Ultrasonic Measurement of Axial Preload in High-Frequency Nickel-Based Superalloy Smart Bolt
Abstract
:1. Introduction
2. Research Methods
Measurement and Experiment Process
3. Result and Discussion
3.1. Theoretical Model and Simulation Results
3.2. Measured Ultrasonic Wave Properties
3.3. Axial Preload Measurement
3.4. High Accuracy and Repeatability Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrew, D.L.; Carlson, S.S.; Macha, J.H.; Pilarczyk, R.T. Investigating and interpreting failure analysis of high strength nuts made from nickel-base superalloy. Eng. Fail. Anal. 2017, 74, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Pan, R.; Shao, C.; Chang, M.; Xu, X. Research Review of Principles and Methods for Ultrasonic Measurement of Axial Stress in Bolts. Chin. J. Mech. Eng. 2020, 33, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.J.; Wen, Z.X.; Pei, H.Q.; Gu, S.N.; Zhang, C.J.; Yue, Z.F. Thermal damage evaluation of nickel-based superalloys based on ultrasonic nondestructive testing. Appl. Acoust. 2021, 183, 108329. [Google Scholar] [CrossRef]
- Nikravesh, S.M.Y.; Goudarzi, M. A Review Paper on Looseness Detection Methods in Bolted Structures. Lat. Am. J. Solids Struct. 2017, 14, 2153–2176. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Song, G. Bolt-looseness detection by a new percussion-based method using multifractal analysis and gradient boosting decision tree. Struct. Health Monit. 2020, 19, 2023–2032. [Google Scholar] [CrossRef]
- Tran, D.Q.; Kim, J.W.; Tola, K.D.; Kim, W.; Park, S. Artificial Intelligence-Based Bolt Loosening Diagnosis Using Deep Learning Algorithms for Laser Ultrasonic Wave Propagation Data. Sensors 2020, 20, 5329. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Yuan, B.; Mu, X.; Sun, W. Bolt preload measurement based on the acoustoelastic effect using smart piezoelectric bolt. Smart Mater. Struct. 2019, 28, 055005. [Google Scholar] [CrossRef]
- Kim, N.; Hong, M. Measurement of axial stress using mode-converted ultrasound. NDT E Int. 2009, 42, 164–169. [Google Scholar] [CrossRef]
- Pan, Q.; Pan, R.; Chang, M.; Xu, X. A shape factor based ultrasonic measurement method for determination of bolt preload. NDT E Int. 2020, 111, 102210. [Google Scholar] [CrossRef]
- Song, C.; Kim, Y.J.; Cho, C.B.; Chin, W.J.; Park, K.-Y. Estimation on Embedment Length of Anchor Bolt inside Concrete Using Equation for Arrival Time and Shortest Time Path of Ultrasonic Pulse. Appl. Sci. 2020, 10, 8848. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, C.; Sun, X.; Yang, Y.; Wang, C.; Li, D. Monitoring the looseness of a bolt through laser ultrasonic. Smart Mater. Struct. 2020, 29, 115022. [Google Scholar] [CrossRef]
- Liu, E.; Liu, Y.; Wang, X.; Ma, H.; Chen, Y.; Sun, C.; Tan, J. Ultrasonic Measurement Method of Bolt Axial Stress Based on Time Difference Compensation of Coupling Layer Thickness Change. IEEE Trans. Instrum. Meas. 2021, 70, 1009212. [Google Scholar] [CrossRef]
- Xingliang, H.; Ping, C. Ultrasonic Measurement of Bolt Axial Stress Using the Energy Ratio of Multiple Echoes. IEEE Sens. J. 2022, 22, 3928–3936. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wu, J.K.; Liu, H.B.; Kang, K.; Liu, K. Geometric accuracy long-term continuous monitoring using strain gauges for CNC machine tools. Int. J. Adv. Manuf. Technol. 2018, 98, 1145–1153. [Google Scholar] [CrossRef]
- Tsuji, H.; Nakano, M. Bolt preload control for bolted flange joint. In Proceedings of the ASME Pressure Vessels and Piping Conference, Vancouver, BC, Canada, 5–9 August 2002; pp. 163–170. [Google Scholar]
- Huo, L.; Chen, D.; Liang, Y.; Li, H.; Feng, X.; Song, G. Impedance based bolt pre-load monitoring using piezoceramic smart washer. Smart Mater. Struct. 2017, 26, 057004. [Google Scholar] [CrossRef]
