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Abstract: This article is a graphical, analytical survey of the literature, over the period 2010–2020,
on the measurement of power consumption and relevant power models of virtual entities as they
apply to the telco cloud. We present a novel review method, that summarizes the dynamics as
well as the results of the research. Our method lends insight into trends, research gaps, fallacies
and pitfalls. Notably, we identify limitations of the widely used linear models and the progression
towards Artificial Intelligence/Machine Learning techniques as a means of dealing with the seven
major dimensions of variability: workload type; computer virtualization agents; system architecture
and resources; concurrent, co-hosted virtualized entities; approaches towards the attribution of power
consumption to virtual entities; frequency; and temperature.

Keywords: virtualization; power consumption; power models; power meters; energy-aware algorithms

1. Introduction

Several surveys of the results (see Section 1.6, “Related Surveys”) of research into
modeling the power consumption of virtual entities (VEs, i.e., virtual machines (VMs) or
containers) have been written. In this work, our contribution lies in a thorough analysis
of the dynamics of research itself: the challenges, the approaches, the pitfalls, the falla-
cies, and the research gaps, without neglecting the fruits of the research. Our intended
audience is the prospective researcher, seeking to understand the dynamics of research
into the predictive modeling and supporting measurements of power consumption by
individual VEs relevant to the telco cloud. Dynamics are characterized through a thorough
frequency analysis, which we conduct through the application of a novel method we
have developed [1] that is unique in its ability to parse research literature. Through the
visual aids we provide, and our observations through cross-cutting themes, a prospective
researcher obtains a thorough characterization of the problems, approaches, developments,
formal methods, pitfalls, fallacies and research gaps that characterize this research space.

Among the themes that our survey has brought us to identify, we have pointed out
that all the problem categories we identified touch one or more of a set of seven main
variables that may affect power consumption by virtual entities and the ensuing model
representations: workload type, characteristics of the virtualization agent (VM or container),
host machine resources and architecture, temperature, operating frequency, attribution of a
fraction of consumed power to individual VEs and the mutual influence of concurrent VEs.

Among the major pitfalls that emerged from our thematic analysis, we highlight here
the misconception of the Data Plane Development Kit’s (DPDK) power efficiency (com-
monly misportrayed as a power hog), the often-unacknowledged limitations of the widely
used linear models, the problematic use of benchmarks in model validation, the failure
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to precisely identify the physical contexts of some experimental research, the influence of
synthetic workload generators on measurements and the sometimes-overlooked relevance
of processor organization on power consumption measurements. We have also pointed
out the unavoidable need to precisely identify the scope and limitations of models and the
fallacy of the quest for a “universal” power model.

The research gaps we identify are four: (a) modeling of containers’ power consump-
tion; (b) the effect of overcommitment on power efficiency; (c) investigation and classifica-
tion of DPDK applications; and (d) modeling of power consumption by virtualized I/O (a
challenge which is starting to receive some attention).

1.1. Why Is Research Needed?

Precise measurement of a VE’s power consumption is difficult since measurements of
its host’s power consumption cannot be related directly to it. Hardware power meters are
incapable of measuring the power consumption of individual VEs co-hosted on a physical
machine. Moreover, power consumption of a VE varies with its hosting machine. Therefore,
for VEs, accurate measurement is predicated upon precise modeling of energy- and/or
power consumption.

A general prerequisite to devising energy- and/or power-efficient operations is accu-
racy in power and energy measurements. With specific regard to VEs, it is also essential for
billing in multi-tenant environments, so that the Infrastructure Provider (IPr) can charge
customers the fair amount for the resources (including energy) they consume. Before
proceeding to the scope of our survey, we pose three salient questions that frame our work.

1.2. Why Should Energy Consumption Be a Topic of Interest?

Energy efficiency in the Internet (and in computing and telecommunication networks
in general) has become a significant problem, which has received increasing attention since
the early years around 2000 (see, e.g., [2–4] and references therein), starting from cloud
computing infrastructures, and then extending to mobile and fixed networks. Indeed, it
has been shown that the smaller data centers, within which telecommunications points of
presence (PoPs) may be classified, represent around 95% of the United States’ data center
energy use [5]. Furthermore, this use is comparatively inefficient when compared with that
of the hyperscale server farms (the remaining 5%).

1.3. What Is the Underlying Cause of Increased Energy Consumption?

Traffic growth is the primary cause of increased energy consumption. Table 1 shows
the consistency with which Cisco’s Visual Networking Index (VNI) has been predict-
ing heavy growth in traffic exchanged over the access network by both businesses and
consumers with:

• endpoints over managed networks;
• endpoints over unmanaged networks (“Internet traffic”).

Table 1. Compound Annual Growth Rate (CAGR) reported in Cisco’s VNI over four consecutive years.

Period Fixed Internet Traffic Managed IP Traffic Mobile Data

2014–2019 [6] 23 13 57

2015–2020 [7] 21 11 53

2016–2021 [8] 23 13 46

2017–2022 [9] 26 11 46

(Note that the figures refer to compound annual growth rate (CAGR); they do not
refer to the percentage share of total traffic.).

The key observation lies in the realization that, year after year, significant (heavy, in
the case of mobile data) growth is persistently predicted. This observation is corroborated
by several other researchers, with perspectives varying from traffic at the access segment
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to traffic in transit between Internet Service Providers (ISPs) [10–12]. Cisco [6] and Sand-
vine [13,14] identify “video traffic” and “real-time entertainment” as the drivers of this
growth. A later edition of Sandvine’s Global Internet Phenomena report [15] dedicates
its executive summary exclusively to video traffic; the report shows video as consuming
60% of downstream traffic—a further 2% increase over 2018. Alcatel-Lucent Bell Labs [11]
observed that growth in the metro-core due to video traffic exceeds growth in video traffic
crossing the long-haul core. Clearly, it is widely recognized that video is the prime driver of
this growth in traffic and attendant energy consumption and research has been addressing
this problem [16–28].

1.4. How Is Energy Consumption Being Tackled?

From these (referenced) works, the development of cache architectures emerges as
an important approach to controlling energy consumption, but other mechanisms exist
and yet more are emerging within the general thrust towards “future networks” (ITU-
T Y.3001 [29]). Networks are evolving into flexible and programmable “softwarized”
virtualized infrastructures, and strongly integrated paradigms, such as 5G [30,31], rewrite
the research agenda. We may thus distinguish between radical and reformist approaches:

• Reformist approaches seek to improve the caching of content and are characterized by
their investigation of the reduction of the length of the path between the source and
destination of IP traffic.

• Radical approaches employ the dynamic and reactive control afforded by the soft-
warized, virtualized infrastructures. Radical methods are enabled by standardized
architectures (e.g., [32,33]) that equip the control plane with uniform interfaces that
exploit extant and emerging green capabilities.

Indeed, the impact of virtualization technologies on power consumption in public
telecommunication networks (PTNs) is still unclear. There is a general belief that Network
Functions Virtualization (NFV) should result in reduced energy consumption, owing to a
consolidation of resources and increased flexibility in turning unused hardware (HW) on
and off as needed. However, it is also true that “the massive introduction of general-purpose
HW enabled by NFV would tend to increase power requests with respect to specialized
HW solutions” [30]. Therefore, there is a need to operate power-aware management and
control mechanisms in these environments. At the same time, it is necessary to limit
the complexity of these mechanisms and the level of human intervention therein, to keep
Operational Expenditures (OPEX) within reasonable limits. One approach to understanding
this impact consists of comparative analyses of the implementations of infrastructure, with
and without virtualization. This approach is taken in [34], where the evolved packet core
(EPC) is studied. This work shows that the virtualized implementation is indeed less
energy efficient. Unfortunately, the scope of virtualization and containerization within the
converged wireless and wireline infrastructure is very broad and consideration of a single
“use-case” [35] cannot be generalized to an overall statement. We therefore note that the
scope for our survey needs an operational context which we suggest in the following.

1.5. The Scope of This Survey
1.5.1. Telco Cloud: The Operations Context

We suggest that the telco cloud is our network-operations context. “Telco cloud” is
an evolving notion that evokes a number of common terms in attempts to describe it.
Virtualization, software-defined networking (SDN), automation and orchestration are four
such terms. Other prominent terms are edge computing, containerization, microservices
and resilient infrastructure [36]. We suggest three key observations that organize these
terms into a coherent image of the telco cloud.

1. The telco cloud is, fundamentally, a hybrid cloud:

a. Self-sourced virtualization and containerization;
b. Out-sourced (public cloud) containerization.
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The complementary collaboration of the PTN operator’s (PTNO) network, computing
and storage infrastructure, with that of global providers of infrastructure and applications,
is manifested well in [37]. A distributed cloud infrastructure operates at network (transport
and interconnect) junctions. It includes (cloud) infrastructure owned and operated by the
PTNO, by public cloud providers and by enterprises which consume their joint service.

2. The telco cloud serves both internal and external clients [36]:

a. Internal use can suggestively be referred to as the IT Cloud [38]. This consists of
applications specific to PTNOs: operational support systems (OSS) and business
support systems (BSS), as well as more general applications, such as customer
relationship management (CRM);

b. External uses are growing organically on the basis of use cases seeded by
ETSI [35] and the 5GPPP [39].

3. The service-based architecture (SBA) of the 5G Core is a good fit with cloud-native
computing. Containerization is distinctively central to cloud-native computing [40,41].
The Cloud Native Computing Foundation explicitly identifies containers as compo-
nents of the approach to the concept of cloud native computing [42]. There is a clear
drive towards the use of containers in lieu of virtual machines as the operating envi-
ronment for network functions [40], and the 5G Core’s SBA provides a clear scope for
employing containers.

We end this subsection by indicating the real estate where the VEs in our context may
be deployed:

1. Datacenters: here, the real estate referred to consists of points of presence (PoPs) such
as metro-core PoPs at the near edge;

2. Softwarized and virtualized networks: here, we refer to points of presence such as
central offices (COs) and sites even deeper into the edge, such as remote radio head
(RRH) sites and roadside cabinets.

1.5.2. Identifying the Models in the Scope of This Study

We survey predictive energy and power models, as well as measurements that fa-
cilitate the qualitative and/or quantitative prediction, of consumption by individual VEs
relevant to the telco cloud. A simple interpretation of the rationale that drove our selection
is that we have sought works that measure real-time power consumption by VEs and/or
model real-time power consumption by VEs. The object of measurements and modeling
is strictly the VE.

Nonetheless, the devil is in the details and therefore the details of this simple rationale
must be worked out. One important, finer point regards the VEs themselves. There
are software technologies, which we shall elaborate upon in later sections, which are
functionally critical to VEs. Works that measure, and/or model, such technologies’ power
consumption are in scope. A justification of this claim on scope is not hard. Since power
consumption is a scalar quantity, the reduction of power consumption of a component of a
VE translates into the reduction of power consumption by the VE. In fairness, the translation
is not direct (1:1). A generalization of Amdahl’s law comes to mind: improvement in a
component, measurable by some metric, is attenuated by the ratio of that component’s
use (measurable by that metric) to the system’s (the VE’s) use (measurable by the same
metric). However, we can safely summarize the finer point we alluded to at the start of
this paragraph as follows. Research that studies the measurement and modeling of power
consumption by a component of a VE is in scope. We clarify this by example. For instance,
we would:

1. Include the Data Plane Development Kit (DPDK) [43], as it serves the critical function
of networking (VEs that serve as virtual network functions (VNFs));

2. Include a comparative study that measures power consumption by a VE using two
different implementations of input/output virtualization technology, say: SR-IOV
(single-root IO virtualization) and paravirtualization;
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3. Exclude a comparative study that measures power consumption by various network
adapter (or network interface card (NIC)) architectures, unless it reveals the impact
of these architectures on VEs’ power consumption.

Further detail emerges from the “real-time” requirement. This term is a reflection of
the need for application agnosticism. Power meters that follow from such measurements
and models may be used regardless of whether instantaneous or statistical readings of
power are required. Studies (on measurements and models) meet this requirement by
satisfying the following criteria.

1. Predictors:

a. Must be of fine temporal granularity;
b. Must be updated with the regularity of the temporal granularity;
c. Must enable prediction of power consumption at the same temporal granularity.

2. Workload: Only resource-specific constraints are considered. That is, in the course
of testing using, say, workloads that are processor-intensive (hence the workload
is specific to the processing resource), no other constraints are allowed in works
included in this study. In particular, models must not constrain the stochasticity of
the workload.

Our last detail regards workload. We observe that the universal power model is
a fallacy and the principal reason for this is that the interaction between workload and
architecture cannot be pinned down indefinitely. This does not mean that modeling is
a fruitless endeavor. It simply means that validity constraints must be placed on the
model in terms of workload and architecture. Therefore, we do not exclude modeling
and measurement because of its workload-scope or architectural scope. We do, however,
observe that such models are pitfalls for those who apply them without knowledge of
such limits.

We now proceed to present some recent, related surveys, highlighting their method-
ology and analytical approach. Against this background, we summarize the novelty of
this survey.

1.6. Related Surveys

In recent years, much research has modeled the power consumption of servers in data
centers and cloud environments in general. Several surveys in this regard cover different
aspects of modeling and energy efficiency approaches for servers and virtual entities.

An analysis of power models the from micro- to macro-level is presented in [44]. This
survey covers different aspects and levels of both hardware- and software-centric modeling
techniques. Researchers studied models based on computing resources (CPU, memory,
storage and I/O), system architecture (such as single or multiple cores), the availability
of Graphics Processing Units (GPUs), system/network components, operating systems
and virtualization environments. They categorize the existing models at different layers
moving from architecture level modeling to the level of power models for whole data
centers. However, the survey did not focus greatly on power modeling techniques that
consider the effect of different virtual entities.

According to the categorization in [44], power models depend on different organi-
zational contexts, including the power consumed by system components, running appli-
cations, and/or the execution strategy of processes. These metrics, however, can derive
additive component-based, regression-based or machine-learning-based power models.
Additive models usually present an aggregated view of server power consumption, which
could be based on different resources (such as CPU, ram, I/O, disk), or the disaggregate
static and dynamic power consumption of the server. Regression-based models are mostly
based on the relation of power to the dynamic evolution of some measured system param-
eters. Power modeling using machine learning techniques is an advanced research area
which can be further classified as supervised, unsupervised, reinforcement and evolution-
ary learning. Furthermore, at a much higher level, such as that of data center environments
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as a whole, power models for groups of servers, datacenter networks, conditioning and
cooling systems were studied. The survey also analyzed the modeling methods at operating
system (OS) and virtualization level, and for data-intensive, communication-intensive and
general applications. At the end, the researchers compare the power models against their
complexity, effectiveness, application and use-cases.

The survey carried out in [45] analyzes the power models based on their modeling
approaches. It claims that power modeling methods can be divided into two main themes:
analytical models and formula-learned models. In the former, parameters affecting the
system power are known to the researcher; however, the weight for each parameter needs to
be determined. On the contrary, in high-level formula-learned or machine-learning-based
modeling, no prior knowledge of the system is required and the model is developed from
scratch using the provided data set. The survey further describes commonly used machine
learning techniques, and later focuses on the use and effectiveness of neural networks in
power modeling. According to this survey, the approach to model power for any server
may vary in several aspects. These different characteristics are summarized as (i) degree
of autonomy, i.e., to which level the power model is dependent on external hardware;
(ii) level of granularity, which describes the depth of logical (core, thread, etc.) or physical
(device specific, system level, etc.) levels to which the model can precisely estimate the
power; (iii) methodology, describing the selection of method, which could be simulation,
analytical modeling or data-training; (iv) simplicity, which can be assessed by the number
of variables, method selection and models’ computing overheads; (v) portability, as most of
the models developed are effective for some specific architecture, workload or environment,
and their generalization is still a question; (vi) accuracy, which defines the measurement
accuracy or estimation precision of power for any model; and (vii) power meter (as most
studies use external power meters as a ground truth for their modeling, their accuracy is
also a major concern for developing a more efficient model).

The survey in [46] adopts a slightly different analytical approach and evaluates se-
lected existing power modeling techniques in a unified environment. Comparative analysis
has been performed for twenty-four different software power models and measurement
methods, with nine different benchmarks under a single experimental environment. It
evaluates the existing software power measurement techniques and models for different
applications, benchmarks, systems configuration, server architecture and for their estima-
tion errors. The authors claim that most of the software-based power models use system
performance metrics provided by the operating system, or performance monitoring coun-
ters provided by hardware sub-systems of the server. Software power models considered
in this study are categorized in three types as single variable CPU-based, multi-variable
CPU-based, and single-variable throughput-based. The result of this unified experimental
setup shows that power models based on a support vector machine (SVM) and interpola-
tion techniques show the least error for different resource-intensive applications, whereas
lasso regression with 30 variables was found to be the worst power model with the highest
error. Furthermore, the modeling techniques are mainly divided into two categories; lin-
ear and non-linear, where each category is further classified based on its derivation from
mathematical modeling or machine learning techniques.

Another survey [47], with a more limited scope, focuses on the power modeling of
servers in the cloud while considering the complexity stemming from the diversity of host
hardware platforms, virtualization environment and workload. It presents the usability,
applicability and limitations of the studied approaches, and also presents the analysis
of the traditional existing and emerging modeling techniques. It reviews the existing
power modeling methods at three stages: data acquisition methods, power consumption
models and power modeling methods for servers, VMs and containers. According to
this study, the collection of data for power models could be based on: (a) instruments
such as external power meters, (b) dedicated acquisition systems which are generally
products customized by developers for a specific hardware, (c) simulation-based, and
(d) software monitoring tools. The latter constitute a widely used method that is based
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on system indicators and sensors. For the second stage—i.e., the power modeling—either
hardware-centric, virtualization-centric or application-centric power modeling schemes
can be used. Each type has its own drawback and usability; hence, the domain is still an
open research area for further generalization and measurement precision. The selection
of method, which is considered as the third step of the modeling in [47], is characterized
as power-modeling-based on: (a) empirical parameterization, (b) function regression,
(c) machine learning, and (d) evolutionary algorithms. The survey, after analyzing different
power models, concluded that functional regression and machine learning methods yield
high accuracy when provided with large enough data sets and clear power behavior of
servers. This survey is more similar to ours; however, we distinguish further by providing
statistical analysis of existing approaches, used tools, methods and measurement metrics.
Moreover, our survey focuses on the modeling of power for individual virtual entities
and on the effect of the virtualization environment on server and network functions’
power behavior.

