Compact GC-QEPAS for On-Site Analysis of Chemical Threats
Abstract
:1. Introduction
2. Sensor Description
2.1. Sampling and Concentration Unit
2.2. MEMS Compact-GC
2.3. QEPAS Module
2.3.1. QEPAS QCL Source
2.3.2. QEPAS Detector
2.4. Electronics, Fluidics, Thermal Control, and Power Supply
3. Results and Discussion
3.1. Mix of Acetone and DPGME
3.2. Mix of Gasoline and DMMP
3.3. Drug Precursors: BMK
3.4. Mix of Toxic Agent Simulants and Drug Precursors
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.risen-h2020.eu/ (accessed on 8 January 2022).
- Available online: https://cordis.europa.eu/project/id/700264/eu (accessed on 5 September 2022).
- Zampolli, S.; Mengali, S.; Liberatore, N.; Elmi, I.; Masini, L.; Sanmartin, M.; Viola, R. A MEMS-Enabled Deployable Trace Chemical Sensor Based on Fast Gas-Chromatography and Quartz Enhanced Photoacoustic Spectroscopy. Sensors 2020, 20, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://markes.com/content-hub/brochures/thermal-desorption-tubes-brochure (accessed on 13 November 2022).
- Zampolli, S.; Elmi, I.; Cardinali, G.C.; Masini, L.; Bonafè, F.; Zardi, F. Compact-GC platform: A flexible system integration strategy for a completely microsystems-based gas-chromatograph. Sens. Actuators B Chem. 2020, 305, 127444. [Google Scholar] [CrossRef]
- Kosterev, A.A.; Bakhirkin, Y.A.; Curl, R.F.; Tittel, F.K. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27, 1902–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewicki, R.; Wysocki, G.; Kosterev, A.A.; Tittel, F.K. QEPAS based detection of broad-band absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 µm. Opt. Express 2007, 15, 7357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosterev, A.A.; Dong, L.; Thomazy, D.; Tittel, F.K.; Overby, S. QEPAS for chemical analysis of multi-component gas mixtures. Appl. Phys. B 2010, 101, 649–659. [Google Scholar] [CrossRef]
- Patimisco, P.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy: A review. Sensors 2014, 14, 6165–6206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y. Review of Recent Advances in QEPAS-Based Trace Gas Sensing. Appl. Sci. 2018, 8, 1822. [Google Scholar] [CrossRef] [Green Version]
- Cagliero, C.; Galli, M.; Galli, S.; Elmi, I.; Belluce, M.; Zampolli, S.; Sgorbin, B.; Rubiolo, P.; Bicchi, C. Conventional and enantioselective GC with microfabricated planar columns for analysis of real-world samples of plant volatile fraction. J. Chromatogr. 2016, 1429, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Winkowski, M.; Stacewicz, T. Low noise, open-source QEPAS system with instrumentation amplifier. Sci. Rep. 2019, 9, 1838. [Google Scholar] [CrossRef] [PubMed]
Sorbent materials | Carbograph 2TD and Carbograph 5TD |
Sampling time | 10–60 s |
Sampling rate | 800–1000 mL/min |
Max desorption temperature | Up to 300 °C |
Heating rate for desorption | 5 °C/s |
MEMS Pre-Concentrator | |
---|---|
Sorbent Materials | Carbograph 2TD and 5TD |
Sampling Time | 10–60 s |
Sampling Rate | 200–400 mL/min |
Max Temperature | Up to 300 °C |
Heating Rate | 20 °C/s |
MEMS Injector | |
Temperature | 120–140 °C |
Injection time | 20–60 s |
MEMS Column | |
Stationary phase packing | Carbograph 1, coated |
Start Temperature | 60–80 °C |
Hold Time at start T | 5–30 s |
Heating Rate | 120–140 °C/min |
Max Temperature | 240–270 °C |
Hold time at max T | 1–2 min |
ADM | |
---|---|
QTF | Commercial OEM |
Micro-resonator length | 4.4 mm |
Micro-resonator I.D. | 0.9 mm |
Temperature | 80–120 °C |
Internal Volume | ~5 µL |
EC-QCL | |
Wavelength Range | 8–10 µm |
Amplitude Modulation | 32,760−32,768 Hz |
Pulse Duration | 200 ns |
Wavelength scan speed | 0.13 cm−1/ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liberatore, N.; Viola, R.; Mengali, S.; Masini, L.; Zardi, F.; Elmi, I.; Zampolli, S. Compact GC-QEPAS for On-Site Analysis of Chemical Threats. Sensors 2023, 23, 270. https://doi.org/10.3390/s23010270
Liberatore N, Viola R, Mengali S, Masini L, Zardi F, Elmi I, Zampolli S. Compact GC-QEPAS for On-Site Analysis of Chemical Threats. Sensors. 2023; 23(1):270. https://doi.org/10.3390/s23010270
Chicago/Turabian StyleLiberatore, Nicola, Roberto Viola, Sandro Mengali, Luca Masini, Federico Zardi, Ivan Elmi, and Stefano Zampolli. 2023. "Compact GC-QEPAS for On-Site Analysis of Chemical Threats" Sensors 23, no. 1: 270. https://doi.org/10.3390/s23010270
APA StyleLiberatore, N., Viola, R., Mengali, S., Masini, L., Zardi, F., Elmi, I., & Zampolli, S. (2023). Compact GC-QEPAS for On-Site Analysis of Chemical Threats. Sensors, 23(1), 270. https://doi.org/10.3390/s23010270