- Wang, T.; Song, G.; Wang, Z.; Li, Y. Proof-of-concept study of monitoring bolt connection status using a piezoelectric based active sensing method. Smart Mater. Struct. 2013, 22, 087001. [Google Scholar] [CrossRef]
- Liu, E.; Liu, Y.; Chen, Y.; Wang, X.; Ma, H.; Sun, C.; Tan, J. Measurement method of bolt hole assembly stress based on the combination of ultrasonic longitudinal and transverse waves. Appl. Acoust. 2022, 189, 108603. [Google Scholar] [CrossRef]
- Walaszek, H.; Bouteille, P. Application of ultrasonic measurements to stress assesment on already tightened bolts. NDT 2014, 1, 2. [Google Scholar]
- Ding, X.; Wu, X.; Wang, Y. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer. Ultrasonics 2014, 54, 914–920. [Google Scholar] [CrossRef]
- Lobe, S.; Bauer, A.; Uhlenbruck, S.; Fattakhova-Rohlfing, D. Physical Vapor Deposition in Solid-State Battery Development: From Materials to Devices. Adv. Sci. 2021, 8, e2002044. [Google Scholar] [CrossRef]
- Annamaria, G.; Massimiliano, B.; Francesco, V. Laser polishing: A review of a constantly growing technology in the surface finishing of components made by additive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 120, 1433–1472. [Google Scholar] [CrossRef]
- Ren, G.; Xu, L.; Zhan, H.; Liu, S.; Jiang, W.; Li, R. Quantifying the shape effect of plasmonic gold nanoparticles on photoacoustic conversion efficiency. Appl. Opt. 2022, 61, 4567–4570. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Sun, Z.; Dai, X.; Liu, S.; Zhang, X.; Chen, X.; Yan, M.; Liu, S. Laser ultrasonic nondestructive evaluation of sub-millimeter-level crack growth in the rail foot weld. Appl. Opt. 2022, 61, 6414–6419. [Google Scholar] [CrossRef]
- Manbachi, A.; Cobbold, R.S.C. Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection. Ultrasound 2011, 19, 187–196. [Google Scholar] [CrossRef]
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex spectrum: The S transform. IEEE Trans. Signal Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Castellano, A.; Fraddosio, A.; Piccioni, M.D.; Kundu, T. Linear and Nonlinear Ultrasonic Techniques for Monitoring Stress-Induced Damages in Concrete. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2021, 4, 041001. [Google Scholar] [CrossRef]
- Ren, G.; Zhan, H.; Liu, Z.; Jiang, W.; Li, R.; Liu, S. Evaluation of Axial Preload in Different-Frequency Smart Bolts by Laser Ultrasound. Sensors 2022, 22, 8665. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Value |
---|---|---|
Longitudinal wave speed | m/s | 5788 |
Frequency, f0 | MHz | 17 |
Function, A | 2 ∗ π ∗ f0 (MHz) | 10.6814 |
Period, T0 | s | 5.8824 × 10−8 |
Wavelength, λ0 | m | 3.4047 × 10−4 |
Exciting voltage, V0 | V | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Sun, Z.; Ren, G.; Liao, C.; He, X.; Luo, K.; Li, R.; Jiang, W.; Zhan, H. Ultrasonic Measurement of Axial Preload in High-Frequency Nickel-Based Superalloy Smart Bolt. Sensors 2023, 23, 220. https://doi.org/10.3390/s23010220
Liu S, Sun Z, Ren G, Liao C, He X, Luo K, Li R, Jiang W, Zhan H. Ultrasonic Measurement of Axial Preload in High-Frequency Nickel-Based Superalloy Smart Bolt. Sensors. 2023; 23(1):220. https://doi.org/10.3390/s23010220
Chicago/Turabian StyleLiu, Shuang, Zhongrui Sun, Guanpin Ren, Cheng Liao, Xulin He, Kun Luo, Ru Li, Wei Jiang, and Huan Zhan. 2023. "Ultrasonic Measurement of Axial Preload in High-Frequency Nickel-Based Superalloy Smart Bolt" Sensors 23, no. 1: 220. https://doi.org/10.3390/s23010220
APA StyleLiu, S., Sun, Z., Ren, G., Liao, C., He, X., Luo, K., Li, R., Jiang, W., & Zhan, H. (2023). Ultrasonic Measurement of Axial Preload in High-Frequency Nickel-Based Superalloy Smart Bolt. Sensors, 23(1), 220. https://doi.org/10.3390/s23010220