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Abstract: The failure of insulators may seriously threaten the safe operation of the power system,
where the state detection of high-voltage insulators is a must for the normal and safe operation of
the power system. Based on the data of insulators in aerial images, this work explored an enhanced
particle swarm algorithm to optimize the parameters of the support vector machine. A support
vector machine model was therefore established for the identification of the normal and defective
states of the insulators. This methodology works with the structure minimization principle of SVM
and the characteristics of particle swarm fast optimization. First, the aerial insulator image was
segmented as a target by way of the seed region growth based on double-layer cascade morphological
improvements, and then, HOG features plus GLCM features were extracted as sample data. Finally,
an ameliorated PSO-SVM classifier was designed to realize insulator state identification. Comparisons
were made between PSO-SVM and conventional machine learning algorithms, SVM and Random
Forest, and an optimization algorithm, Gray Wolf Optimization Support Vector Machine (GWO-SVM),
and advanced neural network CNN. The experimental results showed that the performance of the
algorithm proposed in this paper touched the top level, where the recognition accuracy rate was
92.11%, the precision rate 90%, the recall rate 94.74%, and the F1-score 92.31%.

Keywords: insulator; state identification; particle swarm optimization; support vector machine

1. Introduction

In the continuous expansion of power grid construction scale, there is a need to take
more care of the safety and reliability of transmission lines, which is directly associated with
the stability of power transmission. As one of the important components in transmission
lines, insulators are of various types and quite often work in the wild for a long period,
being vulnerable to environmental pollution, lightning strikes and flashovers. Situations
such as string drop and flashover indicate that deteriorated insulators may be found from
time to time. Failure of the insulators would cause the power system to fail to operate
normally, and even cause grid paralysis in severe cases, bringing great hidden dangers to
the safe power supply of the transmission line.

In the past few decades, the detection of insulator faults relies on manual inspection, at
regular intervals or yearly inspection on deteriorating insulators. Although faulty insulators
can be detected and replaced in time, the work intensity is high, and the efficiency is low.
This is complicated with the detection location at high altitude, which somehow affects the
personal safety of the detection personnel, as shown in Figure 1a.

In recent years, IT technology has been widely popularized, making it possible to
have unmanned aerial vehicle (UAV) [1–4] as a core means of power transmission line
inspection. This is a kind of inspection methodology highlighted as accurate, safe and
efficient, as shown in Figure 1b. The inspectors may shoot and store a large amount of
image and video data through the camera mounted on the drone, including digital image
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information, infrared image information, etc. Owing to this, the application of digital image
technology has contributed a lot in the power safety system. These pictures processed by
image technology may perform state detection on the basis of automatic positioning of
insulators and diagnose insulator faults in a timely and effective manner.
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Figure 1. Insulator inspection. (a) Manual inspection. (b) UAV inspection.

The state detection of insulators is taken as one of the important links to ensure
the normal operation of transmission lines. Due to the special working environment of
insulators and the complex background of aerial photographs, accurate identification and
segmentation of target insulators and background images can be the primary prerequisite
for detecting their states. When segmenting insulators, Ke et al. [5] designed an image
segmentation method based on weighted variable FCM, following pixel differences to
separate the insulators and transmission lines. Wu et al. [6] Proposed a global minimum
frame (GMAC) for insulator segmentation using texture features. Yu et al. [7] set their focus
on its shape and texture characteristics; then, the segmentation of insulators was achieved
by alternating texture and shape driving curves. Yin et al. [8] worked out a new edge
detection operator based on double-parity morphological gradients to segment infrared
insulator images, and the average success rates of segmenting insulators with voltage levels
of 110 and 220 KV reached 98.3% and 96.4%, respectively. As to the same infrared image,
Wang et al. [9] used Mask R-CNN to achieve insulator segmentation. Cui et al. [10] extracted
the features of different levels of insulators and added the ED network to make sure that
the feature fusion module works better, thereby realizing the segmentation of insulators.

At present, neural networks are extensively applied in the fault identification and
classification of insulators. Prates et al. [11] elaborated a convolutional neural network
(CNN) to identify defects in insulators, and the defect detection accuracy was as good as
85.48%. Guo et al. [12] started with a deep convolutional neural network to extract features
and then turned to an enhanced AlexNet model and SVM to detect and classify transmission
line anomalies. Jiang et al. [13] constructed a multi-layer perception architecture for fault
detection on insulators missing a cap, obtaining an accuracy rate of 91.23. There are still
many researchers that have made efforts in detecting faults of insulators by improving
Faster RCNN [14–18]. Han et al. [19] and Liu et al. [20] made different improvements on
the yolo network to achieve fault detection of insulators. Yu et al. [21] extracted features
that were fused with five CNN networks, followed by combining with RF to detect foreign
objects in transmission lines; additionally, semi-protocol deep neural network [22], echo
state network [23], Kear model [24], and fully convolutional neural network (u-net) [25,26]
have all brought out some impressive outputs in insulator defect detection.