In general, the surveys mentioned above present the literature on server models
irrespective of the operational environment. One of the major trends, not only in data
centers but also in networking, is the presence of virtual entities and the adoption of
virtualization environments. In contrast, our survey concentrates on the power models of
virtualized entities, and focuses mainly on components and parameters that could affect
their power consumption. It further provides a statistical analysis of included research
works with respect to their data acquisition methods, measurement tools and modeling
methods, to give researchers a bird’s-eye view of the existing literature through which one
can identify the approaches carried out in different studies.

1.7. Organization of This Survey

The survey is organized as follows:

1. In [1], we describe our method: a problem–approach–development (PAD) triad, which,
to the best of our knowledge, we are the first to use to identify research dynamics.
We have delegated the description of the method to a separate paper, to resolve the
difficulty of elaborating fully on the method without distracting attention from the
results which we have obtained and which we document separately in this review.

2. Section 2 presents the detailed results.
3. Section 3 is our analysis of the results. There, we give a qualitative assessment through

themes which emerged as we organized the data. We have classified these themes as
“state of the art”, “fallacies” and “pitfalls”, to suggest guidance and warnings which
we were able to glean from others’ experiences.

4. Section 4 concludes by attempting to encapsulate the insights we have gained through
this work.

5. Appendix A illustrates the use of structural coding on a sample of the corpus on a
popular research area: predictive models of renewable energy consumption in the
radio access network.

6. Abbreviations lists and expands the acronyms used in this paper.

We complement this paper with an online repository (https://github.com/humaira-
salam/PowerMeasurementAndModelingRawData, accessed: 23 December 2022), that
carries our raw data.

2. Survey Results: A Digest of Challenges, Approaches and Developments
2.1. A Taxonomy of the Problem Space

As our parsing of the literature proceeded (our method is described in [1]), we ob-
served that the scope of this survey is relatively narrow and the problems in our set are
not fully independent of one another. Rather, the problems diverge from one another
only as aspects (we could also say that they are derivatives) of the core challenge of mod-
eling the power consumption of virtualized entities. Each RU (research unit) (The RU,
or unit of research, is “a publication (excluding surveys) in conference proceedings and

https://github.com/humaira-salam/PowerMeasurementAndModelingRawData
https://github.com/humaira-salam/PowerMeasurementAndModelingRawData
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journals” that “ha[s] three common manifest properties”, i.e., problem(s), approach(es) and
development(s) [1]) is rooted in this core challenge, but the derivative problems (our Prob-
lem categories (P-categories) and their members) addressed differ from one RU to another.
Figure 1 is an illustration of a simple organization of the challenges which have been tackled
in the literature and shows their frequency of presence in RUs. The organization gives
prominence to how challenges have been perceived:

1. One group regards the concern with obtaining an understanding of the dependency
of power consumption on some genre of artifacts. Categories P1,2 and P9–11 are in
this group;

2. The other group regards the concern with how to predict power consumption. Cate-
gories P3–8 and P12 are in this group.
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We now proceed to describe the categories in more detail. Each description is preceded
by a list of references to works that tackle a challenge in the problem category.

2.1.1. Problem Category P1: Host System Hardware Architecture Perspective: Dependency
of VE Power Consumption on Host System Architecture [48–51]

Challenges in problem category P1 address the impact of specific architectural at-
tributes of the host system on the power consumption of VEs. They relate to changes in
power consumption (the behavior) as major attributes of architecture and system-level
designs are adjusted, inserted or removed. Insertions and removals are coarse configurative
actions such as enabling or disabling; adjustments consist of progressive modifications
such as adding increments of a resource. Examples of attributes which have been tackled
include multiple processor cores, processor frequency scaling, Non-Uniform Memory Ac-
cess (NUMA) and hardware threads (e.g., Intel Hyper-Threading). For network functions,
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the importance of knowledge about the power efficiency of NUMA and multiple-core ar-
chitectures has the added relevance of these architectures’ relationship to determinism [37].
We dwell further on the underlying premise of hard partitioning in our consideration of
the impact of the high-performance data plane on power efficiency (see Section 3.3.2).

Research that investigates the dependency of power consumption on architecture is
exploratory, charting work. It attempts to provide a framework for detailed modeling
through the discovery of broad relationships. Problems in this category arise with develop-
ments in architecture and system-level design. For example, while [49] is a comparatively
old work that tackles architecture, [50] is newer and finds scope for research in system
software’s exploitation of NUMA. One recent, highly significant scope is that of the use of
domain-specific architectures (DSAs). Researchers are exploring specialized hardware in
the quest for the improvement of the energy–performance–cost ratio, and will investigate
energy efficiency in the process of their research. As domain-specific cores are mixed
with general-purpose cores, many architectures will be investigated from each of the three
pinnings: energy consumption, performance and cost. A particularly relevant set of DSAs
regards real-time packet processing by computer systems hosting NFs at intermediate
nodes (INs) at the network edge. Concern lies with expediting the common tasks, such as
sending/receiving packets and processing headers. SR-IOV is a good example (see, for
example [52], and its inclusion in [48]), but software-only solutions, such as poll-mode
drivers, may also help to cut through the many middlemen characteristics of general-
purpose operating systems [48,53]. Introduced to serve the perspective of performance, it is
now necessary to understand their impact on power efficiency. Therefrom, it is necessary to
understand how to control their power consumption. We suggest that “profiling”, the term
chosen in [49,54], is a helpful descriptor of this kind of research. Just as a profile produces
an external boundary within which to fill detail, so does this kind of research provide a
framework through which modeling work is facilitated and within which modeling work
provides details of power consumption relationships.

2.1.2. P2: Impact of Alternative Virtualization Genres and Virtualization Platforms on VE
Power Consumption [55,56]

Here, a behavior that consumes power is investigated across different implementa-
tions of a system concept. We have observed investigation of two different system concepts:
(a) virtualization genres and (b) virtualization platforms. There are three members of the
virtualization genre group: containers, para-virtualization and hardware-assisted virtu-
alization. In the virtualization platform group, examples include Xen, Hyper-V, Kernel
Virtual Machine (KVM), Docker and Linux Containers (LXC). Research questions typical
of category P2 seek to control the scope of experimentation through exercise of specific
resources, e.g., per-host networking using emulated switches (software switches) [55,56],
processor-bound and memory-intensive processing [54].

We consider genres and platforms as sub-categories of the same overarching problem
category. Namely, this is system-level exploration that attempts to establish generalizations
about an uncharted space. Like problems in category P1, new problems in this category
arise with fresh alternative virtualization genres and platforms. However, here the scope
of investigation is broader than with works classified under P1. Unlike P1, where specific
architectural aspects (e.g., NUMA, hardware threads) are explored, the perspective taken
here is a concern with the impact of the choice of implementation of a system.

2.1.3. P3: Estimation of Power Consumption of (Virtualization-) Host System [57–69]

Measurement of a single server’s power consumption through the use of an external
power meter is a trivial task. However, at the scale of cloud datacenters, it is a logistical
burden. In addition, travel to the datacenter’s site may be burdensome. Furthermore,
service availability would be reduced by the process of attaching a physical power meter to
the hardware in the virtualization platform, e.g., between the server’s power inlet and the
outlet in the racking cabinet’s power distribution unit (PDU) (naturally, availability would
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only be affected in cases that do not integrate (management and) measurement facilities
within the PDU).

The alternative is the deployment of software power meters. In the scope of this
survey, the cases we consider are meters that attempt to predict host power consumption
on the basis of activity in the VE. This challenge is tackled, for example, in [58–60,62,67,70].
These works then proceed to tackle the problem of attribution of system power to the guest
VEs. Indeed, inclusion within the scope of both challenges (modeling power consumption
of VEs and that of the host system power) seems to significantly enhance the usefulness of
such research, with relatively less effort.

Host power consumption may be predicted in terms of VE resource utilization, or
in terms of a simple characterization of the VEs’ workload. The use of simple workload
characterization as a predictor requires knowledge of workload parameters such as the
number of processes, number of threads, web interactions per second and network interface
utilization. Enokido’s and Takizawa’s work [67,68,71] is noteworthy in its consistency in
modeling in these terms but other variants of this approach have been found: (a) web
interactions per second [65] and (b) number of VMs running processor- and/or network-
intensive workloads [66].

To contrast: works such as [57,72–76] are not included within this category, notwith-
standing their development of models for the prediction of host system power consumption.
In these works, host system models were developed as part of the scope of the challenge
of modeling virtualized entities. Therefrom, the challenge of system power attribution
(problem category P8) was tackled to proceed to guests’ power models.

2.1.4. P4: Dependency of Power Model on Workload [56,62,67–69,71,75–79]

This category regards the perceived dependency of a VE’s power consumption model
on the tasks it is processing. While it is intuitive to expect power consumption to depend
on the workload, it seems far less intuitive to expect the model to depend on the workload.
If this dependency is detected, the problem of model formation must undertake this aspect
of investigation. Two different, major approaches towards achieving adaptability of the
model to the workload have been observed:

1. Adaptation during run-time: the selected mode of instrumentation may not be suited
to a generalizable, closed-form relationship between inputs and power consumption.
In this case, model parameters must be re-trained online. This approach is therefore
of the operating-time, or run-time, kind;

2. Off-line adaptation: a larger set of inputs may need to be identified to comprehen-
sively characterize the variation of power consumption with the workload. This
approach is therefore of the design-time, or off-line, kind.

We conclude this part with a note about two descriptors of the workload: homoge-
neous and specific. The term “homogeneous” is encountered in the literature to refer to the
case where host system deployments within scope are subjected to a single workload. The
term seems to originate in warehouse scale computing (WSC). Conclusions drawn from
this kind of workload have drawn criticism as the results, while significant by virtue of
the mass of WSC, are not generalizable. The other term—“specific”—identifies a single
application; for example, a member of the Standard Performance Evaluation Corporation
(SPEC) CPU2006 suite [80]. This term is used to indicate that models tested under such
a workload are application-dependent and are valid only within a limited range of this
dimension of variability (i.e., the “workload” dimension, see the treatment of the seven
dimensions of variability).

2.1.5. P5: Dependency of VE’s Power Consumption and Power Model on VE’s Resource
Configuration (Heterogeneity) [62,73,78]

This category regards the perceived dependency of a VE’s power consumption and/or
the dependency of its power consumption model on (a) the physical host’s resource con-
figuration and (b) the individual VE’s resource allocation. Research here is concerned
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with two cases of very practical problems: the impact on power consumption of (a) the
differences between hosting machines/containers and (b) the differences between virtual
machines. We have observed that occurrences of research that undertake this challenge
tackle it as an adjoint to another focus, not as the research’s primary objective.

1. Physical host configuration: Host machines in a cloud datacenter may be expected
to come in a limited variety of types, principally differing in resource capacities
such as the number of processor packages per server, cores per processor package,
amount of RAM per server, spread in storage device sizes, etc. Processor power
consumption is notably variable, even within a single family of processors. Indeed,
specialization in optimized power consumption within a family of processors is a
part of the study carried out in [34] within the context of an edge cluster for use in
NFV. As a VE migrates from one processor within a family to a processor of a different
specialization, its power model will change.

2. Individual VE’s resource allocation: The power consumed by a VE varies with the
allocation of resources to (i.e., in use by) a VE, which can be dynamically varied. The
number of virtual cores assigned to a VE is a notable example, see, e.g., [57,61,72–74].
Moreover, VEs are commonly offered in sizes, e.g., small, medium and large, where
allocation varies within all the major resource categories, demanding prediction of
power consumption matched to the size of the purchased VE.

2.1.6. P6: Impact of Temperature and/or Frequency on Models That Predict VEs’ Power
Consumption [60,81,82]

This category regards the challenge of the inclusion of processor package temperature
in models of power consumption. Works that tackle this challenge are concerned with
detailed models of power consumption. Here, the interest lies in obtaining models that
incorporate dependence on hyper-parametric attributes such as temperature.

2.1.7. P7: Loading the VE’s Resources and Measuring Resource
Use [56–59,61,62,65,68,69,71,73,75–79,81–87]

This category regards the use of computing resources and the measurement of such
use by VEs. Interest stems from the role of resources as predictors in modeling. The
researcher is firstly concerned with loading (i.e., effecting the use of) resources. What
means within the operating context of the VE can be used to load a resource? Should it
be loaded in isolation (using synthetic loads) or should it be loaded using representative
(realistic) workloads? Once these problems have been addressed, the concern with the
measurement of resource use arises. The problem here consists of identifying the means
that quantify resource use made by the loading.

2.1.8. P8: Attribution of Host System Power Consumption to Individual
VEs [57–59,61,62,73,75–77,79,81,82,84,86]

The attribution of host system power to individual VEs is a fundamental problem in
proceeding from the directly measurable (host system power consumption) to the indirectly
measurable (individual VEs’ power consumption). Direct measurement of host system
power is possible (e.g., at the wall outlet, or through voltage rail in-line resistors), and such
empirical evidence can be used as a ground truth and compared with power consumption
inferred through modeling. How, then (and herein lies the problem), can this consumption
be attributed to the host’s individual guests (the VEs)?

Within the host system, power consumption may be divided into idle (static), active
(dynamic) and overhead.

1. Idle (static) power consumption:

a. Power consumption while idle is not attributable to any VE at all, as this con-
sumption arises out of the electronic behavior of semiconductor material, not of
computation, communication or storage;
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b. Nonetheless, this power consumption must be accounted for and different ap-
proaches have been followed. For example, the physical machine’s idle power is
attributed to individual VEs in fractions equal to the ratio of each VE’s virtual
CPUs (vCPUs) count to the total complement of vCPUs active on the physical
machine [57,72–74].

2. Active (dynamic) power consumption:

a. The active component can be linked to a particular VE;
b. This includes active power consumption in peripherals, e.g., network interface

cards/adapters (NICs) and mass storage devices.

3. Overhead, e.g.:

a. Operation of heat dissipating units (fans) to prevent thermal runaway;
b. Losses in the power supply.

A “top” (host)—“down” (guest) approach to attribution has been observed.

1. Decide on what host system power consumption is within the scope of the study
and how to divide it. The problem of attribution of the above three causes may be
summarized as follows:

a. Is idle power attributed to the VEs or is it attributed to the host/a privileged guest?
b. Is consumption by peripherals within the scope? How will this be attributed?
c. Are overheads modeled or is correlation with other sources of power consump-

tion going to account for them?

2. Select a set of performance metrics that are correlated to a VE’s power consumption.
3. Select a model that maps a VE’s performance metrics to its power consumption.
4. This fourth consideration is tackled only by those researchers who investigate the

adaptability of the attribution obtained through steps 1, 2 and 3. Does the obtained
attribution adapt well to concurrent, co-hosted VEs? That is: if concurrent, co-hosted
VEs were to be investigated, would the division, metrics and model still result in
accurate prediction?

2.1.9. P9: Implementation of Virtual I/O; P10: Implementation of Network Functions; P11:
Implementation of Software Layer 2 (L2) Data Plane Switching [48,51,53]

These three categories are introduced together, since elements from the respective
categories are commonly implemented as a set for the purpose of the realization of the
virtualization of network functions. Here, researchers seek comparative statements and/or
broad correlations (e.g., independent, positive, negative) between the workload (often in
terms of packet rate and size) and power consumption, across implementations of the
same type. As was observed for categories P1 and P2, researchers seek a profile of the
power characteristics of implementations. It may be helpful to repeat that by “profile”,
we understand that characteristics sought here are not of the detailed form of closed-form
expressions. Examples of elements from the respective categories are:

1. Virtual I/O (P10): virtio [88] and DPDK poll-mode drivers (PMDs) [89];
2. Network functions (P11): Bro (now Zeek) [90] and Snort [91];
3. Software layer 2 data plane switching (P12): Open Virtual Switch (OvS) [92] and

VALE [93].

Problems in each of these three categories merit separate classification as they have
been tackled separately in the literature. For example, in [53], a number of components are
investigated: three different implementations of software virtual switch (P12), two different
I/O virtualization devices and two different implementations of the same network function
(intrusion detection system (IDS)). In [51], power consumption by packet transmission
under DPDK is investigated under the condition of enforcement of (a) the network adapter’s
affinity to NUMA nodes and (b) DPDK process pinning to processor cores.
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2.1.10. P12: Investigation of Processor Green Capabilities [50,60,67,81–83,85,87,94]

Works in this category investigate the low-power idle (LPI) and adaptive rate (AR)
operation of a processor as a means of reducing power consumption. The challenge is broad
enough to permit a sub-categorization into (a) those works that investigate the influence of
frequency as a power-model parameter [81,82] and (b) other works that address improved,
real-time governance of LPI and/or AR [83,87,94] to minimize the power consumed to
process a load.

2.1.11. P13: Improvement of Power Efficiency of High-Performance IO Virtualization
Frameworks [87]

A separate classification was set up for [87] as this work represents an evolution
of those classified under P9. This work extends beyond profiling and suggests use of
low-power instructions as the means to balance performance and power efficiency.

2.2. A Taxonomy of Approaches

Figure 2 illustrates the taxonomy we use to structure the approaches detected in
research work. Line thickness and percentage values represent the utility of the specific
approach. Utility is best understood within the context of all the observed triads in a
literature corpus. For any specific approach, this may be used to solve a variety of problems
and its application may result in a variety of developments. One may therefore think of the
approach as a nexus, or a point of confluence through which many researchers pass as they
attempt to solve problems. Thereafter, researchers diverge radially outward from this point
of confluence towards some achievement (some development). A suggestive image is to
think of the approach as the center of a star, but spokes converge onto it from problems and
diverge away from it onto developments. When the count of these triads (each composed
of two radial lines, or dyads) is divided by the sum of all such counts for all approaches,
we obtain a metric: a normalized quantity obtained within the context of all approaches.
See our method [1] for the formal statement of utility.

