely.
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The wearables provide data about the status of the farmer that allow the mobile robot to act
in a human-centric manner, e.g., approach the farmer or stop moving in advance to avoid
an accident. The algorithms and the data analysis techniques permit data classification
of the gathered information and enable context recognition in the agri-field. The global
and local planners calculate the optimal paths for the agents to perform the pursued
agricultural tasks.

Most of the marks (“X”) in the DSM model are below the diagonal hence representing
feed-forward data flows. Along the diagonal, groups of data elements that interact are
indicated. Two groups of data-driven tasks are executed together (i.e., ID 10–14 and ID
12–15, as marked out in Figure 6). These groups denote highly iterative groups of tasks and
provide the designers with an indication of areas where the redesign is feasible. In context,
planning the operations in diverse agri-field settings may require the selection of a different
optimization objective (e.g., time, cost). To this effect, the DSM helps develop a taxonomy of
optimization algorithms that would inform the planner. For example, the optimal routing
of the mobile robot in the agri-field could be amenable to alternative criteria (e.g., formulate
Eulerian path or Hamiltonian path) that could require alternative algorithmic approaches
(e.g., Dijkstra’s algorithm or nearest neighbor search) (i.e., ID 10–14). The generated path
would then be used as input to control the functionality of the physical counterpart of
the platform.

In the developed process architecture DSM model of the information sub-system,
the marks above the diagonal marks represent data flows that loop back and update
other data/information silos and can reveal planned and unplanned iteration paths where
improvements could be inserted for better system performance. Characteristically, all data
and information are used to control the system’s behavior.

5. Conclusions

Harvesting of high-value crops (e.g., fruits and vegetables) is still performed manually
in many agricultural settings and has been characterized by decreased growth rates in crop
production in several countries. Considering urbanization as a social phenomenon and the
migration of workers to urban centers, technological options can assist to achieve higher
agricultural productivity. In this context, the main topic of this study is the seamless and
fair work distribution between humans and robots through a human-centric approach to
harvesting high-value crops as a response to the productivity challenges in agriculture.

Concerning the posed Research Query #1, this study conceptualized a human–robot
synergy system as a technology platform for bridging the gap between the extremes of
either manual or entirely automated agricultural activities. Besides, in response to Research
Query #2, this research applied DSM to generate a matrix representation of the information
sub-system of a baseline human–robot synergy system for high-value crops in agriculture.
Installing a responsive information sub-system in a human–robot synergy platform is vital,
as surveys revealed that collisions and human errors are the most common accidents in
cases where humans and machines interact in contemporary farms.

5.1. Academic Contributions

The provided process architecture DSM model of the information sub-system can be
used in an abstract manner to the early stage of designing a digital technology in different
agricultural environments for performing diverse agricultural activities, hence contributing
to the robotics fields [41]. Furthermore, in the digitalization discourse, the DSM model
could act as a roadmap/template for designing context-aware human–robot synergistic
operations enabled by sensing equipment, thus supporting the realization of “digital twins”
in agriculture [42]. Overall, the contribution of this research to the Systems Engineering
field can be encapsulated in the provided analysis of the baseline structure underpinning
the data-enabled processes in human–robot synergy platforms.
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5.2. Practical Implications

The provided analysis approach and the developed DSM model shall create insights for
system engineers and managers on designing, organizing, implementing, and maintaining
an ICT sub-system in human–robot synergy technological platforms. Specifically, the
square grid representation helps unravel the interactions among data and information
elements in human–robot synergy and could act as a useful tool for teams of engineers to
technically align, introduce improvements and efficiently develop product modules and
system functionalities that can be valuable to the end user.

5.3. Limitations

A few limitations characterize this study, which, however, provide interesting grounds
for further research. Firstly, this research is limited only to the human–robot information
sub-system, while the physical sub-system is not analyzed. Nonetheless, an integrated
analysis shall consider both sub-systems as data and information exchange control the
functionality of the human–robot synergistic system. Secondly, the provided analysis
is qualitative in nature and is recommended at the design stage of a novel technology.
Further validation requires the development and deployment of a real-world equivalent
implementation to consider specific technical features.

5.4. Future Research

This research presented a human–robot synergy system by considering a set of sensors
installed on all agents. However, recent research evidence documents the use of Machine
Learning in replacing the need for sensor equipment, e.g., recognizing gestures to interact
with the user instead of using wearables [34]. For example, research developments regard-
ing IMUs and kinematic models of exoskeletons could be adopted and integrated with
the system to enable more granular data gathering, hence allowing for more precise and
efficient operations [43], specifically in agricultural settings. Such advancements would
require updating the DSM as additional data and information flows are created.

Furthermore, this study develops a process architecture DSM model that represents
the as-is sequence of data/information flows to control tasks in a human-centric robotic
system. Conducting further analysis, as described in Eppinger [44], would be useful to
navigate alternative sequences and/or definitions of data-driven tasks. Designing human-
centric automated systems for agriculture requires consideration of the characteristics of
the particular agri-field and crops where it would be applied, further reflecting upon the
decisions pertinent to the downstream supply chain (e.g., supply-demand balance) [45].
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