Despite that positive feedback from various studies based on deep learning and long-
term training still needs a large amount of data, for small data samples, machine learning
is believed to have a better outcome. For instance, in the identification of cable faults,
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Wang et al. [27] proposed to use an improved particle swarm optimization support vector
machine (IPSO-SVM) algorithm with a 91.9% identification accuracy. Pernebayeva et al. [28]
classified the surface images of insulators in different environments and compared them
with neural networks to select reasonable features. The conventional machine learning
algorithm presented higher classification accuracy. Machine learning methods were also
very successful in the recognition of handwritten characters. Kundu et al. [29] realized
the recognition of handwritten keywords by extracting angle features through Hough
transform. Kang et al. [30] proposed an unsupervised redundant co-clustering algorithm
(FCMSC) based on multi-center fuzzy c-means clustering (FCM) and spectral clustering
(SC) in the detection of mildew distribution of corn kernels, with an accuracy of 93.47%.
Corso et al. [31] investigated the application of machine vision features and classified the
degree of contamination of insulators based on k-nearest neighbors (k-NN) with an average
accuracy of over 82%. Yao et al. [32] explored the classification of insulation defects in
gas-insulated switchgear and then operated SVM to identify the classification, gaining
its accuracy rate of 93.75%. Sun et al. [33] applied SVM to abnormal conductive faults in
conductive copper rods recognition, bringing the accuracy rate up to 90%.

In insulator defect identification research, SVM is one of the most commonly used
methods for small-sample insulator datasets. Murthy et al. [34] extracted the features
of insulators by means of wavelet transform and then used SVM to identify the state of
insulators. Reddy et al. [35] obtained the features of insulators with the help of discrete
orthogonal transform (DOST), allowing SVM to identify insulators. Yan et al. [36] first
fused HOG and LBP features after PCA dimensionality reduction and then counted on
SVM to detect and classify insulators. Sun et al. [37] employed the EFA method to reduce
the factor variables of insulator pollution, taking the simplified factor variables as new
input variables, and the LSSVM model was established to predict the pollution degree
of insulators. Ma et al. [38] introduced the gray level co-occurrence matrix and Tamura
features that were applied in the SVM classifier to identify the discharge degree of pollution
flashover insulators, getting the classification accuracy as high as 90.6%.

SVM application can be found in extensive research fields. Scholars have made various
improvements on the conventional SVM classifier, so that the corresponding research has
achieved good results. The SVM research in different fields is shown in Table 1.

As for the defect detection research of insulators, there are few representative and
public datasets, and the background of aerial insulator images appears to be very complex.
For conventional machine learning, the segmentation target insulator image must be
identified first, which is relatively difficult. Third, compared with aerial images, the
shedding defects of the insulator strings are too small, and it is difficult to accurately extract
and detect the modified features. In this paper, targeting at a few aerial insulator pictures,
an enhanced particle swarm algorithm (PSO) is proposed to optimize the SVM to obtain
the training model and identify and classify the insulator state. The contributions of this
work to the state detection of insulators in high-voltage transmission lines are summarized
as follows:

(1) In the segmentation of insulator images, the segmentation of insulators under com-
plex backgrounds was accomplished by introducing a double-layer cascaded morphological
structure into the conventional seed region growing algorithm.

(2) These features of HOG and GLCM were extracted and fused each other. The fused
features were input into the boosted PSO-SVM training model to successfully develop a
novel method for insulator fault identification and classification. This method enforced
the generalization performance of SVM and may be applied to the field of high-voltage
transmission lines.

(3) As to small data aerial insulator images, the proposed model, e.g., the boosted
PSO-SVM model, showed impressive accuracy when compared with deep learning models
such as CNN and BP, as well as other conventional machine learning algorithms such as
SVM and Random Forest.
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Table 1. Literature summary of SVM studies.

Literature
(Year) Author Research Object Research Methods Experimental Results

[39]
(2016) Zhao et al.

Image recognition of infrared
insulators with complex

backgrounds

Binary feature pools represent insulator
shape features, which are identified

under SVM.
Accuracy: 89.1026%

[40]
(2017) Zhao et al. Insulator Pipe Inspection

An advanced discriminative
convolutional neural network (CNN)

extracted the features of the insulators
and trained an SVM for classification.