We now proceed to describe the categories within the context of the taxonomy. Each
approach-category’s description is preceded by a list of references to works, each one of
which uses a component within that category’s set.

2.2.1. Analytical Foundations

This group of categories regards the theory and hypotheses that comprise the essential
abstractions at the basis of scientific research.

A1: Power attribution principle [48,53,57–59,61,62,69,73,75–77,79,81,82,84,86]: When
host system power is measured, whether at the wall outlet or at one or more of the
power supply’s output lines, there is the problem of attributing the measurement to the
logical divisions (VEs) of the host computer system. The attribution of system power to
modeled entities starts with a decision on which power consumption is within scope (see
Section 2.1.8). Next, power in scope is attributed to (burdened on) one or more entity.
For example: will idle power consumption be attributed to the host system or will it be
attributed to the VEs?

A2: Modeling bias [57–64,72,75–77,79,81,83–85,87,94]: Researchers approach the prob-
lem of developing a model under some bias which conditions their final outcome. This bias
is manifest in researchers’ selection of a particular type of regression to apply to their data.
We note that this same observation is carried in [95]. Here, our purpose is solely to draw
attention to what we have observed as researchers’ modus operandi without analyzing
their choice of approach.
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A3: Green operating principles [83,87,94]: Works in this category weave radical
approaches to power efficiency into their developments. For example, instead of conven-
tional scheduling, run-to-completion [96] is exploited to obtain dedicated (or, at least, very
sparsely shared) resources for the processing of packets. This approach is further nuanced
by the real-time control of adaptive rates and sleep depth. In one particular case [87], the
novel concept of a low-power instruction instead of transitions to/from low-power idle
(sleep) states is used.

A4: Physical analysis [60]: This category regards approaches rooted in the physical
properties of (semiconductor) material in the consumption of energy. Only one work [60]
was found fitting this category. However, another two that used this approach to study
the power consumption of physical entities (and therefore was outside the scope of this
study, which is concerned with VEs) were found and they are described next to illustrate
the approach better. In [70], a study implicitly applies Dennard’s law in the process of
obtaining weights that scale a processor sub-unit’s contribution to power consumption.
In [97], the physical cause of power consumption in metal-oxide-semiconductor (MOS)
material is examined and used as the basis for modeling equations.

A5: Identification and use of metrics of energy efficiency [49,50,65,85]: The relation-
ship between system architecture and power consumption can be investigated through the
identification of the relevant metrics of energy efficiency. For example, an easily recogniz-
able metric, albeit rather broad in possible interpretations, is the J/b (joule/bit). The use of
such metrics encourages joint consideration of function and power consumption.

2.2.2. Experiment Design

The practical, hands-on aspects of the empirical process are the product of a (probably
cyclical) design phase, concerned with a number of stewarding activities pertinent to test
subjects and ancillary objects in the testing scenario, instrumentation, inputs and outputs.
The activities include selection, configuration, interconnection, initiation, observation and
termination. We have identified several examples of such activities within our research
scope and grouped them under resource provision (categories A6, A7), workload selection
(A8, A9) and data collection (A10–A13). We describe these categories next. Admittedly,
the activities referred to (i.e., selection, configuration, etc.) have broad meanings; therefore,
in the course of describing the categories, references to the activities are emphasized by
bold, italicized text.

A6: Managed resource provision [48–51,53,55,56,60,66–68,73,81–83] (selection, con-
figuration): This concerns the provision of resource capacity either to a specific VE (the
guest system) or to the physical entity (the host system) hosting the VEs. Within the em-
pirical process, the techniques in this category provide the means to observe the effect on
the power consumption of managed changes in resource provision. Examples include the
(manual) pre-configuration of:

• The frequency of operation of processor cores [48,50,81];
• Core affinity [51,55] and hardware-thread affinity [68];
• The network interface data rate capacity capping [66].

These techniques are executed as part of the process of selection of the operat-
ing parameters, i.e., setting up experimentation, before operations start. This qualifi-
cation is necessary to distinguish from such approaches as may change the operating,
run-time context.

A7: Controlled resource provision [78,83,85,87] (configuration): Provision of re-
sources may change during the running of an experiment (rather than before it starts).
Approaches in this category include the automated adjustment of:

• Processor frequency (also known as performance state, or P-state) [78,83,85,87];
• The depth of processor sleep (also known as low-power idle state, or C-state) [83];
• The number of hardware threads [78];
• The time spent running a low-power instruction [87].
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These techniques are approaches to solving the problem of full-throttle operation.
Without a guided operation of adjustments such as those listed above, operation of the
processor may quite reasonably be likened to a multi-assembly-line manufacturing plant
that operates line machinery whether there are goods to produce or not.

A8: Resource-specific workload, A9: Representative workloads (selection, configu-
ration, interconnection): These two categories regard the workload selection stage, within
experiment design in the scientific method. The workload comprises the inputs referred
to earlier; inputs must be interconnected to the system under test, and this is often not
a trivial task. In our thematic analysis in Section 3, we identify workload type as one of
the seven dimensions of the variability of power models. The influence of workload type
on the model obtained is evident in the attention paid by researchers to their selection of
workload type. We can distinguish two broad categories of type.

Resource-specific workloads (A8) [48–51,53,55,56,59–61,63,64,66,67,69,71,75–77,84,86]
are applied to investigate the impact of the utilization of specific resources on power con-
sumption. Such synthetic workloads are applied (interconnected) to a machine (whether
virtual or physical) to reduce (as much as possible) the scope of power-consuming re-
sources to a targeted set. Resource-specific workloads are most commonly used in ex-
ploratory work, to gain an understanding of the behavior of a resource’s power consump-
tion. We refer to this approach as resource-specific workloads, synthetic workloads or
resource isolation.

Representative workloads (A9) [48,56–58,60,62,65,68,69,73,75,78,79,81–85,87] may be
used as complementary with, or alternative to, resource-specific (synthetic) workloads.
A notable complementary use is made in the testing (post-training) phase of model de-
velopment, when representative workloads are used to validate a model (obtained using
synthetic workloads). They may also be used in an entirely alternative approach to syn-
thetic loading, to support development of application-agnostic models. Representative
workloads lead to training data that incorporates variation in utilization of more than one
resource at a time; hence providing at least limited application agnosticism.

The next four categories (A10–A13) regard the data collection stage, within exper-
iment design in the scientific method. Categories A8 and A9 regard the selection of
workload type. The approaches described here regard measuring how much of a resource
is being used, or workload is being applied, and how long to apply the workload to obtain
statistically valid results (initiation and termination). Categories A10, A11 and A13 regard
instrumentation (observation) of those variables considered (by the researchers concerned)
to be reliable predictors of power consumption.

Resource instrumentation in microarchitecture and system software
(A10) [48,49,56,58,59,61–64,69,73,75–79,81–87] includes approaches that measure resource
use. These measurements are then used to predict power consumption. We make a
somewhat weak distinction, for reasons we shall refer to, between instrumentation of
microarchitecture and instrumentation by system software. The former regards parts of
the processor interface that address the processor’s infrastructure for monitoring, event
counters (e.g., instructions retired, last-level-cache (LLC) misses and translation lookaside
buffer misses) and, more recently, power counters (e.g., Intel’s Running Average Power
Limit (RAPL)) [98]. On the other hand, system software’s instrumentation is carried out
through intermediary system software and includes, most notably, processor utilization.
We have seen references to these two categories as “hw counters” and “sw counters”,
respectively [99]. The distinction is weak since system software is increasingly exposing
microarchitecture instrumentation (consider, for example, Linux’s perf tool). This reduces
the need to directly access hardware registers and blurs the separation between what is ab-
stracted and what is concrete, raw, hardware data. Nonetheless, through our understanding
of the data used, we have been able to separate the approaches into two sub-categories.

Category A11 regards the use of a simple characterization of workload as a predic-
tor of power consumption [48,49,53,64,65,67,68,71,78,83,85,87]. This is notably different
from approaches in category A10, which are concerned with resource use as a predictor of
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power consumption. Other examples (apart from those given earlier) of workload metrics
as inputs are the “number of processes” [71] (from the same process image), “transmission
rate” [68] and millions of instructions per second (MIPS) [64].

Characterizations may need to be sharper. For example, since packet network traffic
arrival is known to often have the properties of a Batch Markov Arrival (stochastic) Process
(BMAP), this is an operating constraint (selection, configuration and interconnection are
all ingredient activities here) adopted in the approach of several works studying power
efficiency of network functions [83,87,94,100].

Category A12 refers to the measurement of (host) power consumption [48–50,53,55–
59,61–64,67,68,71,73,76,79,84] (observation) which is most usually measured at the wall
outlet or at the power supply inlet. More granular approaches are desirable, and indeed
we do find cases [62] that attempt measurement at the power supply output. The principal
drawback of such granular techniques is not (principally, at least) construction of interme-
diary hardware (e.g., riser boards or line resistors) but the difficulty in attributing power
drawn through any single dc voltage output (or group thereof) to particular consumers.
With the advent of RAPL and certain guarantees on its accuracy, the need for direct power
measurement has been, at least partially, avoided.

Category A13 regards the use of hardware sensors to obtain inputs and/or parame-
ters for the power model [60,81,82,87]. These include:

1. Voltage sensors (processor supply voltage);
2. Temperature sensors (processor package and memory temperatures);
3. Fan speed sensors (processor and chassis fans);
4. Wall-clock time measurement.

Some of these variables are used in models that predict power consumption while ac-
counting for the effect of the drift of temperature and automated supply voltage adjustment
(in dynamic voltage and frequency scaling—DVFS).

2.2.3. Model Validation

Model validation is a multi-faceted endeavor and this is reflected in the approaches
we have detected. The approaches range across the candidates that would typically be
considered: simulation (A14) [87], use of test data (A15) [57,62–64,77,85] and corroboration
through experimentation (A16) [83,87]. We skip elaborating on these categories as they
are either self-evident (A15) or because they are too rarely used to permit general com-
mentary. However, to these three categories we add a fourth (A17), namely, the model
adaptation technique, which we describe below and explain why it fits within this branch of
the taxonomy.

Model adaptation technique (A17) [57–59,61,62,67–69,71,73,75,76,78,79,81,82,84,86]:
This refers to the approach(es) taken (if any) to develop an adaptable model or modeling
system. Here, adaptability refers to the fitness for use which the model exhibits under
changes in one or more of the seven dimensions of variability that will be defined in detail
in Section 3.1.1 below. Model adaptability is essential for practical virtualization, where
changes in, for example, the number of co-hosted, concurrent VEs, or in workload type,
are commonplace. Here, we list the major approaches taken towards producing adaptable
models. Since these approaches emerge in the context of validating a model’s accuracy
under some limited range of the seven-dimensional space of operating conditions, we
classify this category of approaches as an aspect of model validation.

1. Adaptation to change in the number of co-hosted, concurrent VEs is widely achieved
through the time-division multiplexing of event counters [59,62,69,79,86], RAPL coun-
ters and CPU utilization [61,73]. This approach enables the use of such metrics as
predictors of dynamic (active) power consumption, by apportioning counts to VEs in
accordance with the time during which the VEs were active.

2. Adaptation to uncorrelated causes of power consumption can be achieved through
additional predictors [82] to follow causes of power consumption that do not correlate
well with counters within the current set. This case reflects itself as poor accuracy in
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predicted power consumption. Although counter-based models are reported to fit
a variety of processor- and memory-intensive workloads well, it may be necessary
to account for unanticipated activity through the approach of adding previously
unused counters.

3. It may not be possible to fit a single model with parameters known a priori, to the
whole range of inputs within the scope of study, notwithstanding the diversity of
predictors employed in this pursuit. The following adaptive techniques have been
found in the literature.

a. Dataset partitioning, where the dataset is of the form { {predictors}, response }
and is used in [77] to match the best model out of a set of models to the current,
actual operation. An individual model in the set is associated with a single node
in a decision tree and the node is selected according to features pertinent to the
current, actual operation. A simpler, but conceptually similar, approach is taken
in [58]. A number of models are devised and model-selection features are limited
to the number of active VMs and a coarse grading of CPU utilization.

b. Modeling on demand is the term we use to succinctly refer to the fourth adaptation
class of techniques:

i. One early example of this approach is found in [75], where the dependence
of the model on the workload has been addressed through online training,
whenever prediction accuracy of the extant models falls out of a range of
tolerance. The rationale adopted is that if model adaptation to such an
“unseen” case is limited to parametric tuning, then a modeling system might
be able to construct a model while VEs are in operation;

ii. A broader perspective is found in [78]. An automated system for profiling
containerized applications is described and demonstrated. Containerized
applications are profiled from three perspectives: computing resources con-
sumed, energy consumed and performance. In this case, the rationale is that
energy consumption can be optimized by the determination of a frequency-
and-hardware-threads host configuration that meets performance require-
ments. Thus, starting from central functional requirements (performance
requirements), operating conditions are determined that minimize energy
consumption. This approach is capable of meeting the challenges posed by
heterogeneous host hardware and application (workload) diversity, at the
cost of analytical modeling. Indeed, characteristic curves can be derived but
causes underlying observed behaviors remain unaddressed.

2.3. A taxonomy of Developments

Developments fall cleanly into one of two groups: (a) models of power consumption
and (b) observations on dependencies of power consumption. The first group (D1–D10)
includes developments that predict power consumption over a sub-space of the seven-
dimensional space of operating conditions. The second group (D11–D18) includes devel-
opments that are oriented towards the correlation of power consumption with aspects of
system integration. As the taxonomy is rather broad, we present it in three parts:

1. Figure 3: top-level fork into models and dependencies;
2. Figure 4: the taxonomy of models;
3. Figure 5: the taxonomy of dependencies

D1–D4: We first present four categories of developments that concern models of host-
system power consumption characterized by the condition where workload is processed
by VEs:

• D1: linear regression models;
• D2: non-linear regression models;
• D3: machine-learnt models;
• D4: models of local mass storage.
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This contrasts with the scope of developments referred to under categories D5, D6 and
D7, where models of VE power consumption are presented.

Models in these categories are interesting from the perspective of analyses of sets of
hosted VEs that seek to identify operating conditions of optimal host power efficiency. As
predictors, such analyses use instrumentation that measures resources used by the VEs.
Categories D1, D2 and D3 all predict power consumption in terms of resource use but differ
in the type of model produced.

• D1 regards models of power consumption through linear combinations of scalar
predictors [57–59,69,75]. The scalar predictors are resource usage metrics.

• D2 regards polynomial or simple mathematical powers of resource use (the scalar
predictors) [57,60,61,76,81].

• D3 regards models that employ machine learning (e.g., Gaussian Mixture, Support
Vector Machine, Neural Networks) [62,77,79].

Category D4 regards the models of power consumed by mass storage local to the
host system [86]. These models attempt to predict power consumption in terms of activity
metrics such as the total amount of time spent in a known state (in terms of power con-
sumption, e.g., active/idle), the rate of data exchange (MB/s or input/output operations
per second) and the mode of operation (sequential/random and read/write). In the context
of the approximations observed in the development of these models, their accuracy cannot
be fair.
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2.3.1. Models of Power Consumption

Adaptable VE models (D5–D7): Developments within these categories consist of
adaptable models of the virtualized entity’s power consumption and have two important
characteristics in common:

1. They are adaptable to a variable number of concurrent, co-hosted (active on the same
host system) VEs (we refer to the latter scope of variability as the seventh dimension
of variability);

2. The predictors are the measured amount of computing resources used by the VEs.

Models can be distinguished by the predictors they use, workloads employed and
modeling approach:

1. Predictors (of VE power consumption) are obtained from system software’s instru-
mentation, e.g., CPU utilization (see approach categories A10–A13), and from mi-
croarchitecture instrumentation, e.g., LLC misses (again, see approach categories
A10–A13);

2. Workloads used to obtain the model (this restricts the range of workloads within
which the model is valid) may be:

a. Specific workloads: the most restrictive, as they relate to a particular test load;
b. Synthetic workloads: less restrictive than specific but limited to the exercise of

one resource, typically the CPU;
c. Combinational workloads: still less restrictive, involving the exercise of a num-

ber of resources of the host system (e.g., SPEC CPU benchmarks may be both
processor and memory intensive);

d. Representative workloads (e.g., TPC-W [101]) produce models that are readily
associated with use cases.
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3. The modeling approach may be:

a. Linear regression (category D5) [58,59,69,73,75,81,82,84,86];
b. Power (integer- and non-integer powers), exponential and logarithmic regres-

sions (category D6) [61,66,76];
c. Machine-learnt combinations of resource use (category D7) [62,79].

Models of power consumption that use workload profile as predictors (D8, D9):
Categories D8 and D9 group developments from (two) sets of RUs that predict power
consumption of hosts and/or VEs through (the measurement of) some characteristic of
the submitted workload. This contrasts with RUs in categories D1–D7, where prediction
is obtained through (the measurement of) some computing resource (processor and/or
memory and/or I/O). Most developments in this category are obtained through the ab-
straction of hardware by one or more model parameters that express power consumption
under case-specific conditions of operation. Some of these abstractions are identified in the
descriptions of these two categories.

Developments in D8 [63–68,71,78,83,85,87,94] use:

1. Processing load (number of processes, millions of instructions per second (MIPS), etc.)
pertaining to a specific application, as predictors of host system power [63–67,71];

2. Packets per second, through an intrusion detection system implemented in a VNF [85];
3. Transcoded frames per second, through a transcoder implemented in a containerized

network function (CNF), and inferred images per second, also in a CNF [78];
4. Average network transmission rate, as a predictor of host system power [68];
5. Statistics of a Batch Markov Arrival Process (BMAP) (packet traffic) as a means of the

prediction of power consumption by a VNF [83,94].

Hardware is abstracted through the measurement of power consumption at some
operating point (a specific operation is being carried out), or a change in power consumption
over some operating range. Examples follow:

1. In [65], where energy efficiency of an interactive web service is studied, the operating
point is an entire VM running the TPC-W benchmark [101].

2. In [67,71], the operating points are the host’s power consumption when (a) idle, (b) one
core is active (processing load) and (c) maximum, with all cores active. Furthermore,
use is made of the step increment in consumption corresponding to the activation of
each additional core. Cores are activated when they are utilized by VEs.