Accuracy rate: 93%

[41]
(2019) Wang et al.

Classifications of Welding
Quality of 100

Resistance Spots

Feature extraction in time domain,
frequency domain and wavelet domain
were performed on the detected signal,

and a particle swarm optimization
support vector machine (PSO-SVM)

classifier was constructed.

Accuracy rate: 95%

[42]
(2020) Wang et al.

Diagnosis of insulation
defects in OIP bushings

(defects such as
aging, moisture)

The cuckoo search (CS) algorithm
optimized the parameters of the

multi-class LS-SVM, used the frequency
domain dielectric spectroscopy (FDS)

method to obtain the data features, and
built the multi-class LS-SVM model.

Accuracy rate: 96.25%

[43]
(2022) Cho et al.

Tomato maturity
classification in hydroponic
greenhouses (green, broken,

turned, pink, light red
and red)

PCA processed the tomato data and
allowed a support vector machine (SVC)

to train the model.

Accuracy rate: 75%
F1 score: 86%.

[44]
(2020) Zhang et al. Identification of GIS fault

type in insulation fault

The energy entropy features of partial
discharge wavelet packets of

gas-insulated switchgear (GIS) on
high-voltage guide rods are extracted

for fault identification under SVM.

Accuracy: 98.125%

[45]
(2020) Van et al. Bearing Fault Diagnosis

The Max-Relevance and
Min-Redundancy (mRMR) method was

used to establish feature subsets, and
the particle swarm optimization least

square wavelet support vector machine
(PSO-LSWSVM) classifier

was constructed.

Accuracy: 95.33%

[46]
(2022) Chen et al. Centrifugal Pump

Troubleshooting

Continuous wavelet transform (CWT)
was performed to obtain data, and
parallel factor analysis (PARAFAC)

method was employed to extract
features for training the

IPSO-SVM model.

Correct rate: 100%

[47]
(2022) Li et al. ECG signal recognition

Unscented Kalman filter denoising was
combined with wavelet localization
method to detect feature points and

compose feature data for training
IPSO-SVM model.

Average accuracy:
95.17%

[48]
(2022) Moon et al.

Identification of single target
vapors of NO2, HCHO and

NH3 and their mixtures

SVM classifier trained with artificial
steam database.

Recognition rate:
95.24%

[49]
(2022) Li et al. Irrigation level classification

of sugarcane

Five spectral features highly correlated
with irrigation level were used as

feature input to construct SVM classifier.
Accuracy rate: 80.6%
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The structure of the rest of this paper is organized as follows: Section 2 presents the
overall architecture of insulator state detection. Section 3 describes the specific process
of insulator fault diagnosis. Section 4 reveals how experiments and results analysis were
performed. Finally, Section 5 gives the conclusion.

2. Research Methods

In this section, the framework and related algorithm theory for the state detection of
transmission line insulators are presented. The overall framework of this paper is shown
in Figure 2. Due to the complex background of aerial insulator images, the first step is
to separate the insulator image and the background image. As proposed in this paper,
the seed region growing algorithm is improved to effectively segment the insulator, then
extract the features of the insulator image, use the feature data to train the particle swarm
parameters to optimize the support vector (PSO-SVM) classifier, and finally the trained
PSO-SVM classifier may accurately complete the state detection of insulators.
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2.1. Region Algorithm Segmentation Based on Morphological Improvements

The aerial insulator images often come with a complex background. To ensure the
effectiveness of feature extraction, it is necessary to separate the background and retain
only the insulator region. The insulator image had obvious regional characteristics, and the
seed region growing algorithm was therefore selected to realize the segmentation of the
insulator image. Note that the direct use of this algorithm may retain the large or small
background that is similar to the gray value of the insulator region. To tackle this issue,
this work adopted a novel algorithm for seed region segmentation based on morphological
improvements, and its overall block diagram is shown in Figure 3.
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Figure 3. Region segmentation algorithm based on morphological improvements.

The insulator segmentation algorithm proposed in this work firstly reduced the di-
mension of the original image, selected the appropriate color component model, then
performed morphological processing on it, and finally used the seed region growth algo-
rithm to segment to achieve effective segmentation of the insulator region. The specific
process is shown in Figure 4.
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Figure 4. Flow chart of seed region segmentation based on morphological improvement.