3. In [68], the operating point is the power consumption when co-hosted VEs are
transferring a file to a client computer. An affine relationship between the host’s
power consumption and its transmission rate (transmissions originate on hosted VEs)
is found.

4. In [64], an operating range is used: the increase in power consumption that corre-
sponds to an increase in MIPS on the VEs.

5. In [83], the operating point is the power consumption when a VE running on a single
processor core is switching packets at the maximum rate for a given performance state.

6. In [85], fifty-four (54) different features of network traffic are input to an artificial neu-
ral network that selects the operating frequency that optimizes power consumption.

With one exception, none of the works in the above list uncovers the hood to peer
at the processor’s internals (to obtain predictors of power consumption). The exception
is [83]; yet even in this case, the performance monitoring counters are not used as direct
predictors of power consumption, but to obtain (a) the timing information necessary for a
queueing model and (b) the operating state (ACPI (Advanced Configuration and Power
Interface [102]) P- and C-states).

Developments in D9 [87] are set within the models branch of the taxonomy. These
developments may be considered as useful observations on the operation of processors’
green capabilities. Examples of these observations (all from [87]) include:

1. Low-power instructions might be a better candidate than low-power idle to save
power under higher link utilization;
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2. Operation in full ACPI P-state, operation with low-power instructions on idle detec-
tion and operation with low-power idle on idle detection are (a) in ascending order
of latency to return to active processing and (b) in descending order of
power consumption;

3. A processor utilization threshold below which low packet latency is guaranteed under
BMAP traffic arrival is 80%.

By “green capabilities”, we refer to a broader range of microarchitectural aspects than
the by-now-conventional adaptive rate and low-power idle operation. While these latter
two remain at the center of attention, there is also the means of low-power instructions [87]
that has been successfully employed to improve power efficiency. Notwithstanding the
origin of these observations in modeling work, it may be argued that they might also be
classified within the dependencies branch of the taxonomy. We have chosen the models
branch, but as further studies add to the body of knowledge on how to operate processor
green capabilities, this category’s position in the taxonomy might need to be changed.

Relative accuracy of modeling approaches (D10) [60,62,63,77]: Developments pre-
sented under category D10 are comparisons of the relative accuracy of alternative modeling
methods with respect to conventional polynomial (including linear), power, exponential
and logarithmic regression. These developments have been found within works that show
models classified under category D9. The purpose is to qualify and quantify improvements
of machine-learnt models with respect to conventional regression models.

2.3.2. Dependencies of Power Consumption

This parent node of the taxonomy is divided into two child nodes that are not strictly
mutually exclusive. For example, the software data plane is considered in works under
D15. Clearly, the software data plane is a logical artifact and might be included within a
child node of “physical and logical artifacts”, or directly thereunder as a leaf node (i.e.,
as a category). The choice of separation of D15–D18 and the inclusion under the parent
node “networking workloads” was taken for two principal reasons. Firstly, the recurrence
of investigation of power consumption’s dependency on networking workload merits
attention through separation. Secondly, as this survey caters for an audience with an
interest in softwarized networking, an emphasis on the power dependency on networking
workload seems justified.

Knowledge about the dependency of power consumption on specific hardware
(D11); the dependency of power consumption on architecture (D12); the dependency
of power consumption on resource provisioning (D13); and the dependency of power
consumption on virtualization genre and technology (D14): Categories D11–D14 are
grouped into a set of works that obtain the sense of the correlation (positive/negative/none)
between power consumption and some genre of artifacts:

1. Specific hardware types (D11);
2. Computer architecture (D12);
3. Resources provided (D13);
4. Virtualization genre and technology (D14).

Category D12 groups works that relate to observations on the impact of architectural
features on power consumption [49,50,67,71,76]. While these observations are useful, they
are generally too coarse to be directly applicable to real-time power control. Their use
emerges from guidance which they provide in the development of power models. For exam-
ple, it was observed that when the number of threads that fully occupy a core’s time (active
100%) exceeds the number of logical cores in the system, the energy efficiency (measured, in
this case, in hash/J, a computational metric of energy efficiency) decreases [50]. Evidently,
this is good guidance; equally evidently, it is not a directly applicable development.

Categories D11, D13 and D14 relate closely to (various aspects of) implementation,
and as such are of particular interest to the system integrator. Data of high quality
from these developments inform and guide the tasks of gathering components into sys-



Sensors 2023, 23, 255 23 of 69

tems that meet the non-functional requirements obtained from concern with energy and
power efficiency.

Category D11 gathers observations about the dependency of power consumption on
specific processor hardware [49,69,76]. We have observed that these developments are
gathered as a by-product of the process of research; they are rather incidental. Like any
implementation, their usefulness is limited to the lifetime of the concerned device(s).

Category D13 [73] includes developments that regard the specific resource
configuration of:

1. The instantiating host, i.e., the relationship between a VE’s power consumption and
the specific resources of its host hardware specifics such as the number of cores and
amount of memory carried by the host instance;

2. The guest VE, i.e., the variation of a VE’s power consumption with its resource
assignment, on the same host.

Category D14 gathers observations about the dependency of power consumption on
instances of virtualization genre and technology [55,56]. Developments in this category are
less incidental than those in category D2 and are obtained with the focused intention of
tackling challenges relating the power consumption of implementations. These develop-
ments relate to a less diversified group of implementations. For example, there are fewer
virtualization platforms than processors to choose from. Direct use of these developments is
mostly limited to the specific implementations concerned; however, some generalizable con-
clusions exist. For instance, it was observed that both hardware-assisted virtualization and
paravirtualization are less efficient (in the specific empirical setup) than non-virtualized
operation in the use of processor caches [56]. This empirical evidence favors the hy-
pothesis that cache hit ratios suffer due to the greater thread rotation in virtualized and
containerized environments.

Knowledge about dependency on power consumption while processing a network-
ing workload (D15–D18): Development categories D15, D16, D17 and D18 are grouped
here as their central characterization is knowledge about the behavior of power consump-
tion by VEs while processing a networking workload. Categories D15, D16 and D17 reflect
the challenges described in P11, P9 and P10, respectively.

Category D15 regards contributions to knowledge about the power consumption of
software data planes [48,53]; D16 regards virtualization of network I/O [51,53], and D17 is
about network functions [48,53,85]. Thus, in [51], the power efficiency of DPDK PMDs is
demonstrated with respect to Netmap drivers, for packet transmission. This development
is balanced by [48], where the power efficiency of transmission through a DPDK-enhanced
Open vSwitch is shown to be worse (@500-byte Maximum Transmission Unit (MTU)) than
that of the unenhanced Open vSwitch. In each of these categories, efforts are made to
allocate burden through the isolation of power consumption and the attribution to the
sub-system (data plane/virtualized IO/network function) under study.

Category D18’s developments differ from those of D15–D17 because they cut across
these categories’ sub-system boundaries [56,65]. For example, in [65], the energy efficiency
of web transactions executed on co-located VMs is found to be highest in the operating
condition of processor-core over-subscription (more VMs than cores). In [56], it is shown
that power consumed by packet delivery to a VM through a software packet switch is
much higher than that required for delivery in a non-virtualized environment. In both
these papers, the object of interest incorporates the virtualization of network I/O and the
data plane. In [65], the object of interest encompasses the network function: a web service
and accompanying application and database components.

All four categories are of keen interest to the system integrator. The emphasis is on the
components in the integrator’s set of building blocks, specifically on the behavior of power
consumption of various implementations, and types thereof (in the scope of the categories).
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2.4. P–A Dyads (Problem/Challenge-Approaches) Graphics

Over the following pages, we present a comprehensive set of graphics (Figures 6–17)
that illustrate the approaches detected to tackle specific challenges (reference numbers
for pertinent RUs appear in the shape tags). For example, consider Figure 7. The graphic
shows the component approaches applied to discover “the impact of specific architectural
attributes of the host system on power consumption of VEs” (see problem category P1).
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The presence of approach categories A1, A5, A6, A8 and A10–A12 does not mean that
every RU tackling this challenge uses a component from all of the approach categories. It
does, however, mean that every RU tackling P1 uses a subset of the approaches shown. We
proceed by giving examples (relevant to P1), with references.

1. Managed resource provision (A6): Prior to running experiments, researchers set the
conditions for the experiment through this approach [48–51].

2. Resource-specific workload (A8): This may be used to stress the component imple-
menting the architectural attribute under test [48–51].

3. Simple workload characterization and instrumentation (A11): The workload must
be characterized by some parameter that serves to measure its demand for power [48,49].

4. Resource instrumentation (A10): This is an alternative to the use of workload profil-
ing (A11) as a predictor of power consumption. Rather than use, say, the number
of threads, or transmit bandwidth (for networking workloads) as predictors, this
approach uses resource instrumentation [48,49].

5. Identification of metric of energy efficiency (A5): In certain cases [49,50], energy or
power efficiency is investigated, rather than energy or power consumption. In these
cases, the researchers identify and use a relevant metric of efficiency, rather than
metrics of consumption (watts or joules).
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On any of the dyad graphics, the approaches shown (inside the approach categories)
include only those which are used by at least one RU that tackles the challenge cate-
gory that is the root of the dyads. We delegate a repository with a full tabulation of
all approaches in any approach category. Similarly, all individual developments within
a category are delegated to the same repository (https://github.com/humaira-salam/
PowerMeasurementAndModelingRawData, accessed: 30 October 2022).

2.5. Causality DAG

The Causality Directed Acyclic Graph (DAG) in Figure 18 shows a bird’s eye-view of
the proceedings of research in scope.

https://github.com/humaira-salam/PowerMeasurementAndModelingRawData
https://github.com/humaira-salam/PowerMeasurementAndModelingRawData
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Figure 9. Approaches to solving challenges in category P3; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P3 [57–69,71]; A2 
[57–64]; A5 [65]; A6 [60,66–68]; A8 [59–61,63,64,66–68,71]; A9 [57,58,60,62,65,68]; A10 [57–59,61–
64,69]; A11 [64,65,67,68,71]; A12 [57–59,61–64,67,68,71]; A15 [57,62–64]. 

Figure 9. Approaches to solving challenges in category P3; utility metric UAk is shown in line thick-
ness and as a percentage. RUs in the respective categories are the following: P3 [57–69,71]; A2 [57–64];
A5 [65]; A6 [60,66–68]; A8 [59–61,63,64,66–68,71]; A9 [57,58,60,62,65,68]; A10 [57–59,61–64,69];
A11 [64,65,67,68,71]; A12 [57–59,61–64,67,68,71]; A15 [57,62–64].
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Figure 10. Approaches to solving challenges in category P10; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P10: [48,53]; A6 
[53]; A8 [53]; A9 [48]; A11 [53]; A12 [48,53]. 

Figure 10. Approaches to solving challenges in category P10; utility metric UAk is shown in line
thickness and as a percentage. RUs in the respective categories are the following: P10: [48,53]; A6 [53];
A8 [53]; A9 [48]; A11 [53]; A12 [48,53].
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Figure 11. Approaches to solving challenges in category P4; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P4 [56,62,67–
69,71,75–79]; A1 [62,77]; A2 [62,77]; A7 [78]; A8 [56,67,69,71,75,76]; A9 [56,62,68,75,79]; A10 
[62,78,79]; A11 [78]; A12 [56,62,76,79]; A15 [62,77]; A17 [62,67,68,71,75,76,78]. 
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Figure 12. Approaches to solving challenges in category P11; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P11 [48,53]; A1 
[48]; A8 [48,53]; A10 [48]; A11 [48,53]; A12 [48,53]. 

Figure 11. Approaches to solving challenges in category P4; utility metric UAk is shown in line thick-
ness and as a percentage. RUs in the respective categories are the following: P4 [56,62,67–69,71,75–79];
A1 [62,77]; A2 [62,77]; A7 [78]; A8 [56,67,69,71,75,76]; A9 [56,62,68,75,79]; A10 [62,78,79]; A11 [78];
A12 [56,62,76,79]; A15 [62,77]; A17 [62,67,68,71,75,76,78].
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Figure 11. Approaches to solving challenges in category P4; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P4 [56,62,67–
69,71,75–79]; A1 [62,77]; A2 [62,77]; A7 [78]; A8 [56,67,69,71,75,76]; A9 [56,62,68,75,79]; A10 
[62,78,79]; A11 [78]; A12 [56,62,76,79]; A15 [62,77]; A17 [62,67,68,71,75,76,78]. 
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Figure 12. Approaches to solving challenges in category P11; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P11 [48,53]; A1 
[48]; A8 [48,53]; A10 [48]; A11 [48,53]; A12 [48,53]. 

Figure 12. Approaches to solving challenges in category P11; utility metric UAk is shown in line
thickness and as a percentage. RUs in the respective categories are the following: P11 [48,53]; A1 [48];
A8 [48,53]; A10 [48]; A11 [48,53]; A12 [48,53].
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Figure 13. Approaches to solving challenges in category P5; utility metric Uౡ  is shown in line 
thickness and as a percentage. 

RUs in the respective categories are the following: P5 [62,72,78]; A1 [62]; A2 [62]; A6 [72]; A7 [78]; 
A9 [62]; A10 [62,78]; A11 [78]; A12 [62,72]; A15 [62]; A17 [62,78]. 

Figure 13. Approaches to solving challenges in category P5; utility metric UAk is shown in line
thickness and as a percentage. RUs in the respective categories are the following: P5 [62,72,78];
A1 [62]; A2 [62]; A6 [72]; A7 [78]; A9 [62]; A10 [62,78]; A11 [78]; A12 [62,72]; A15 [62]; A17 [62,78].
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Figure 14. Approaches to solving challenges in category P9; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P9 [51,53]; A1 
[53]; A6 [51]; A8 [51,53]; A11 [53]; A12 [53]. 

Figure 14. Approaches to solving challenges in category P9; utility metric UAk is shown in line
thickness and as a percentage. RUs in the respective categories are the following: P9 [51,53]; A1 [53];
A6 [51]; A8 [51,53]; A11 [53]; A12 [53].
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Figure 15. Approaches to solving challenges in category P7; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P7 [56–
59,61,62,65,68,69,71,72,75–79,81–85,87]; A6 [56,68,81–83]; A8 [56,59,61,71,76,77,84,85]; A9 [56–
58,62,65,68,69,72,78,79,81–84,87]; A10 [56–59,61,62,69,72,75–79,81–85,87]; A11 [65,68,71,83,84,87]; 
A13 [87]. 

Figure 15. Approaches to solving challenges in category P7; utility metric UAk is shown in line
thickness and as a percentage. RUs in the respective categories are the following: P7 [56–59,61,62,65,
68,69,71,72,75–79,81–85,87]; A6 [56,68,81–83]; A8 [56,59,61,71,76,77,84,85]; A9 [56–58,62,65,68,69,72,
78,79,81–84,87]; A10 [56–59,61,62,69,72,75–79,81–85,87]; A11 [65,68,71,83,84,87]; A13 [87].

2.6. Triads (Problem/Challenge-Approaches-Developments) Graphic

Figure 19 shows the triads graphic. To improve readability, we limit illustration to the
triads that are in the top twenty percentile of a list ordered according to thickness. These
triads comprise 49.2% of the total number of compiled triads.

2.7. Statistics

Bar charts that illustrate the category metrics described in [1, N. see section on “Statis-
tics”] are presented below:

1. Challenges (Figure 20)

a. Frequency of occurrence in the set of all RUs;
b. Frequency of occurrence in the set of all challenges in all RUs;
b. Frequency of occurrence, weighted by approach diversity, in the set of all chal-

lenges in all RUs.

2. Approaches: (Figure 21)

a. Frequency of occurrence in the set of all approaches in all RUs;
b. Frequency of occurrence in the set of all triads in all RUs.

3. Developments: frequency of occurrence in the set of all developments in all RUs:
(Figure 22)
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Figure 16. Approaches to solving challenges in category P8; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P8 [57–
59,61,62,69,72,75–77,79,81,82,84,86]; A1 [57–59,61,62,69,72,75–77,79,81,82,84,86]; A2 [57–
59,61,62,72,75–77,79,81,84]; A12 [57–59,61,72,76,84]; A15 [57,62,77]; A17 [57–
59,61,62,69,72,75,76,79,82,84,86]. 

Figure 16. Approaches to solving challenges in category P8; utility metric UAk is shown in line
thickness and as a percentage. RUs in the respective categories are the following: P8 [57–59,61,62,69,72,
75–77,79,81,82,84,86]; A1 [57–59,61,62,69,72,75–77,79,81,82,84,86]; A2 [57–59,61,62,72,75–77,79,81,84];
A12 [57–59,61,72,76,84]; A15 [57,62,77]; A17 [57–59,61,62,69,72,75,76,79,82,84,86].
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Figure 17. Approaches to solving challenges in category P12; utility metric Uౡ  is shown in line 
thickness and as a percentage. RUs in the respective categories are the following: P12: [50,60,67,81–
83,85,87,94]; A2 [83,85,87,94]; A3[83,87,94]; A4 [60]; A5 [50,85]; A6 [50,60,67,81,82]; A7 [85]; A8 [50] 
; A12 [50] ; A14 [87]; A15 [85]; A16 [83]. 

The presence of approach categories A1, A5, A6, A8 and A10–A12 does not mean 
that every RU tackling this challenge uses a component from all of the approach catego-
ries. It does, however, mean that every RU tackling P1 uses a subset of the approaches 
shown. We proceed by giving examples (relevant to P1), with references. 
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[48,49]. 

4. Resource instrumentation (A10): This is an alternative to the use of workload profil-
ing (A11) as a predictor of power consumption. Rather than use, say, the number of 
threads, or transmit bandwidth (for networking workloads) as predictors, this ap-
proach uses resource instrumentation [48,49]. 

5. Identification of metric of energy efficiency (A5): In certain cases [49,50], energy or 
power efficiency is investigated, rather than energy or power consumption. In these 
cases, the researchers identify and use a relevant metric of efficiency, rather than 
metrics of consumption (watts or joules). 
On any of the dyad graphics, the approaches shown (inside the approach catego-

ries) include only those which are used by at least one RU that tackles the challenge cat-
egory that is the root of the dyads. We delegate a repository with a full tabulation of all 
approaches in any approach category. Similarly, all individual developments within a 

Figure 17. Approaches to solving challenges in category P12; utility metric UAk is shown
in line thickness and as a percentage. RUs in the respective categories are the following:
P12: [50,60,67,81–83,85,87,94]; A2 [83,85,87,94]; A3 [83,87,94]; A4 [60]; A5 [50,85]; A6 [50,60,67,81,82];
A7 [85]; A8 [50]; A12 [50]; A14 [87]; A15 [85]; A16 [83].
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Figure 18. A directed acyclic graph showing the distribution of research into power measure-
ment and power consumption models in virtualized networking and computing environments.
D1 [57–59,69,75]; D2 [57,60,61,76,81]; D3 [62,77,79]; D5 [58,59,69,72,75,81,82,84,86]; D6 [61,66,76];
D7 [62,79]; D8 [63–68,71,78,83,85,87,94]; D9 [87]; D10 [60,62,63,77,79]; D11 [49,69,76]; D12 [49,50,
67,68,76]; D13 [73]; D14 [55,56]; D16 [51,53]; D17 [48,53,85]; D18 [56,65].
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Figure 19. Triads. D1 [57–59,69,75]; D3 [62,77,79]; D5 [58,59,69,72,75,81,82,84,86]; D8 [63–68,71,78,83,
85,87,94]; D9 [87]; D10 [60,62,63,77,79]; D11 [49,69,76]; D12 [49,50,67,68,76]; D14 [55,56]; D15 [48,53];
D16 [51,53]; D17 [48,53,85].



Sensors 2023, 23, 255 33 of 69

Sensors 2023, 23, x FOR PEER REVIEW 40 of 78 
 

 

Figure 19. Triads. D1 [57–59,69,75]; D3 [62,77,79]; D5 [58,59,69,72,75,81,82,84,86]; D8 [63–
68,71,78,83,85,87,94]; D9 [87]; D10 [60,62,63,77,79]; D11 [49,69,76]; D12 [49,50,67,68,76]; D14 [55,56]; 
D15 [48,53]; D16 [51,53]; D17 [48,53,85]. 

2.7. Statistics 
Bar charts that illustrate the category metrics described in [1, N. see section on “Sta-

tistics”] are presented below: 
1. Challenges (Figure 20) 

a. Frequency of occurrence in the set of all RUs; 
b. Frequency of occurrence in the set of all challenges in all RUs; 
c. Frequency of occurrence, weighted by approach diversity, in the set of all chal-

lenges in all RUs. 
2. Approaches: (Figure 21) 

a. Frequency of occurrence in the set of all approaches in all RUs; 
b. Frequency of occurrence in the set of all triads in all RUs.  

3. Developments: frequency of occurrence in the set of all developments in all RUs: 
(Figure 22) 

 
Figure 20. Frequency, Research Interest and weighted Challenge bar chart. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

13 9 10 11 2 5 6 1 12 4 3 8 7

P-CATEGORY (Pk)

FREQUENCY OF OCCURRENCE IN RUs (FPk)
WEIGHTED CHALLENGE (WPk) - right axis

FREQUENCY OF OCCURRENCE IN CHALLENGES (RPk) - right axis

FREQUENCY OF OCCURRENCE IN RUs

FREQUENCY OF OCCURRENCE IN CHALLENGES

WEIGHTED CHALLENGE

Figure 20. Frequency, Research Interest and weighted Challenge bar chart.

Sensors 2023, 23, x FOR PEER REVIEW 41 of 78 
 

 

 
Figure 21. Approach metrics. 

 
Figure 22. Normalized frequency of Developments. 

To improve legibility, the x-axis labels show category numbers only. The codes 
("terse, dense representations of a verbose articulation of a concept", see [1, N. see sub-
section “what are codes?”]) linked to the numbers are shown in Tables 2–4. In Table 2, 
we also show questions that help to clarify articulation of the challenge posed. 

Table 2. Challenge category codes and representative challenge questions. 

CAT # CODE PROBLEM 

P1 
Architecture of VEs and PMs—profiling 
power consumption 

What is the impact of specific major architectural features of 
computer hardware on the power consumption of VEs? 

P2 Virtualization genre, platform 
Is it possible to meaningfully rationalize the behavior of VE 
power consumption across different implementations of sys-
tems for virtualization? 

P3 Estimation of power consumption of virtual- Can host system power consumption be predicted on the basis 

0.0000

0.0500

0.1000

0.1500

0.2000

4 14 16 5 3 7 13 15 11 1 12 17 9 6 2 8 10
A-CATEGORY (Ak)

UTILITY METRIC, UAk
FREQUENCY OF OCCURRENCE IN APPROACHES, RAk

UTILITY METRIC

FREQUENCY OF OCCURRENCE IN APPROACHES

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

4 7 13 18 3 11 1 2 6 9 17 14 16 15 5 8 10 12
D-CATEGORY (Dk)

NORMALIZED FREQUENCY OF DEVELOPMENT (RDk)

Figure 21. Approach metrics.

To improve legibility, the x-axis labels show category numbers only. The codes (“terse,
dense representations of a verbose articulation of a concept”, see [1, N. see sub-section
“what are codes?”]) linked to the numbers are shown in Tables 2–4. In Table 2, we also
show questions that help to clarify articulation of the challenge posed.
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Table 2. Challenge category codes and representative challenge questions.

CAT # CODE PROBLEM

P1 Architecture of VEs and PMs—profiling
power consumption

What is the impact of specific major architectural features of
computer hardware on the power consumption of VEs?

P2 Virtualization genre, platform
Is it possible to meaningfully rationalize the behavior of VE
power consumption across different implementations of
systems for virtualization?

P3 Estimation of power consumption of
virtualization-host systems

Can host system power consumption be predicted on the
basis of VE activity?

P4 Workload-adaptable power models Can workload-adaptable power models be developed?

P5 Resource heterogeneity How do a VE’s power consumption and power model vary
with resource configuration (heterogeneous VEs)?

P6 Influence of temperature on power model How does temperature of operation affect VEs’
power models?

P7 Resource use and measurement of VEs How can load be targeted at specific VE resources? How can
the actual resource consumption be measured?

P8 Host system power attribution How can the (measured) power consumption of a host be
attributed to the hosted VEs?

P9 IO Virtualization What is the impact of specific major implementations of IO
virtualization on the power consumption of VEs?

P10 Network functions Which particular implementation of a network function is
most power or energy efficient?

P11 Software L2 data plane switching
What is the impact of specific major implementations of
software layer 2 data plane switching on the power
consumption of VEs?

P12 Investigation of processor green capabilities How can we model operation under real-time exploitation
of processor green capabilities?

P13 Improvement of power efficiency of high-performance
IO virtualization

How can we improve the power efficiency of
high-performance packet IO frameworks?
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Table 3. Approach category codes.

CAT # CODE

A1 Power attribution principle

A2 Modeling bias

A3 Green operating principles

A4 Physical analysis

A5 Identification and use of metrics of energy efficiency

A6 Managed resource provision (setup time)

A7 Controlled resource provision (operation time)

A8 Resource-specific workloads

A9 Workloads representative of real use

A10 Computing resource instrumentation

A11 Workload characterization and instrumentation

A12 Direct power measurement

A13 Hardware instrumentation of predictors

A14 Simulation

A15 Use of test data in post-training phase

A16 Corroboration through experimentation

A17 Model adaptation technique

Table 4. Development category codes.

CAT # CODE

D1 Host models -> linear regressions: predictors = computing resources

D2 Host models -> non-linear regressions: predictors = computing resources

D3 Host models -> machine-learnt: inputs = computing resources

D4 Host models -> mass storage energy consumption

D5 Adaptable VE models -> linear regressions: predictors = computing resources

D6 Adaptable VE models -> power, exponential and log regressions: predictors = computing resources

D7 Adaptable VE models -> machine-learnt: inputs = computing resources

D8 Host/VE models of power consumption -> predictors = workload characteristics

D9 Host/VE models of power consumption- > observations on operation of processor green capabilities

D10 Relative accuracy of modeling approaches

D11 Power’s dependencies- > physical and logical artifacts -> component implementation

D12 Power’s dependencies -> physical and logical artifacts -> architecture

D13 Power’s dependencies -> physical and logical artifacts -> IT system implementation -> dependence
on resource provision

D14 Power’s dependencies -> physical and logical artifacts -> IT system implementation -> dependence
on virtualization/containerization genre and technology

D15 Power’s dependencies -> networking workloads -> software L2 data plane switching

D16 Power’s dependencies- > networking workloads -> in I/O virtualization

D17 Power’s dependencies- > networking workloads -> in VNFs

D18 Power’s dependencies -> networking workloads -> in general networking
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3. Thematic Analysis

The themes presented in this section are the product of a thematic analysis undertaken
according to the method described in [1]. We first present an overview through a graphic
(Figure 23) that groups the themes and then proceed to an exposition of the themes within
the sub-sections.
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3.1. State of the Art
3.1.1. Seven Dimensions of Variability

Through our collation and resolution of the derivatives of the core challenge in this
research space, we observe seven dimensions of variability in modeling power consumption
by a virtual entity. Comparison with the power consumption of physical machines throws
the core challenge into sharper relief. With physical machines:
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• Power consumption can be measured directly;
• There is no virtualizing agent to consider;
• The activity of other physical machines (that do not send or receive workload)

is irrelevant.

The seven dimensions of variability are shown in Table 5. It is not surprising that the
problems we have seen researchers tackle are closely aligned with these dimensions. The
research space is precisely about the need to obtain an understanding of the impact that
these variables have on power consumption. The scope of models we found in the RUs
covers only a subspace of the seven-dimensional space but the extent is not usually stated.
We touch upon this issue briefly in our treatment of the pitfall of research without context
and the fallacy of the universal power model.

Table 5. Seven dimensions of variability.

Dimension Problem Category

1. Workload type P4, P7
2. Virtualization agent P2, P9, P11, P13
3. Host (resources and architecture) P1, P3
4. Temperature P6
5. Power attribution P8
6. Co-hosted, concurrent VEs P8, P5
7. Frequency P12, P13

3.1.2. Adaptable Models

We observe three conditions which must be met for an automated modeling system
to obtain a model of VE power consumption.

1. The first fundamental condition is common to all successful research into modeling
of VE power consumption. Resources utilized by the VE (whether measured through
architectural or microarchitectural instrumentation) must be strongly correlated to
power consumption by the VE as well as power consumption in host system over-
heads. If the overheads are uncorrelated to the VE’s activity, or weakly so, then any
significant power overhead must be modelled through a separate consideration of its
driving causes, e.g., temperature [81].

Furthermore, in order that modeling may apply across a diversity of operating contexts,
two other conditions must hold.

1. Any change in the parameters of correlation must be dynamically learnt and the
model adjusted.

2. Any change in operating context that invalidates the parameters of correlation must
be of finite duration. An indefinite transient precludes the formation of a model.

To this observation on the three conditions, we add another observation. Two of the
seven dimensions of variability are commonly investigated in terms of the validation of the
accuracy of modeling systems: workload type and co-hosted, concurrent VEs. We suggest
that a modeling system may be labelled adaptable if, minimally, it meets the above three
conditions under these two dimensions, i.e., (a) operations of variable workload type per
VE, and (b) a variable number of concurrent, co-hosted VEs. Before proceeding to refer
to validations observed in the RUs, it is useful to draw attention here to the need for a
modeling system, rather than simply a model, in the estimation of power consumption.
Dynamic adjustments are affected through the intervention of such a system, which adjusts
model parameters to the operating context. We now proceed to describe how the variables
in the two dimensions were varied in some studies.

Workload type: Different types of workload correspond to different use of resources;
hence, the behavior of power consumption also differs. Several researchers [48,75,76]
studied the effect of changing workload type either by categorizing the workload itself or
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by categorizing the resources consumed by a specific kind of workload. Both [75] and [76]
characterized the use of CPU utilization for workloads, which is known to have a workload-
type dependent relationship with power consumption [62]. Thus, in both these studies, the
need arises to re-train on the change of workload type (second condition). Further, both
carry an observation about the duration of re-training for refined models (third condition).

On the other hand, each one of [62,69,79,81,82] is capable of adapting to different
workload types without re-training. All predictors here are event counters. However,
events are not necessarily linear predictors of power consumption across all workload
types. In [84], it was found that the model parameters of a linear regression of event
counters onto power consumption are workload specific. Given the contrast with [73,74], it
seems that the root cause is the selection of events for prediction.

Concurrent operation: In [61], a non-linear model of the dynamic power of a multi-
(virtual)-core VM is obtained. The dynamic power pvm is expressed in terms of the average
utilization uv which n virtual cores impose on a total of N physical cores:

pvm(uv, n) = α
( n

N

)β
uβ

v

Parameters α and β are determined through linear regression of the logarithmic form.
The relationship was successfully tested under the operating context of one VM and
three VMs. The model is limited to processor-intensive workloads; indeed, this is not
surprising, since the predictor is (virtual) processor utilization. However, a conclusion can
be drawn: the accuracy of the model in predicting the dynamic power of an individual
VM is independent of the concurrent operation of other VMs (albeit for a limited range of
workload types).

In [75], it is shown that estimation based on processor utilization can accurately predict
the power consumption of multiple concurrent VEs. The prerequisite is that a model for
that VE’s workload type has been learnt. The prediction accuracy for individual VEs is
independent of concurrent operation. The same conclusion can be drawn for [61]; further-
more, here the range of workload types has expanded to a broader range. With regard
to the results obtained in [84], the conclusion is yet again the same: individual prediction
accuracy (albeit workload-type-dependent) is independent of concurrent operation.

Variability in both workload type and number of concurrent, co-hosted VEs is man-
ifestly claimed in [62,69,81]. It is noteworthy, therefore, that not only is the modeling
system adaptable, but it also produces a model that is itself adaptable without the need for
real-time adjustment.

We conclude this sub-sub-section with the observation that limited adaptability (de-
fined as independence of workload type and number of concurrent, co-hosted VEs) has been
achieved. From the surveyed RUs, we conclude that, presently, the limits of adaptability
are the following:

1. Workload type: the power consumption of processor-intensive, memory-intensive,
disk-intensive workloads and mixes thereof has been modeled by a single modeling
system in an automated manner;

2. Co-hosted, concurrent VEs have been modeled up to but not exceeding over-commitment
of processor physical cores.

Caution has been exercised in claiming these limits. For example, while the com-
mitment of logical cores (e.g., Intel Hyper-Threading logical cores) has been investigated,
we have found no evidence that power consumption has been modeled in a manner that
automatically adapts to a transition of consumption from physical to logical cores.

3.1.3. Lack of Use of Metrics of Energy Efficiency and Standards to Address This Deficiency

We note several experiments, e.g., [55,56,68,71,103–105], that target power consump-
tion but less than 12% of the RUs in our corpus approach the problem in terms of some
energy efficiency metric [49,50,65,85]. It is necessary to move beyond measurements of
how much power was consumed, to measurements of how much power was consumed to
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carry out a specific task. This change in approach facilitates comparison between research
works. More importantly, it directly addresses the question about the cost of operation
of infrastructure.

This approach requires identification of a unit of comparison that transcends the
boundaries of disparate systems that deliver this unit. This unit of comparison is referred to
in the Life Cycle Assessment (LCA) framework (ISO 14040) [106] as the functional unit. A
definition specific to telecommunications equipment is given in [107]: the functional unit is
defined as “a performance representation of the system under analysis”. This definition is
too broad; therefore, units specific to a variety of classes of equipment are defined too [107].
In our corpus, two approaches we have seen are hash/J [50] and J/Web Interaction [65].
The functional units in these cases are the performance of one crypto-hash and one web
interaction, respectively. Another is to define a functional unit specific to a digital service
delivered over a telecommunications network, e.g., ten minutes’ time of browsing [108].
Note that L.1310 [107] recognizes both metrics where energy is in the numerator [65] as
well as those where it is in the denominator [50]. Guidance is available: energy efficiency
measurement for several NFV components has been standardized, as well as measurement
standards for servers, switches and virtualization systems [109].

3.1.4. Trends

Here, we present trends which we have identified through our collation of problems,
approaches and developments. This sub-sub-section is divided into four parts, regarding
trends in: challenges, complexity of tackled problems, approaches and developments.
Within each part, trends are numbered using Arabic numerals, to differentiate cleanly
between them.

Challenges

1. The causality DAG (Figure 18) shows that the research space can be characterized
succinctly, note the thickness of the links originating at P7 (VE resource use and
measurement) and P8 (how to attribute host system power to VEs).

a. Figures 1 and 20 show that the challenge-category tackled most frequently
(RP7 = 25.3%) is how to load the VE’s resources and measure the loading (P7).
P7 also has the most frequent presence in RUs: FP7 = 65.7%) (Figure 20).

b. The accurate specification and measurement of load is essential to model forma-
tion. These measurements provide the aggregated (i.e., indiscriminate of which
VE is consuming) predictors (the predictors are the input side of the model).
Disaggregating the predictors and attributing measured power consumption
to the individual VEs (the output side of the model) constitutes the second
most frequently tackled challenge (RP8 = 16.5%). P8 also has the second most
frequent presence in RUs: FP8 = 42.9%.

c. In the following, the vector (P, A, D, weight) will be used to indicate a path (P, A,
D) and the number of triads (weight) through the path:

i. A total of 34.2% of triads collected regard P7 and P8, respectively. The
triads graphic (Figure 19) shows that efforts rooted in these two chal-
lenges converge on a common objective: building adaptable models of
VEs’ power consumption, notably using regressions to linear combinations
of computing resource predictors;

ii. The set of triads leading to linear regressions consists of {(7,10,5,20), (8,17,5,13),
(7,9,5,12), (8,1,5,10), (8,2,5,8), (7,8,5,6), (8,12,5,4) and (7,6,5,3)} and these
account for 11.3%.