The aerial insulator images were colored and stored in RGB. Since most of the insu-
lators in this work were red relative to the background and displayed high saturation,
the color in the HSI space was more conducive to image recognition than that in this
work. Then, the insulator image was converted from the RGB model to HSI color model
for processing purposes. By observing the HSI component image, it was found that the
insulator area in the S component image was prominent. Subsequently, the S component of
the insulator was extracted for image segmentation to ensure the segmentation effect while
reducing the image dimension and improving the operation speed.
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Morphological processing is a series of image processing operations based on shape,
which produces an output image by applying structural elements to the input image.
The most basic morphological processing is the erosion and dilation operations, and the
expressions are as follows:

XΘS = {x|S[x] ⊆ X} (1)

X⊕ S = {x|S[x] ∩ X 6= Φ} (2)

Here, X is the target image; S is the structural element; x indicates the current position.
The corrosion operation is mainly used to extract the backbone information of the insulator,
and the expansion is used to fill in the edge information of the insulator.

This work was processed with a two-layer cascade morphological structure, which
cascaded two structural elements with different structures and different sizes to process
images. This promoted the segmentation effect of the conventional seed region growing
algorithm: first, to choose a 4 × 4 square structure to perform the corrosion operation on
the S-component image, and then to perform the expansion operation on the etched image
with a 3 × 3 circular structure to obtain the double-layer cascaded morphological structure.
Then, the seed region growing method is used to segment the image.

2.2. Feature Extraction

In the computer vision-based insulator identification method, the insulator features
refer to those including the insulator image. Features are used to distinguish the states
of insulators, mainly including Histogram of Oriented Gradients (HOG) and Gray Level
Co-occurrence Matrix (GLCM). These are not newly proposed features, which are present
in many fields. In this work, advanced features were mainly used in the identification and
classification of insulator states, aiming to improve the accuracy of the classifier.

2.2.1. HOG Feature Extraction

HOG is a local region-based feature descriptor. In past studies, HOG always had
a place in many recognitions, such as the recognition and classification of ships and
vessels [50], human detection [51], face recognition [52], and note recognition [53]. The
HOG feature refers to the use of the gradient information of the local area to represent the
edge features of the object, which may well describe the edge features of the insulator. How
the insulator HOG feature was extracted is shown in Figure 5.
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The formula for calculating the gradient size and direction of an image is as follows:

Gx(x, y) = H(x + 1, y)− H(x− 1, y) (3)

Gy(x, y) = H(x, y + 1)− H(x, y− 1) (4)

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2 (5)

α(x, y) = arctan
[
Gy(x, y)/Gx(x, y)

]
(6)

where G(x, y), Gx(x, y), Gy(x, y), and H(x, y) are the gradient value, horizontal gradi-
ent, vertical gradient and pixel value of the current pixel, respectively, and α(x, y) is the
gradient direction.
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2.2.2. GLCM Feature Extraction

GLCM described the texture features of objects by means of five statistics, including
energy, entropy, moment of inertia, correlation, and local stationarity. The grayscale co-
occurrence matrix indicated the joint frequency distribution of two grayscale pixels with a
distance of (∆x, ∆y) in the image, and it can reflect the overall information of the image
grayscale in various directions, adjacent intervals, and amplitude changes.

Normalizing the grayscale matrix:

P(i, j, d, θ) =
P(i, j)

∑i=0 ∑j=0 p(i, j)
(7)

In the formula, P(i, j) indicates how many adjacent paired points there were in the
image gray-level of i and j. θ means four directional values of 0◦, 45◦, 90◦, and 135◦.
The GLCM characteristics of the insulator were obtained by calculating the values of five
statistics in four different directions and offsets and by taking their mean and variance.

2.3. PSO-SVM
2.3.1. Support Vector Machine Algorithm

Support Vector Machine (SVM) is an algorithm that can intelligently classify data
based on supervised learning, providing better solutions to the problems of small samples.
The main idea of SVM is to find an optimal hyperplane that maximizes the distance between
two different classes of data points, as shown in Figure 6.
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In two-dimensional space, a data sample set is (xi, yi), i = 1, 2, . . . , l, where the input
vector xi ∈ Rn, yi ∈ [1,−1] is the output category and is the number of samples. When the
data are linearly separable, there are: yi(w · xi + b) ≥ 1 i = 1, 2, . . . , l; now, the optimization
problem of SVM is transformed into:{

min 1
2‖w‖

2

s.t. yi(w · xi + b) ≥ 1
(8)

where w is the weight vector of the hyperplane; b is the bias term.
When the data samples are linearly inseparable, slack variables εi ≥ 0 and penalty

parameters C need to be introduced on the basis of the above formula to construct the
optimal classification plane. Thus, the optimization problem is transformed into: min 1

2‖w‖
2 + C

l
∑

i=1
εi

s.t. yi(w · xi + b) ≥ 1− εi

(9)
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To solve the optimization problem, the Lagrangian function may be introduced and
then transformed into the corresponding dual problem. The Laplace function is expressed
as follows:

L(w, b, εi, α, β) =
1
2
‖w‖2 + C

l

∑
i=1

εi +
l

∑
i=1

αi[1− εi − yi(wxi + b)]−
l

∑
i=1

βiεi (10)

In the above formula, αi and βi are Lagrange multipliers, and αi ≥ 0, βi ≥ 0. The
optimization problem is changed to the value of w, b when the Lagrangian function obtains
the minimum value; thus, the following formula can be obtained by derivation of w, b, εi in
the Lagrangian function: 

w = ∑l
i=1 αiyixi

∑l
i=1 αiyi = 0

C = αi + βi

(11)

Putting the above formula into the Lagrangian function expression, the following
expression can be obtained by simplification:

L(w, b, εi, α, β) = −1
2

l

∑
i=1

l

∑
j=1

αiαjyiyjxixj +
l

∑
i=1

αi (12)

At this point, the Lagrangian function can be converted into a dual problem, that is, to
maximize the above formula. The constraints of the dual problem are:{

∑l
i=1 αiβi = 0

0 ≤ αi ≤ C
(13)

At this point, according to the combination of the KKT conditions and the existing
conditions, we can obtain: 

w =
l

∑
i=1

αiyixi

b = yi − xj ·
l

∑
i=1

αiyixi

(14)

The values of w and b are obtained, and the optimal hyperplane decision function is:

f (xi) = sgn(w · xi + b)

= sgn(
l

∑
i=1

αiyi(xi · x) + b)
(15)

Support Vector Machines usually solve the case where the data samples are separable,
but things are different when faced with the problem of nonlinear data samples. Here, it
is necessary to convert the low-dimensional space into a high-dimensional feature space
through a nonlinear transformation ϕ into a linear problem. Of course, in the process of
spatial transformation, the problem of data dimensionality disaster requires the introduc-
tion of a kernel function. As long as the kernel function satisfies the Mercer condition
k(xi, x) = (ϕ(xi) · ϕ(x)), the nonlinear decision function will become:

f (xi) = sgn(
l

∑
i=1

αiyiK(xi, x) + b) (16)

2.3.2. Improved PSO Algorithm

As one of the common optimization algorithms of particle swarm, proposed by
Kennedy and Eberhart in 1995, it works by simulating the foraging behavior of birds
to achieve the group optimization. Reference [54] describes the PSO algorithm in detail.
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During the optimization process, the velocity and position of the updated particles are
as follows:

v = w · v + c1r1(pbest − p) + c2r2(gbest − p) (17)

p = p + β · v (18)

where gbest: global optimal solution; pbest: individual optimal solution; p is the current
position of the particle; v is the velocity of the particle; β is the constraint factor; c1 and
c2 are two positive numbers, respectively, called acceleration factors; r1 and r2 are two
independent random numbers between values [0, 1]; w is the inertia weight.

In practical applications, PSOs tend to fall into local extreme points. To deal with
such problems, the inertia weight was improved by absorbing the control idea of adaptive
adjustment. Meanwhile, the current number of iterations and the number of populations
during the algorithm update iteration were also taken into account with the formula of
inertia weight w as follows:

w = (wmax − wmin)×
(maxgen× sizepop− q× p)

maxgen× sizepop
+ wmin (19)

where wmax represents the maximum inertia weight value, wmin represents the minimum
inertia weight value. maxgen indicates the maximum number of iterations, sizepop is
the population number, and q, p respectively represent the current iteration and the cur-
rent population.

2.3.3. Building the PSO-SVM Classifier

Common kernel functions of SVM include: linear kernel function, RBF (radial basis)
kernel function, polynomial kernel function and multi-layer perceptual kernel function. In
this work, the RBF kernel function was selected as the inner product kernel function. Since
the RBF kernel function provides great flexibility for nonlinear mapping of input data, it is
useful for complex, nonlinear and inseparable classification problems. It is expressed as:

K(x, xk) =

{
−‖x− xk‖2

2σ2

}
(20)

where ‖x− xk‖ =
√

n
∑

k=1
(xk − xk

i )
2 and σ are the core widths.