2. The third most frequently tackled challenge is that of the estimation of the virtualization-
host-system power consumption (RP8 = 15.4%). This category might be overlooked
in a first inspection of the research space, as it might seem futile to attempt to estimate
a power consumption which can be measured. However, in practice, the logistical
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challenge of the measurement of horizontally scaled system deployments seems to be
well known and several works have been undertaken to develop software meters.

3. Several significant links originate on P1 (profiling power consumption’s dependency
on architecture). The DAG (Figure 18) indicates that approaches to tackling P1 are
spread across a mixture of managing resource provisions, the use of synthetic (resource-
specific) workloads and predictions using system software’s instrumentation.

4. Another large group of links originates on P3 (estimation of host system power
consumption). The DAG (Figure 18) indicates that a primary concern in tackling P3
is the type of model to select. The most common choices are linear and non-linear;
machine-learning techniques are the least common of the three. The thickness of the
triad (3,2,10,11) (D10: relative accuracy of formal approaches) indicates that there is
already significant interest in whether the advanced models are worth the effort to
develop them and the computational resources required to operate them.

5. While FP7 = 65.7% (loading VEs and measuring their use of resources), only 8.6%
( FP7.2 = 8.6%) of all RUs investigate loading containers and measuring their use of
resources. With virtual data plane devices, the figure is even lower: FP7.3 = 8.6%. This
imbalance suggests that there is much room left for research into modeling power
consumption by containers and data plane devices.

Challenge complexity
In [1], we suggest that the diversity of approaches is a metric of the complexity of

the challenge. We note (Figure 20) that challenge complexity (WPk ) generally follows
the frequency with which a particular challenge-category is tackled. That is: the more
frequently the challenge is addressed, the more diverse are the approaches applied to it.
This can be verified by noting that the heights of both sets of bars in the chart (superimposed
on the same graphic) follow roughly the same pattern. However, some categories do stand
out. For example:

1. P6 regards the influence of temperature on the power model. Approach diversity is
poor here because only the use of additional instrumentation can be attributed to this
challenge. Model bias might be attributed to this challenge too but, largely, model
bias is determined by other challenges within the scope of the RU.

2. While host system power attribution (P8) has the second highest research interest (and
frequency of occurrence, FPk ), the number of approaches taken to solve this challenge
is relatively small.

3. On the other hand, power consumption’s dependencies are tackled by a dispro-
portionately large number of approaches. This is not surprising, as the objects of
study (architecture, virtualization platform, virtualization genre) are multi-faceted
and dependencies can be investigated through a variety of approaches.

Approaches
Our approach utility metric, UAk [1] (Figure 21), seems to be a useful one. It com-

municates clearly what we have observed in our surveying. Below, we draw attention to
saliencies perceived during surveying and confirmed by the metrics.

1. Instrumentation of the consumption of computing resources (A10—which includes
microarchitectural instrumentation and that abstracted by system software) is repeat-
edly adopted (UA10 = 15.5%, RA10 = 15.7%) in empirical work in this field. It is
also the most utilized of all approaches. In comparison, workload instrumentation
accounts for 8.2% utilization (RA11 = 5.2%).

2. Resource-specific workloads (A8) are the more utilized approach to loading VEs
(14.3% of all triads). This approach category is the second most utilized. Workloads
representative of real use (A9) account for 9.0% of all triads. The corresponding
frequency of occurrence figures (RAk ) are 13.4% and 10.0%, respectively.

3. Two other high-utility approaches are (a) modeling bias (A2, with UA2 = 11.9%,
RA2 = 11.6%) and (b) the managed provision of resources (A6, with UA6 = 10.2%,
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RA6 = 10.8%). The use of representative workloads (A9) follows at UA9 = 9%,
RA9 = 10.1%.

4. A comparison of the patterns of bar height distribution for UAk and RAk reveals that
some categories stand out.

a. While A12 (direct power measurement) is not as frequent as the other software-
based forms of instrumentation, this approach has a utility that sticks out of the
pattern (Figure 21). The reason is that most, if not all, developments obtained in
an RU that include this approach depend on the directly measured power.

b. Similarly, while workload characterization and instrumentation (A11) are em-
ployed with a frequency that is about one-third that of its alternative (i.e., com-
puting resource instrumentation, A10), it has a far better utility-to-frequency
ratio than A10. The triads graphic (Figure 19) indicates that one important
cause of this high utility is that software-L2-data plane switches and
(virtual) network functions are investigated primarily using measurement of
workload (and not measurement of computing resources consumed to process
a workload).

Developments

1. A total of 55.6% of all identified developments are obtained in modeling power
consumption. The remaining 44.4% regard how power consumption depends on
implementations. The implementations investigated (for their impact on power
consumption) range from entire virtualization platforms (e.g., KVM) to components
(e.g., processors).

2. The most frequent (RD12 = 14.5%) category of developments is that which regards
observations on the dependency of power consumption on architecture. The cause
of this high frequency is that developments in the study of architecture establish
directional (negative, positive, neutral) correlations rather than predictive forms. For
example, in a single RU [67], all of the following developments emerge:

a. D12.08: VM power consumption increases linearly with a vCPU frequency of
operation when the vCPU is operating at 100% utilization;

b. D12.09: Virtualization-host-system power consumption increases linearly with
the number of physical cores operating at 100% utilization;

c. D12.1: Virtualization-host-system power consumption increases with the num-
ber of VMs active on the same core.

3. Amongst developments of models, the most common category (D8) is of the type
where power consumption (host or VE) is predicted in terms of workload charac-
teristics (RD8 = 12.0%). The next most common category regards the prediction
of power consumption as a linear function of computing resources (RD5 = 8.5%)).
Machine-learnt models of VE power consumption comprise the second least frequent
category, with RD7 = 1.7%.

4. Despite the frequency of developments in category D10 (Figure 22), few
works [60,62,63,77,79] compare the accuracy of model types. Models have largely
been treated as a means to an end, with little investigation of their relative accuracy
and range of validity (in the seven dimensions of variability). This may be a reflection
of researchers’ interests. As the popularity of methods from the body of knowledge
of data science increases, works (e.g., [63]) that span a broader range of model types
may be expected to increase in concert.

5. Adaptable, non-linear VE models (D2) occupy a modest 4.3%. Such a distribution
adds weight to the observation that this research space is ripe for exploration using
advanced modeling techniques. Indeed, one attraction for data scientists is the relative
ease with which data can be collected. However, polynomial and other types of re-
gression to closed-form are problematic as suspicion of over-fitting increases with the
order of the polynomial. For example, in [76], a sixth-order polynomial is suggested
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to model the relationship between processor utilization and power consumption by
a host.

3.1.5. Three Levels of Abstraction

We note that existing power models may be classified into one of three levels of
abstraction. In ascending order of abstraction, these are:

• Microarchitecture and architecture;
• Simple characterization of workload;
• Complex characterization of workload.

The meaning of “abstraction” specific to our use here is perhaps most easily grasped by
referring to the variables used as model inputs. In all cases, the variables are some measure
of load. At the lowest level, inputs that quantify the operation of processor sub-units are
used (event counters and event timers). The highest level uses inputs that quantify the
demand for a telecommunications system or service. Clearly, the latter inputs are far more
detached from the underlying, concrete implementation than the former.

With regard to the lowest level of abstraction, many power models use hardware
resource consumption to estimate the power consumed by virtual components. One
survey [105] (while comparing the available power models for processors, VMs and servers)
observes that most of the power models for virtual machines use physical machine counters
to estimate the corresponding resource utilization by the virtual components. We offer
further insight on this matter. We concur in the observation that much current research is
concerned with modeling power consumption of virtual machines. The approach may be
succinctly described as estimates obtained from models trained out of either architectural
or microarchitectural instrumentation data. Note that we distinguish between architecture
and microarchitecture using the classical interpretation [110]. Now, the term “architecture”
is severely overloaded and its interpretation can easily differ from that which we wish
to exploit. In the following description of the levels of abstraction, we use the alterna-
tive “system software’s instrumentation” to convey the same meaning as “architectural
instrumentation” with less ambiguity.

Microarchitectural instrumentation is the lowest level of instrumentation. Power con-
sumption is expressed in terms of variables that are defined at sub-CPU and sub-subsystem
levels. The granularity of this level holds the greatest potential for accuracy, but the rate
of change of the observed variables has deterred several researchers from pursuing this
approach to instrumentation, citing concerns about communicational and computational
overhead. This concern has been dismissed by three groups of researchers [70,86,98] who
have indicated that acceptable accuracy can be achieved with negligible overheads. Given
the proliferation of works based on this approach and the availability of high-level (pro-
gramming) language code (HLL) that facilitates the use and the potential for the capture
of physical behaviors, then our general recommendation is a preference to investigate the
use of microarchitecture instrumentation.

System software’s instrumentation regards a class of instrumentation that has mean-
ing across the spectrum of computer systems. The input variables, such as the CPU or
network interface utilization, are produced by some digest (function) of intermediary
system software. For example, an operating system’s (OS) measurement of core utilization
can roughly be described as the core’s duty cycle on behalf of the OS. This is significantly
removed from knowledge of activity within the core. While models at this level are more
abstract, they are still low-level, especially when compared with the other levels.

Simple characterization of workload is a less frequently encountered abstraction, used
by Enokido, Takizawa and various others with whom they have co-published [68,71,111].
These models describe power consumption in terms of fundamental descriptors of work-
load, e.g., the number of processes and transmit/receive data rate.

Complex characterization of workload is the least granular of the models in the
survey [34,112]. The objective here is to quickly proceed to a good estimate of the power or
energy required to produce the workload. This kind of model has no use in real-time control
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but it is useful for macroscopic comparisons, i.e., comparisons between two disparate sys-
tems for the provision of a service. The comparison might regard two different paradigms
of provision of the service, e.g., classical vs virtualized implementations. Thus in [34], the
implied (system) metric is the amount of power required to deliver 1 million packets per
second of throughput through an evolved packet-core’s (EPC) serving gateway (SGW).
In [112–114], the objective is to minimize the amount of consumed power by virtualizing
baseband processing functions, evolved packet core, customer premises equipment and
radio access network functions.

3.1.6. Service Determinism: A Criterion Particular to the Telco Cloud

The NFV data plane demands determinism [37,96,115]. Strictly, service determinism
is sought since the packet arrival process is generally unconstrained. The root cause of this
need is to correctly size equipment resources to meet load demands, whether throughput,
latency or jitter. This need is intense, as it impinges on a PTNO’s obligations, specified in
legally binding service-level agreements (SLAs). Service determinism has been approached
through the augmentation of GP hardware, with domain-specific architectures (DSAs,
which we first referred to while describing problem category P1). Hardware-centric DSAs
for the NFV data plane are constructed out of elements (or systems thereof) that can be
divided into three groups.

1. IO system architecture: This group comprises the abstraction, directly at a peripheral
interface, of functionality that facilitates the virtualization of hardware, e.g., SR-IOV
(used in PCI—Peripheral Component Interconnect) and N-port ID virtualization
(Fibre Channel).

2. Processor architecture: This comprises architectural change that facilitates the parti-
tioning of processor resources, such as multi-core processors and NUMA.

3. Co-processing: Compression and decompression, encryption and decryption and
packet header processing are examples of high-volume tasks that can be offloaded
to co-processing subsystems. Examples include Intel QuickAssist Technology (QAT)
and TCP Offload Engine (TOE).

We further observe a set of approaches that are complementary to DSAs in the quest
for determinism. These include:

1. Large memory pages: exploitation of the facility to organize virtual memory into
larger pages than the general-purpose 4 KiB;

2. User space programming: diversion of the control of hardware resources away from
the multi-service kernel, to single-common-use user space programs, e.g., DPDK
and AF_XDP.

Notably, resource partitioning (see processor architecture, above, i.e., the second
hardware-centric approach), combined with user space programming (the second comple-
mentary approach), realize the run-to-completion scheduling model [96].

We conclude with an observation on the cost of the current realizations of service
determinism. The (aforementioned) combination of core partitioning and user space pro-
gramming has been widely adopted through Intel’s popularization of DPDK, via Intel’s
open-source liaison efforts. The multi-core processor enables service determinism through
an approach that is anathema to the principles of multiprogramming: the dedication of
hardware to a specific task.

3.1.7. Direct or Indirect Measurement of Power in Virtualized Environments?

We observe that most research in modeling power consumption seeks to obviate the
need for direct measurement through indirect measurement. This indirection consists
of a measurement of resource use which has a discoverable relationship with power
consumption by the entity hosting the resources. Modeling, here, has the objective of
indirect measurement of a variable that is not directly accessible (power consumption by
VEs), through others which have convenient and reliable instrumentation. The accessible
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variables are referred to as power proxies. The RAPL interface provides a unique approach
to measurement as it directly addresses power consumption. However, notwithstanding
appearances of direct measurement, RAPL is actually based on a software model that
uses performance-monitoring counters (PMCs) as predictor variables to measure power
consumption. It is available in processors starting from the Sandy Bridge microarchitecture.
RAPL measures the power consumption of different physical domains, where each domain
consists of either cores, sockets, caches or GPU. We briefly comment on its accuracy through
references to research that has investigated them.

1. In [98] the advantages and drawbacks of using RAPL were investigated. Different
Intel architectures such as Sandy Bridge, Haswell and Skylake were used in the
experiments to analyze RAPL’s accuracy and overhead. Data collected were modeled
using a linear model and a Generalized Additive Model (GAM). The accuracy of
the predicted results was compared with the measured power consumption from a
precise external hardware power meter where RAPL based models show 1.8–4.3% of
error for the various architectures. The prediction accuracy of RAPL-based power
models was also compared with those based on OS counters, where OS-based models
show a higher error of 5–16%. Furthermore, the performance overhead (in terms of
time) of using RAPL was studied at different sampling frequencies and for different
application runs. Results show that even with a high sampling frequency of 1100 Hz,
RAPL incurs overhead of not more than 2%. Some limitations of using RAPL include
poor driver support to read energy counters, the overflow of registers due to their
32-bit size and the measurement of energy consumed by individual cores.

2. Another study to analyze the precision of RAPL is presented in [116], where only the
dynamic change in power consumption is observed. An external power measurement
unit (WattsUp Pro) is used as a reference for power measurement values. Intel Haswell
and Skylake servers were used in the experiments to run different applications and to
find the reliability of RAPL with the help of external power meters. However, in this
research work, only two power domain packages (power consumption of whole socket
and DRAM domain of RAPL) were observed. Applications such as dense matrix
multiplication and 2D Fast Fourier Transform were used for server power profiling.
Results show that the power measurement error varies with changing applications
and its workload size. For different applications the average measurement error
using RAPL was in the range of 13–73% considering WattsUp power meter as the
ground truth. It was concluded that with the modern multi-core parallel processing
and resource contention for shared resources, there is a complex non-linear relation
between performance, workload size and energy consumption. Hence it is difficult to
attain low error percentage for power measurement using on-chip sensors.

3.2. Research Gaps

Three significant challenges remain unaddressed, while a fourth requires further attention:

1. The modeling of containers’ power consumption;
2. The effect of overcommitment on power efficiency;
3. The investigation and classification of DPDK applications;
4. The fourth challenge, which is starting to receive some attention [83,85,87,94], regards

the modeling of power consumption by virtualized I/O.

Note that our treatment of research gaps does not address improvements in approaches.
As we have already indicated, it is in our treatment of developments that more adaptable
modeling methods are required to tackle the dimensionality of the field. Similarly, we
do not include the lack of use of metrics of energy efficiency with research gaps, as it is a
deficiency in the approaches, not a challenge in itself. Rather, here our attention focuses on
where the more pressing challenges lie for the development of power and energy control
of VEs.

Gap #1: Modeling of containers’ power consumption. Few works [78,81,82] tackle
containers from the perspective of their power consumption. However, at least for the
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telco cloud, VMs are no longer the destination (see, for example, [40,117]. Containers have
replaced virtual machines as the base for deployment of virtual network functions. In [78],
the approach(-set) taken is to:

1. Use representative workloads, e.g., HEVC (High Efficiency Video Coding) transcoding
and machine learning image classification;

2. Customize the set of low-level instruments used to correlate power and energy con-
sumption with workload characteristic.

This work develops a profiling tool. It provides guidance that is specific to the appli-
cation and both the hardware and software aspects of the containing platform. “[P]olicy”
for “tradeoff between energy, power and application performance” is the cited objective.
Given the high-dimensionality of the core challenge, this set of approaches to the modeling
and measurement of power consumption, may well be more coherent with the Euro-
pean Telecommunications Standards Institute’s (ETSI) Management and Orchestration
(MANO) standard. Such information would then be included in the infrastructure-resource-
requirement’s meta-data descriptors in the VNF package [118].

Gap #2: The effect of overcommitment on power efficiency. Overcommitment con-
sists of the allocation of more capacity of some compute resource to VEs, than is physically
installed. The concept is very similar to the oversubscription of telecommunications capac-
ity to subscribers, such as when the arithmetic sum of capacities of access links exceeds
the aggregating device’s backhauling capacity to a central office/local exchange. In this
context, overcommitment principally concerns processing cycles and memory space. As
with oversubscription, there is an optimization problem to solve. One problem of interest
to this survey’s scope is understanding the relationship (say, ratio) of committed virtual
resources to installed physical resources that optimizes the total cost of ownership (TCO)
of cloud infrastructure:

• On the one hand, the facility to overcommit has a direct impact on the density of the
packing of VEs (number of concurrently active VEs) on a virtualization-host-system,
thereby reducing the TCO;

• On the other hand, overcommitment may reduce the power efficiency of a workload.

Had this challenge been tackled in any depth, or at least in any breadth, it would
have merited a category of its own. Currently, however, we are only aware of a single
study [65] that tackled this challenge. The results obtained strongly justify overcommitment
of processor cores to vCPUs, for the case of transaction web service workloads, with the
increase in throughput (measured in web interactions per second, or WIPS) increasing at a
faster rate than power consumption. This behavior was observed well into overcommitment
ratios of processor cores to vCPUs equal to 3 (three). The overcommitment of physical to
VM memory was not investigated.