Penalty factor C and kernel parameter σ are vital parameters that may affect the
accuracy of SVM. In this work, the improved PSO algorithm was used to select the SVM
parameters, and thus, the PSO-SVM classifier was obtained, along with the improved PSO
optimization SVM parameter process as follows:

Step 1: Initialization settings, including group size, number of iterations, and randomly
given C and σ as the initial positions of particles;

Step 2: Using the C and σ corresponding to the individual particle, the SVM classifier
to predict the output value of the test sample was taken as the fitness value of the individual
particle yi;

Step 3: Compare the optimal adaptive values of the particles yi and ypbesti themselves.
If yi < ypbesti, replace, respectively, the previous adaptive value and particle with the new
adaptive value, namely ypbesti = yi, xpbesti = xi;

Step 4: Compare the optimal adaptive values of all particles ypbesti and ygbesti. If
ypbesti < ygbest, replace ygbest with ypbesti, and keep the current state;

Step 5: Determine whether the adaptive value or the number of iterations meets the
required value. If not, update the state through Equations (17) and (18), and then, return to
Step 3, or complete the calculation to find the most suitable parameters for SVM C and σ.
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3. State Recognition Method of Insulator Based on PSO-SVM

The insulator state identification method based on the improved PSO-SVM proposed
in this paper is shown in Figure 7. The specific implementation is as follows:

Step 1: Preprocess the aerial insulator image to obtain the segmented insulator image;
Step 2: Extract the HOG and GLCM features of the insulator to obtain the sample

feature set data, followed by correcting and preprocessing the sample data, and divide the
sample data into two parts: training samples and test samples;

Step 3: Use the training samples to train the PSO-SVM classifier to obtain the best
PSO-SVM classifier;

Step 4: The test sample was served as the input data of the optimal PSO-SVM classifier,
and the insulator state was detected. The completed PSO-SVM is used to evaluate the
insulator classification state.
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4. Experiment and Result Analysis
4.1. Dataset and Experimental Environment

In this work, insulator images were chosen for simulation experiments. The insulator
dataset was obtained partly from the GitHub website and partly by post-processing in
the field, and the insulator dataset mainly contained images of insulators in normal and
damaged states, as shown in Figure 8. This experiment mainly selected 212 random images
from the website for the training model and then selected 76 random images taken in the
field for the model test; the dataset samples are shown in Table 2.

The experimental software platform was MATLAB, mainly based on the LIBSVM
software package developed by Professor Lin Zhiren of National Taiwan University for
programming experiments. The specific experimental environment configuration is shown
in Table 3.
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Figure 8. Example of insulator dataset.

Table 2. Dataset samples.

Dataset Training Set Test Set Total

Normal image 106 38 144
Defect image 106 38 144

Total 212 76 288

Table 3. Experimental environment configuration.

Designation Version

Operating system Windows 10 64 bi
CPU 11th Gen Intel(R) Core (TM) i5-1135G7 @ 2.40 GHz 2.42 GHz

Memory 16.0 GB
MATLAB R2020a
LIBSVM 3.24

4.2. Image Segmentation

The result of segmentation of the insulator example image is shown in Figure 9. Here,
the image segmentation algorithm proposed in this paper was tested, that is, the region
segmentation method based on morphological improvements was compared with the
conventional seed region growing method and the maximum inter-class variance threshold
segmentation method.

Figure 9 shows the segmentation results of normal insulator images and defective
insulator images under different algorithms. Image (1) in (a) and (b) is the original image;
(2) is the image segmented by means of the maximum inter-class variance threshold.
Image (3) is the image segmented by the conventional seed region growing algorithm;
(4) is the image segmented by the region segmentation method based on morphological
improvements as proposed in this paper. It is clear from the two sets of images in Figure 4
that the segmentation method given in this work was able to effectively segment the
insulator image and the background, while the other two methods failed to effectively
identify the target image.

4.3. Feature Fusion Results and Analysis

To verify the effectiveness of the proposed fusion of HOG and GLCM features in
insulator state recognition and classification, a comparative experiment with a single HOG
feature and GLCM feature was conducted. During the experiment, the parameters of
the particle swarm algorithm were set as follows: the number of particle swarms was 10;
the vector dimension was 2; the maximum number of iterations was set to 200; c1 = 1.6;
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c2 = 1.7; the search range of the parameter C was [0.1, 100]; the search range of σ was
[0.1, 100]. The experimental results are shown in Table 4.
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Table 4. Classification performance of three features in PSO-SVM.