Gap #3: Investigation and classification of DPDK applications. In Section 3.3.2,
we address the relationship between DPDK and power consumption. In the course of a
public discussion in the forum offered by the North American Network Operators’ Group
(NANOG) [119], there emerged a need for clarity on DPDK’s association with inefficiency in
power consumption. Interest was particularly expressed in the knowledge of a classification
of extant DPDK applications according to their power consumption, and contribution to the
code base to improve power-hungry applications. In summary, among high-performance
packet I/O frameworks, a classification of applications that use DPDK APIs in order to
assess their power consumption and correct usage would be of particular interest, given
their diffusion and potential.

Gap #4: Modeling of power consumption by virtualized I/O. Power consumption
of network I/O has been investigated to some extent as this is central to the feasibility of
network functions decoupled from hardware. While software and hardware solutions are
already available (see Section 3.3.2), they require frequency and idling control targeted
to their specific operating conditions. Notably, naive DPDK runs the processor core at
its maximum power consumption, regardless of load. The exploitation of adaptive-rate
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(AR) processing and low-power idle (LPI) should provide a means to save power while
processing high networking loads. However, effective control of these means is still elusive,
despite both using Xeon Haswell microarchitectures, refs. [83,87] reach opposite conclusions
about the feasibility of processor core C-states. The former [83] finds LPI an effective means
of reducing power consumption of packet forwarding (with limitation on latency) while
the latter [87] finds it ineffective, preferring the use of the pause instruction. Furthermore,
in [120], performance state transitions (P-state) are found to impose a high transition latency,
while in [87], P-state regulation is the preferred approach. There is scope for research in the
dynamic adaptation of the processor’s operating state to save power.

3.3. Pitfalls
3.3.1. Power Consumption Does Not in General Increase Linearly with
Processor Utilization

Notwithstanding advances made in identifying operating contexts that manifest a
sub-linear power-utilization relationship [62,69], more recent publications [57,121–128]
persist in using the linear model without acknowledging its limitations. The model is
simple to use and has some foundations in research [129]. It has three premises, described
here with regard to the operation of Microsoft Windows:

1. When Windows has no threads to run on a logical core, it schedules the idle thread [130].
2. The idle thread keeps the processor in a low-power state [131]. The specific state

depends on the processor’s green capabilities.
3. In the complement (non-idle time), the processor issues instructions at a constant rate.

This simple model has limitations [62,132]. It fails to take into account diverse proces-
sor operating contexts, some of which are coming to bear on current use cases. Specifically,
the third premise is true only to the extent to which instructions are being fetched and data
are being loaded from/stored to an instruction and data cache, respectively. Consider the
context of 90% and greater hit ratios. At such cache hit ratios, the rate of instruction issue is
expected to be narrowly distributed about its mean. By contrast, the lower the hit ratio at
the cache level before main memory, the lower the fraction of non-idle time at which power
consumption saturates. This saturation is strikingly illustrated in [62]. The variation of
power consumption due to the execution of tests from the SPEC CPU2000 benchmark suite
is shown. The power consumption diverges at 25% CPU utilization and the consumption
of the processor-bound test (mesa) is greater than that of the memory-bound test (mcf) by a
factor of about 2.6.

Another good (albeit broad) illustration of this pitfall is given in [133]. Data on power
consumption and CPU utilization under a standardized benchmark are plotted for four
different physical server models. None of the relationships are linear. Neither is there a
single, common behavior.

Researchers align themselves into two groups with regard to CPU utilization. One
group favors (operating-)system metrics (of which CPU utilization is one metric) and the
other favors event counters (microarchitectural instrumentation). The arguments posed
by each group against the other’s approach can be summarized as follows. The “system
metrics” group claims that the “event counters” group’s work is (a) not portable (at least
across microarchitecture families) and (b) cannot be exercised without low-level access
to the host (therefore, this approach cannot be exploited by user-level privileges) (see,
e.g., [134] and [75]). The “event counters” group claims that CPU utilization is a workload-
dependent predictor (see, e.g., [59]) and therefore cannot be used without re-training
the model. Indeed, this modification to the “system-counters” approach is employed
in [76], where it is stated that “[b]ecause of changes of VM’s internal applications . . .
parameters must [be] recalculated automatically”. Given these arguments, it seems that the
system metrics group argument is weak: both system metrics and event counters require
re-training if hardware is changed but system metrics lack the granularity to discriminate
between workloads (cf. [62]). This means that CPU utilization can only be used as the sole
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predictor if it is re-trained with a change in workload. We deal with this problem, which
we have termed the fallacy of the universal model, in Section 3.4.1.

With regards to the use of hardware threads (Intel®Hyper-Threading), we have ob-
served that various works concur on the operating context under which a linear relationship
is subject to the lowest error. This includes at least the following two conditions:

1. The processor cores are increasing their instruction issue rate in proportion to the
fraction of time they spend busy. This implies that instruction and data cache hit
ratios are high. This is simply the third premise;

2. Only one logical core is active per physical core at any given time [62,63,69]. Expressed
alternatively, actual utilization must lie below half maximum utilization. The underly-
ing cause is that activation of the second logical core employs fewer organizational
units of the processor than activation of the first logical core.

The first condition is particularly problematic, as cache miss ratios are likely to be
much higher in the context of virtualized environments. In such environments, the number
of runnable threads is the sum of runnable threads controlled by independent operating
systems. Evidently, this is higher than the expected number of runnable threads on a single
server instance.

Other evidence of this “utilization trap” is not hard to find. In [57], the compute
resource is stressed using cpulimit and stress-ng. The “cpulimit” utility runs a speci-
fied process image, then pauses and resumes it until a certain percentage utilization is
reached [127]. The repetitive execution of a single process is highly likely to create condi-
tions for very high instruction- and data-cache hit ratios. Such favorable hit ratios skew
results towards the linear relationship between CPU utilization and power consumption.

3.3.2. DPDK Is Not Intrinsically Inefficient in Power Consumption

Research on power efficiency in DPDK applications [48,51,53,87] has portrayed DPDK
as power inefficient. Before proceeding to our exposition of this pitfall, we distinguish
between data, control and management planes. “Data plane” is a term used to refer to the
infrastructural means that provide the capacity for exchange of customer (or subscriber,
or end-user) data. It is complemented by a control plane, which refers to those means
that facilitate the dynamic setup, maintenance and tear-down of a functional data plane.
Another complementary part is the management plane. This includes the infrastructural
means for a network operator to configure and monitor the control plane and the data
plane, as well as intervene to correct faults arising in either plane. Simpler networks may
have no control plane.

Now, we proceed to the exposition of the pitfall. In one particular case [48], it is
claimed that “we found that a poll mode driver (PMD) thread accounted for approximately
99.7 percent CPU occupancy (a full core utilization).” The implication that seems to emerge
here is that the PMD itself is driving this power consumption.

This portrayal is problematic at best and incorrect at worst. The referenced inves-
tigations of DPDK have indicated a very low power efficiency, but they do not clearly
distinguish between the responsibility of the DPDK API and the application using it
(the API). A recent, public thread [119] has emphasized the responsibility of the applica-
tion developer in the avoidance of the naïve, “default approach” of busy polling. Such
an approach would, indeed, poll network IO hardware continuously [48], truly fitting
the epithet “spinning-hot” [37]. However, a broader (in the sense of including industrial
correspondents) investigation [119] suggests that:

• Contrary to claims in [48], it is the driving behavior of OvS that is inefficient in
power consumption;

• There are simpler, technical means of throttling a polling loop, including, say, the use
of program code to interleave ACPI C1 states with polls according to traffic demands.

These latter observations cast doubt on the claim that automated frequency control
is outside the scope of current frequency governors, since “the OS won’t be able to distin-
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guish whether it’s under a heavy load” [48]. On the other hand, savings through NUMA
awareness [51] (where transmit/receive port, memory and processor core are kept within
the same NUMA node) is affirmed in [119].

3.3.3. Research on Power Models without Power-Relevant Context

This pitfall traps readers who attempt to draw conclusions from published research
which lacks a clear specification of context relevant to power consumption. The pitfall is
best illustrated through examples.

1. Failure to emphasize context: idle power consumption vs frequency. The depen-
dence of idle power consumption on clock frequency is context sensitive. In [49], it is
explicitly stated “idle power consumption remains constant, regardless of the CPU
frequency . . . across the whole frequency range” (1.6–2.6 GHz). The CPU is an Intel
Xeon E5620. In [81,82], a quadratic relationship between idle power consumption
and frequency is observed. Here, the CPU is an Intel Core i5 Haswell. In these two
instances, emphasizing the restricted scope of findings would suffice to spare a reader
from excessively broad inferences.

2. Failure to emphasize context: idle power consumption vs hardware and software
specification. Enokido’s and Takizawa’s work [71] derives a power consumption
model for a server while VMs run computation-bound processes. The servers used
run on Intel Core i5-3230M processors. These processors are used in the mobile
device market [135]. They are capable of low-power idle states [136]. CentOS 6.5
uses a tickless kernel [137]. Combined, these facts, relevant to the context of power
consumption, provide a plausible explanation for the observed increment in power
(denoted, in [71], by minCt), when a core in a package is activated. Again, therefore,
the scope of findings is likely to be restricted.

3. Failure to fully define context: Configuration of power-relevant parameters. We
use [138] as an example. No reference is made to whether Hyper-Threading is enabled.
This is essential to understanding how the ESXi vCPUs are created. Neither is any
information given about how the vCPUs are related to physical (or logical) cores. Nor
are we told how virtual network interfaces and switching are set up. ESXi version
5 offers both paravirtualization (“vmxnet”) and emulation (“e1000”) to implement
virtual network interfaces. The impact on energy consumption of selecting a virtual
network interface implemented by emulation can be expected to be high [56].

The examples cited illustrate the importance for a researcher of power models to
qualify his/her results with a well-defined physical context. Research into power mod-
els involves hard components and a diligent characterization thereof is essential to the
acceptance of work as scientific research.

3.3.4. Benchmarks May Skew Power Consumption According to Their
Organizational Dependencies

We have seen that both “cpulimit” and “stress-ng” do not produce generally repre-
sentative measurements of power consumption. This observation is not limited to the
measurement of power consumption. The use of kernels, toy programs and synthetic
benchmarks to measure performance has been identified as unrepresentative [110] of gen-
eral performance. Benchmarks are standardized workload generators that are used for the
comparison of computer systems for a specific class of application. Unless this application
class is a good representative of the application of the computer system in productive use,
the power consumption measured under test is not a reliable predictor of that obtained
during productive use. It is necessary to plan test workload generators in advance and
state the limits of the validity of results. In [65], TPC-W is used, which is a transactional
web benchmark that can simulate the business-oriented online web servers. The MySQL++
Java version of TPC-W benchmark, suitable for cloud applications, is used to generate the
online traffic, where three different traffic profiles based on the browsing, purchasing and
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ordering of books are generated. The throughput measure for these servers is observed
through the metric Web Interactions Per Second (WIPS).

3.3.5. Processor Organization Significantly Impacts Power Consumption

We illustrate this point with a wide-ranging example [139] which compares the Intel
Xeon X5670 and AMD Opteron 2435.

1. Different idle loops (using no operation, pause, repetition, etc.) were tested to see
their effect on power consumption of both systems. It was observed that the Intel
Xeon has a loop stream detector, which disables the processor’s features such as fetch
and decode. On the other hand, the AMD processor has no hint to process these loops
efficiently; hence, it consumed more power than the Intel processor.

2. A processor consumes a different amount of power depending upon the instruction
(such as load, addition, multiplication, etc.) and the level in the memory hierarchy
which is accessed by the instruction.

a. For the Xeon, data throughput of all instructions from a particular memory
hierarchy level is almost the same, but there is a difference in their power con-
sumption. The ‘load’ operation consumes the lowest power compared with other
instructions, and this holds true for all memory hierarchy levels. The reason is
that the ‘load’ instruction just needs to load the content on the processor registers
whereas ‘add’ and ‘mul’ operations are more computationally demanding.

b. However, the AMD processor’s behavior is the opposite. When the ‘load’ op-
eration accesses the L1 cache, it achieves almost one-and-a-half times the data
throughput of other operations and hence also consumes more power. This
difference in resource utilization is due to the different microarchitecture of
AMD processors, where the ‘load’ instruction is handled by many floating-point
pipelines. Other instructions just use a single pipeline for their operations. More-
over, AMD processors have an exclusive cache level design, which requires
write-back when evicting data among different cache levels. Since Intel’s inclu-
sive cache design does not require this function, it consumes less power. Within
higher memory hierarchy levels (L2 or L3 or main memory), the AMD’s compu-
tation (‘add’ and ‘mul’) and data transfer operations (‘load’) deliver roughly the
same data throughput and consume roughly the same power.

3.3.6. Isolation of VE for Power Modeling and Measurement

Isolation of any VE from its hardware counterparts cannot be achieved completely [140];
thus, the assumption of measuring power consumption of an individual virtual entity irre-
spective of the hardware on which it is implemented is an illusion. The virtual infrastructure
is composed of several components at both hardware and software level, where the effect
of underlying hardware, OS and VNF technology can significantly impact the power con-
sumption. Hence, isolation as well as the modeling of power consumption for an individual
virtual component is difficult to obtain.

3.4. Fallacies
3.4.1. A Universal Power Model

We have suggested that the core challenge in modeling power consumption by VEs
lies in the number of dimensions of variability. This has been demonstrated throughout this
survey, where a number of generalizations have been addressed. In summary, the literature
shows that:

1. Host power consumption does not generally have a linear relationship with
processor utilization;

2. CPU-intensive workloads that repeatedly execute the same code skew power con-
sumption results;
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3. Network-intensive workloads are power- and time-consuming because they employ
emulations of network switches, but the root cause (emulation in the hypervisor
software switch) disappears with SR-IOV [141];

4. Host saturation must be taken into account in predicting VEs’ power consumption;
5. Processor utilization (an architectural attribute) is insufficient to predict host power

consumption and microarchitectural attributes, such as LLC misses, are necessary to
predict host power consumption even for the same level of processor utilization.

This list, while not exhaustive, amply illustrates that the several dimensions of vari-
ability are significant in the determination of VE power consumption. A model claiming
to determine power consumption as a function of fewer variables than the dimensions
we have pointed out must be accompanied by a scoping region that limits its use. While a
precise scope may be an unrealistic demand, it is essential that guidance be given about
the conditions of the use of the model. We now illustrate this point by using two examples
from the corpus.

Example #1: Khan [50] compares energy efficiency (hash/J) obtained by scheduling
process threads on additional cores, with that obtained by scheduling them on hardware
threads on active cores (through Intel Hyper-Threading). He shows that the former is
greater than the latter. In apparent contrast, Enokido and Takizawa [68] show that for
a given data transmission rate through the uplink of a software virtual switch, greater
energy efficiency (W/bps) is obtained by operating an additional hardware thread on an
active core (through Intel Hyper-Threading), than operating an otherwise idle core. An
important difference lies in the task’s processing “intensity”, i.e., the rate of the supply of
instructions. While Khan’s operations are tightly bound to the processor (cryptographic
hashing), Enokido’s and Takizawa’s operations are distributed over the processor and
network input/output. Without delving into detail, it is realistic to hypothesize that the
average instructions per second demanded are far lower in the networking application,
since the transmission of a large file (as is the case here) does not take place in one processing
burst. The operating time is divided between the processor and the media channel. In such
a scenario, the added capacity of the same-core hardware thread suffices.

Example #2: At the time of writing, the scope of validity (where the scope is a sub-
space of the seven-dimensional space) is typically only implicit. Notably, in [75], a “refined
model” is used as a means of the accurate prediction of power consumption by virtual
machines while running very specific benchmarks. It is also noteworthy that the authors
contemplate a type of onboarding process wherein “new” VM entrants to a cloud are
modelled as a prerequisite to their inclusion in the power-prediction system. Indeed, such
a process is already intrinsic to the management and orchestration of virtual network
functions. Just as the virtual deployment unit (VDU) nodes (in virtual network function
descriptors (VNFDs)) store VM properties describing computer system resource demands,
so can the descriptor template be extended to provide properties regarding power con-
sumption demands. This “onboarding” is necessary since the selected predictors and
modeling do not cover a sufficiently broad range of workload types, and a specific model
must be learnt online, i.e., on the fly.

On the other hand, we propose that a comprehensive power model for existing
implementations may be possible, under two conditions.

1. Every resource that consumes power must own a counter that registers its usage, or
lack thereof, during a specific clock cycle.

2. Usage of a specific resource during a specific clock cycle must consume a constant
amount of energy. This has the following corollaries:

a. Energy consumption by the specific resource is a linear function of the number
of clock cycles for which the resource is active;

b. Power consumption of a system can be expressed as a linear combination of the
total set of such resources;
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c. The amount of energy consumption by a specific resource during a specific
clock cycle must be independent of usage of other resources during any other
clock cycle.

4. Conclusions

We conclude by summarizing our contributions (Section 4.1) and suggest a frame-
work for future research into real-time, predictive models of power consumption by VEs
(Section 4.2).

4.1. Contributions

We have identified seven dimensions of variability (workload type; virtualization
agent; host resources and architecture; temperature; power attribution; co-hosted, concur-
rent VEs; and (clock) frequency of operation) and observed that the challenges tackled
have aligned themselves with these dimensions. This breadth has prompted us to em-
phasize the fallacy of the universal power model: no single power model can cover all
seven dimensions through the inclusion of variables and parameters. It is essential that
prospective users of any such power model be aware of the limits of its scope. On the other
hand, we have pointed out that the state-of-the-art includes adaptable modeling systems
that handle variability in more than one dimension. Moreover, at least limited variability
in two of the seven dimensions—workload type and concurrent operation of (multiple)
VEs—is commonly validated, i.e., whether the model is truly capable of predicting power
consumption under variability in workload type and the number of concurrent VEs.

PAD elicits trends in its proceedings through a sample of a corpus. In particular, the
following examples are among the most noteworthy (but not the only) saliencies.

1. The challenge category tackled most frequently is that of how to load the VE’s re-
sources and how to quantify and measure the load; disaggregating the predictors and
attributing measured power consumption to the individual VEs is the second most
frequently tackled.

2. The variety of approaches that tackle a (category of) challenge is positively correlated
to the frequency with which it is tackled.