Feature Extraction Algorithm HOG GLCM HOG + GLCM

C 3.73 4.77 17.90
σ 0.10 9.80 0.53

Average time 80.28 s 85.35 s 92.58 s
Accuracy 78.95% 50.00% 92.11%

In the process of insulator classification, the choice of penalty factor C and kernel
function of the σ SVM plays a very important role in the classification accuracy of the model.
If the value of parameter C is too large, the data will be “over-fitted” and the generalization
performance of the model will be reduced, while if the value of parameter C is too small,
the model will be “under-fitted”; for σ, too large a value will result in “underfitting” of the
data, and too small a value will result in “overfitting”.
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In order to avoid the phenomenon of two important parameters of the SVM being too
large or too small, the PSO algorithm performs an intelligent search for the SVM parameters.
From the performance comparison between the single feature algorithm and the fused
feature algorithm for the identification and classification of insulators in PSO-SVM given in
Table 4, it can be seen that the HOG, GLCM and fused features used in the classification
model yield different combinations of SVM parameters, and thus, different classification
results were obtained. The accuracies of HOG, GLCM and fused features are 78.95%, 50.00%
and 92.11%, respectively. It can be concluded from the accuracy of the model classification
that the fused features algorithm is more effective and accurate than single features in
insulator classification.

From the above experimental results, it can be concluded that the fusion features
of the test samples are used in the PSO-SVM insulator classification model with certain
accuracy. In total, 76 images were randomly selected from 200 test images at a time during
the testing process, but since the data of the whole process are small, it is difficult to judge
whether the model has overfitting phenomenon; therefore, the model fitting problem is
described here by the learning curves so as to judge whether the model has overfitting or
underfitting phenomenon.

From the learning curve in Figure 10, we can see that the accuracy of the training set
increases and then decreases as the training set increases, and finally stabilizes at around
94%, while the accuracy on the cross-validation set keeps increasing and finally stabilizes
at around 92%. The difference between the classification accuracy of the classifier in the
training and validation sets is very small, and the accuracy of the test set in the model
is 92.11%; thus, the generalization ability of the PSO-SVM model is good and there is no
overfitting phenomenon.
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4.4. Model Classification Comparison

The comparison of PSO-SVM with other models was mainly involved with three
aspects: machine learning, adding optimized models and deep learning. Machine learning
methods, such as conventional SVM and Random Forest (RF), were compared with the
algorithm PSO-SVM in this work; in optimization, the SVM model (GWO-SVM) was
optimized by the gray wolf algorithm and compared with the PSO-SVM model; the PSO-
SVM algorithm was also put in contrast with the classic classification models Convolutional
Neural Network (CNN) in deep learning.
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4.4.1. Model Evaluation

In machine learning, the classification model is mainly evaluated with four indicators:
accuracy, precision, also known as sensitivity, recall, also known as specificity, and F1-score.

Accuracy =
TP + TN

TP + FN + FP + TN
(21)

Precison =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

F1_score = 2× P× R
P + R

(24)

where TP is the number of normal samples predicted to be normal; FN is the number of
normal samples predicted to be dropped; FP is the number of dropped samples predicted
to be normal; TN is the number of dropped samples predicted to be dropped.

4.4.2. Comparison of PSO-SVM and Machine Learning Models

The test set samples were used to validate the model in SVM, Random Forest and
the proposed model in this study, respectively. As seen in Table 5 and Figure 11, the
classification result of the PSO-SVM model is more accurate than that of SVM and Random
Forest, the overall performance of SVM was higher than that of Random Forest, while the
accuracy rate of the PSO-SVM model went up to 92.11%, and the precision rate, recall rate
and F1-score also increased to 90%, 94.74% and 92.31%, respectively. This is significantly
better than the conventional SVM algorithm and RF classification algorithm. The overall
classification performance of the model proposed in this work excelled in all.

Table 5. Classification results of test sets on different models.

Models
Number of Misclassifications/Numbers Accuracy

Rate/%
Precision

Rate/% Recall Rate/% F1-Score/%
Normal Sample Defective Sample

SVM 2 6 89.47 85.71 94.74 90
Random Forest 4 11 80.26 75.56 89.47 81.93

PSO-SVM 2 4 92.11 90 94.74 92.31
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In order to see the classification results of each model more clearly and intuitively,
Figure 12 shows the comparison of the recognition and classification results on three
models, SVM, Random Forest and PSO-SVM, for the same image selected randomly from
the test set.
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As can be seen from Figure 12, (a1), (b1) and (c1) are the results of a normal insulator
picture identified in each of the three models, of which the SVM and PSO-SVM models
identify and classify correctly; (a2), (b2) and (c2) are a defective insulator picture, and all
three models can identify and classify correctly; (a3), (b3) and (c3) are the results of the
same defective insulator picture for classification, of which only the PSO-SVM can identify
and classify correctly.