3. Instrumentation of computing resources (e.g., instrumentation of microarchitectural
artifacts) is the most commonly adopted approach (towards developments), surpass-
ing instrumentation of the workload.

4. Resource-specific workloads (e.g., processor-specific) are the most commonly utilized,
surpassing workloads representative of real use (e.g., web applications).

5. In developments, the most commonly developed model type is that where the power
consumption (of the host or VE) is predicted in terms of workload characteristics;
power consumption as a linear function of computing resources is second.

6. At the other end of the frequency range of developments, machine-learnt models
comprise the second least frequent category of developed models, and adaptable,
non-linear VE models are also very infrequent.

The process of parsing works and aggregating their codes is, however, only the
principal ingredient in the overall progression towards the end goal: a set of themes that
suitably profile the works in an area of research. Indeed, these codes and their inter-
relationships have elicited several research gaps, pitfalls and a fallacy, as well as evidence
of the state-of-the-art and of research domains.

4.2. A Framework for Development of Real-Time, Predictive Power Models

Evolution of the research space on power consumption in virtualized environments
now suggests the following framework for the further development of power models:

1. Division of the problem into:

a. A modeling concern:

i. What components to include;
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ii. What workload(s) to consider;
iii. What state factors (temperature, frequency, performance and idle states) to

account for.

b. An attribution concern, i.e., how to attribute host power to VEs.

2. Division of the approach into:

a. Microarchitectural instrumentation, based on intimate knowledge of the mi-
croarchitecture and the memory system;

b. Granular attribution based on time-division multiplexing;
c. Model selection.

3. Development of parameterized models, subject to continuing (if not continuous)
optimization of the parameters under machine learning.
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PMD Poll Mode Driver
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QoS Quality of Service
RAM Random Access Memory
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SDN Software Defined Networking
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TCP Transmission Control Protocol
TOE TCP Offload Engine
TOU Time-Of-Use
TPC-W Transaction Processing Performance Council—Web
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vCPU Virtual CPU
VDU Virtual Deployment Unit
VE Virtual Entity
VM Virtual Machine
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Appendix A. Application of PAD to the Scope of Renewable Energy Use in Radio
Access Networks

In this appendix, we digress to elaborate on the application of PAD to a topical scope:
research into the use of renewable energy sources (RESs) in radio access networks (RANs).
Our purpose here is to shed light on the mechanics of the method within a context that
complements the principal context of this work.

Nine research units (RUs) [142–150] have been mined. The motivation driving this
research is presented first, followed by a tabulation of the P-, A- and D-node codes and a
categorization of the codes. We do not proceed to thematic analysis, as this sample is not
large enough to support it. Patterns are detected and presented as clusters (part of the PAD
method), but enunciation of a thematic analysis requires the confidence emanating from a
broader search through the corpus.

Appendix A.1. Motivation

A clear sense of motivation emerges: OPEX (energy cost) must be controlled and
greenhouse gas (GHG) emissions must be reduced. The Jevons paradox (alternatively
expressed in the Khazzoom–Brookes postulate) emerges again: the deployment density of
5G base stations (BSs) and 64/32-channel massive multiple-input multiple-output (MIMO)
antenna arrays drives “the power consumption of a 5G BS to be 2-3 times that of an
ordinary 4G BS” [144]. Other works are motivated by the need to control capital expen-
diture (CAPEX) [142,147,148] and understand how RES harvesters compare with conven-
tional hydrocarbon-fueled generators, therein seeking either to reduce CAPEX or to deter-
mine the true cost of wholly autonomous operation under the condition of power supply
from RES.

Motivation, therefore, may be tersely summarized as OPEX control, GHG emis-
sion control, CAPEX control and autonomous operation. Within Figure 1, motivation
may be located at the center of the circle, corresponding to the core challenge driving a
research area.

Appendix A.2. Tabulation and Clustering of P-, A-, and D-Node Codes

The tabulation below (Tables A1–A3) summarizes two rounds about the sample: a
first round of coding (code: “terse, dense representations of a verbose articulation of a
concept”, see [1]) and a second round wherein a first categorization (note the prefixes, for
example “RAN architecture”, “Radio path”, “Comparison”, etc.) took place. Figures A1–A3
illustrate how the nodes have been clustered. An aspect of PAD that bears emphasis here
is that the coding and clustering process is an iterative one: the final categorization only
emerges at the end of several cycles of refinement, comprising consolidation, observation,
disaggregation and re-aggregation as further similarities between the codes emerge. Hence,
the categories shown in Figures A1–A3 are by no means final, but they are an essential
transitory stage in the progression towards the final categorization.
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Appendix A.2.1. Table of P-Node Codes

Table A1. Challenges and representative challenge questions.

Problem # Problem Code

1 [142] How can power supply system parameters be harvested in a
convenient manner?

2 [142] How does CAPEX of diesel fuel generators compare with that of RES plant?

3 [143] How can the limitations of individual RES be overcome?

4 [144] Spatio-temporal distribution of light intensity and communication demand
misaligns energy supply and load.

5 [144] Disparate ownership of RES plant and automatic distribution network (ADN)
infrastructure leads to concerns with security and privacy.

6 [144] How can participation of communications service providers (CSPs) in renewable
energy (RE) harvesting be encouraged?

7 [144] How can real-time energy scheduling be improved to avoid loss of RE,
over-discharge of energy storage (ES) and balance between supply and demand?

8 [145] How well do machine learning (ML) prediction models based on past traffic and
RE harvesting support RE use and Quality of Service (QoS)?

9 [145]
Which long-term strategy of operation should be used over prediction intervals:
(a) turn off/on micro-BSs to match network demand OR (b) turn off/on
micro-BSs to match RE capacity?

10 [146] How can Time-Of-Use (TOU) electricity pricing, RE production and fairness of
allocation of throughput to users be integrated into a modeling scheme?

11 [147]
Which system of autonomous power supply, whether renewable or not,
optimizes one or more of the following objectives: net present cost (NPC), cost of
energy (COE) and GHG emissions?

12 [148] How can we exploit multiple RES to design a RAN that minimizes grid energy
consumption while serving at least 95% of users?

13 [149,150]
How can user association (UA) be exploited over a short timescale in a
hybrid-powered (RES + hydrocarbons) RAN to minimize grid
power consumption?

14 [150] How can traffic and weather forecasts be exploited over a long timescale to
minimize grid power consumption

Appendix A.2.2. Table of A-Node Codes

Table A2. Approaches.

Approach # Approach Code

1 [142] Use a wireless sensor network to measure parameters relevant to power supply.

2 [142] Systematic survey of vendors and consultation with base station operators.

3 [143] Broad comparison of research and industrial (technical specifications) output
concerning use of RES in powering BSs.

5 [144] Organize multiple 5G BSs carrying photovoltaic (PV) panels into an
energy-aggregation system architecture.

6 [144] Regulate the mid-term exchange of energy using contract theory.

7 [144] Regulate the short-term use of energy by a Lyapunov optimization.

8 [145] RAN architecture: a single service area served by one LTE-A macro-BS (MBS)
and six micro-BSs providing additional capacity in the service area’s hot spots.

9 [145] Energy system architecture: PV panels + energy storage (ES − batteries) +
power grid.
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Table A2. Cont.

Approach # Approach Code

10 [145] Traffic model: Traffic data provided by a large Italian mobile network
operator (MNO).

11 [145] RE production data estimated using PVWATT.

12 [145] QoS: percentage of lost traffic.

13 [146] RAN architecture: a single service area served by one LTE-A MBS and two
micro-BSs providing additional capacity in the service area’s hot spots.

14 [146]
Energy system architecture: MBS uses power grid, while one micro-BS is
supplied by the power grid and solar energy, and the other micro-BS is supplied
by the power grid and wind energy.

15 [146] Energy system economics: power-grid energy priced according to Time-Of-Use.

16 [146]
Game theory applied to balance opposing objectives of (a) minimization of
energy cost or energy consumption and (b) maximization of
user-throughput fairness.

17 [146] Alternative energy cost optimization approaches: (a) reduction by decreasing BS
energy consumption; (b) reduction through direct optimization of energy cost.

18 [146] Simulation through bespoke software.

19 [147] Energy system architecture: Alternative combinations: (a) PV + diesel generator
(DG) + ES (b) PV + ES (c) DG + ES (d) DG.

20 [147] Design, simulation and optimization, using HOMER; optimization objective is
minimization of NPC.

21 [147] Energy consumption model: power demand data provided by a Kuwaiti mobile
network operator (MNO).

22 [147]
Energy system component selection: where relevant, mono-crystalline silicon
(Mono-Si) is preferred to polycrystalline silicon (Poly-Si) and Lithium-Ion
batteries is preferred over other technologies.

23 [148] MILP formulation.

24 [148]
Traffic model: Traffic data provided by a mobile network operator (MNO), both
voice and data, for a cell of 0.3 km2, showing number of simultaneous active
users at any time during a day.

25 [148] RAN architecture: eight service areas, each served by one LTE-A MBS and
four micro-BSs.

26 [148] BS power consumption model: linear power model (developed in earlier work),
with hourly load factor reflecting days of the week and of the weekend.

27 [148] RE production data (hourly) obtained from Italian RES operator’s
(Terna) website.

28 [148] Radio path: 3D map of suburban area.

29 [148] Genetic algorithm.

30 [149]
RAN architecture: a single service area served by one 5G MBS and twenty-four
small cell base stations (SCBSs), with microwave backhaul from MBS to core and
SCBS to MBS.

31 [149] Energy system architecture: MBS uses power grid, while SCBSs are supplied
by RESs.

32 [149] Random-uniform spatial distribution of low-data-rate and high-data-rate
users, respectively.

33 [149] Green heuristic: prioritize green SCBSs in the UA process.

34 [150] RAN architecture: a single service area served by one LTE MBS and
thirty-six/sixteen/four small cell base stations (SCBSs).
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Table A2. Cont.

Approach # Approach Code

35 [150] Energy system architecture: MBS uses power grid, while SCBSs are supplied by
wind turbines without ES.

36 [150] Energy system architecture: MBS uses power grid, while SCBSs are supplied by
PV with ES.

37 [150] MILP formulation of problem of UA with minimal grid power consumption.

38 [150]
Short timescale control of UA through three alternative policies:
green-SCBS-preferred vs minimization of energy consumption vs
best-signal-level + transmission rate (greedy).

39 [150] Long timescale control through use of model predictive control (MPC) based on
traffic flow and weather forecast.

40 [150]
RE generation model: Weibull probability distribution to characterize wind
speed, with average wind speed obtained from a two-year study of mean wind
speed profiles in the Moscow air basin.

41 [150] RE generation model: Solar radiation data from the Colombian Institute of
Hydrology, Meteorology and Environmental Studies (IDEAM).

42 [150] BS power consumption model: from ICT-EARTH (linear with traffic load
specified for time slot t).

43 [150]
Traffic model: Short timescale, inhomogeneous Poisson point process (without
temporal variability of traffic) and random-uniform spatial distribution of users
in coverage area.

44 [150] Traffic model: Traffic data provided by a mobile network operator (MNO).

45 [149] Radio path: path loss calculation using rural microcell and data rate obtained
using 5G R16.

46 [149,150] Simulation, using Matlab.

47 [146] RE generation model: solar energy production/15 minutes expressed using
Gaussian distribution; wind-energy production expressed as constant.

Appendix A.2.3. Table of D-Node Codes

Table A3. Developments.

Development # Development Code

1 [142] Enablement of historical analysis of sensor data.

2 [142] Diesel consumption model for BSs powered by a DG.

3 [142] Comparison: energy efficiency of BSs powered by a DG with those powered
by a RES

4 [142] Capacity planning of RES power systems for autonomous operation.

5 [142] CAPEX: PV system < DG system < PV+wind turbine system.

6 [143] OPEX and energy efficiency of BS in rural/remote areas is significantly
improved by using RES.

7 [143] Autonomy improved, possibly indefinitely, using several RESs.

8 [144]
Optimal, long timescale contract between energy aggregator and CSP, based
on availability, during a given time interval of ES discharge capacity at the
CSP’s BS site

9 [144] Lyapunov optimization achieving short timescale objective of stable energy
levels in ESs and full absorption of energy harvested from PV panels.

10 [144] Case study, showing near-complete (99.87%) absorption of PV energy.
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Table A3. Cont.

Development # Development Code

11 [145] ML algorithms: correct prediction of traffic only important around utilization
threshold that activates/deactivates micro-BS sleep mode.

12 [145]
Comparison: ML algorithms: simple Block Linear Regression performs
trade-off between energy consumption and QoS as well as more complex
ones such as 24- and 48-Artificial-Neural-Network (ANN).

13 [145]
Energy consumption control strategy: turn micro-BSs on or off according to
availability of RE (the sum of the predicted harvest and the stored) has less
dependence on ML algorithm than according to demand.

14 [146] Energy-cost model, integrating TOU grid electricity cost, solar energy and
wind energy.

15 [146]

Comparison: algorithms: algorithm minimizing energy cost performs better
than one minimizing energy consumption in the overall objective of
optimizing energy cost and energy price and energy consumption and
fairness of allocation of throughput to users.

16 [147]

Comparison: extensive characterization of the relative merits of four
electricity generation systems: (a) PV + ES (b) PV + DG + ES (c) DG + ES (d)
DG, in five dimensions: (i) optimal dispatch strategy (ii) NPC (iii) COE (iv)
GHG (v) days of autonomy.

17 [148] Genetic algorithm: minimization of energy cost and wastage in a
multiple-RES system.

18 [148] RES mix recommendation for a specific service area.

19 [149] Application of green algorithm in 5G HetNet: for reactive, short timescale
control, consisting of UA with a green (SC)BS.

20 [149] Comparison: Green algorithm vs best-signal strength algorithm: UA with
grid-powered MBS is reduced almost by half.

21 [149] Comparison: Green algorithm vs best-signal strength algorithm: Users
denied service significantly reduced.

22 [149]
Comparison: Green algorithm vs best-signal strength algorithm: Reduction
in MBS energy consumption is limited by the need to backhaul SCBS traffic
through the MBS.

23 [149]
Comparison: Green algorithm vs best-signal strength algorithm: Cell site’s
energy efficiency is improved (MBS’s energy efficiency is worsened but
SCBSs’ improvement over-compensates).

24 [150] Green algorithm: for reactive, short timescale control of UA with a
green (SC)BS.

25 [150]

Comparison: Green algorithm vs on-grid only operation: Energy
consumption reduced, and reduction improves markedly when growing
from four RE-powered SCBSs (11.1%) to sixteen (26.6%), then to
thirty-six (33.7%).

26 [150]
Comparison: Green algorithm vs best-signal-level policy vs best-signal-level
+ transmission-rate (greedy) heuristic: Energy consumption: significantly
better than best-signal-level policy, slightly better than greedy heuristic.

27 [150]
Comparison: Green algorithm vs discrete (MILP) optimizer vs
best-signal-level + transmission-rate (greedy) heuristic: Energy efficiency:
better than MILP optimizer but roughly same as greedy heuristic.

28 [150] Infrastructure dimensioning: Green algorithm’s reduction of energy
consumption does not decrease in direct proportion to number of SCBSs.

29 [150]
Comparison: Green algorithm vs discrete (MILP) optimizer vs
best-signal-level policy: Throughput: slightly worse than best-signal-level,
slightly better than discrete (MILP) optimizer.



Sensors 2023, 23, 255 59 of 69

Table A3. Cont.

Development # Development Code

30 [150] MPC for predictive, long timescale control, using 0- (reactive), 1- and 5-h
prediction horizons.

31 [150] Comparison: MPC vs on-grid only operation: Energy consumption: reduced
by 13.1%.

32 [150] Infrastructure dimensioning: optimal storage capacity can be determined
and enables savings up to 22% with respect to on-grid only operation.
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Figure A1. A first categorization of the problem nodes. P1: 8 [145], 9 [145], 10 [146], 11 [147], 14 [150];
P2 3 [143], 4 [144], 12 [148]; P3 5 [144], 6 [144]; P4 7 [144], 13 [149,150]. Unclustered: 1 [142], 2 [142].
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A1. FORMAL METHODS

A2. TRAFFIC MODEL

A3. RAN ARCHITECTURE

A4. ENERGY SYSTEM 
ARCHITECTURE
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Figure A2. (a) A first categorization of the approach nodes. (b) A first categorization of the ap-
proach nodes. A1: 6 [144], 7 [144], 16 [146], 17 [146], 23 [148], 26 [148], 29 [148], 33 [149], 37 [150], 38 
[150], 39 [150]; A2: 10 [145], 24 [148], 32 [149], 43 [150], 44 [150]; A3: 8 [145], 13 [146], 25 [148], 30 
[149], 34 [150]; A4: 5 [144], 9 [145], 14 [146], 19 [147], 31 [149], 35 [150], 36 [150]. A5 11 [145], 27 
[146], 40 [150], 41 [150], 47 [146]; A6 18 [146], 20 [147], 46 [149,150]; A7 2 [142], 3 [143]; A8 
21 [147], 42 [150]; A9 28 [148], 29 [149]. Unclustered: 1 [142], 12 [145], 15 [146], 22 [147]. 

Figure A2. (a) A first categorization of the approach nodes. (b) A first categorization of the approach
nodes. A1: 6 [144], 7 [144], 16 [146], 17 [146], 23 [148], 26 [148], 29 [148], 33 [149], 37 [150], 38 [150],
39 [150]; A2: 10 [145], 24 [148], 32 [149], 43 [150], 44 [150]; A3: 8 [145], 13 [146], 25 [148], 30 [149],
34 [150]; A4: 5 [144], 9 [145], 14 [146], 19 [147], 31 [149], 35 [150], 36 [150]. A5 11 [145], 27 [146],
40 [150], 41 [150], 47 [146]; A6 18 [146], 20 [147], 46 [149,150]; A7 2 [142], 3 [143]; A8 21 [147], 42 [150];
A9 28 [148], 29 [149]. Unclustered: 1 [142], 12 [145], 15 [146], 22 [147].
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Figure A3. (a) A first categorization of the development nodes. (b) A first categorization of the de-
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