4.4.3. Comparison of Optimization Algorithms

This paper focuses on the optimization of SVMs using the improved PSO algorithm.
The Gray Wolf algorithm (GWO) is one of the many intelligent optimization algorithms that
are used to optimize the SVM model for comparison with the improved PSO-SVM model
in this paper. In the PSO search for optimization of SVM parameters, the cross-validation
fold k = 5, and the minimum error rate of the model is the objective function; for a more
effective comparison, the parameters of the gray wolf algorithm are set in the same way
as the PSO parameters, such as a wolf pack size of 10, a maximum number of iterations
of 200, a search range of [0.1, 100] for all parameters, a cross-validation fold k = 5, and an



Sensors 2023, 23, 272 17 of 22

objective function: minimum error rate, etc. The model performance results of the gray
wolf algorithm and the two algorithms after optimizing the SVM are shown in Table 6.

Table 6. Comparison of different optimization methods.

Model Accuracy
Rate

Precision
Rate Recall Rate F1-Score Average

Time

GWO-SVM 81.58% 81.58% 81.58% 81.58% 78.24 s
PSO-SVM 92.11% 90% 94.74% 92.31% 92.58 s

Table 6 shows the classification results of the test set data on the GWO-SVM model
and the PSO-SVM model in terms of accuracy, precision, recall, F1 score and average
time. Except for the time cost where the PSO-SVM model performs lower than the GWO-
SVM model, the PSO-SVM model outperforms the GWO-SVM model in terms of overall
performance analysis. The confusion matrix for the test set classification on the PSO-SVM
model and the GWO-SVM model is shown in Table 7.

Table 7. Insulator image classification results.

GWO-SVM PSO-SVM

Normal
Insulator
Diagram

Defective
Insulator
Diagram

Normal
Insulator
Diagram

Defective
Insulator
Diagram

Normal Insulator Diagram 31 7 36 2
Defective insulator diagram 7 31 4 34

Figure 13 shows the comparison of the recognition and classification results of the same
image on the two models. The comparison of specific images provides a more intuitive
and effective demonstration of the effectiveness of the algorithm. Images (a1) and (b1) are
images of the same normal insulator and are incorrectly identified and classified by both
models; (a2) and (b2) are the identification results of a normal insulator image on both
models, where the PSO-SVM model completes the correct identification and classification;
(a3) and (b3) are images of defective insulators and are correctly identified and classified by
both GWO-SVM and PSO-SVM; (a4) and (b4) are comparisons of the results of the same
defective insulator image run on the two models, where only the PSO-SVM model is able
to recognize and classify correctly.

4.4.4. Comparison of PSO-SVM and Convolutional Neural Network Model

The PSO-SVM model is used in this paper for state recognition classification of in-
sulators. For comparison in other ways, the PSO-SVM model is compared here with
convolutional neural networks (CNN). The comparison is made by accuracy (Ac), sensitiv-
ity (SP) and specificity (SE). The network architecture of CNN is as follows: an input layer,
mainly used for color image input, with an image size of 256 × 256 × 3. Three convolution
blocks are used to extract image features. Each convolution block consists of a convolution
layer, a normalization layer, a ReLU layer and a pooling layer. The convolution core size of
the three convolution layers is 3 × 3. The first layer has 8 convolution cores with a step size
of 1, the second layer uses 64 convolution cores, the third layer uses 128 convolution cores,
and each of them has a pool layer with a core size of 2 × 2. The last three layers are full
connection layer, SoftMax layer and an output layer for classification. The results of the
comparison of the two models are shown in Table 8 and Figure 14.
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Figure 14. Classification comparison of PSO-SVM and neural network model.

It is clear from Figure 14 and Table 8 that the performance of CNN in insulator
recognition and classification is significantly lower than that of PSO-SVM model. The
comparative experiments show that the algorithm proposed in this paper is feasible. One
normal and one defective image each were randomly selected from the test set to compare
the recognition and classification effects of the two models, which are shown in Figure 15,
(a1) and (b1) are normal insulator images, which can be correctly identified and classified
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only by PSO-SVM; (a2) and (b2) show that the defective insulator images run on CNN and
PSO-SVM, respectively, and both models can be identified and correctly classified.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 22 
 

 

Table 8. Classification results of the test set on different models. 

Model Accuracy Rate Sensitivity Specificity Average Time 

CNN 78.95% 86.67% 68.42% 98.77 s 

PSO-SVM 92.11% 90% 94.74% 92.58 s 

 

Figure 14. Classification comparison of PSO-SVM and neural network model. 

It is clear from Figure 14 and Table 8 that the performance of CNN in insulator recog-

nition and classification is significantly lower than that of PSO-SVM model. The compar-

ative experiments show that the algorithm proposed in this paper is feasible. One normal 

and one defective image each were randomly selected from the test set to compare the 

recognition and classification effects of the two models, which are shown in Figure 15, (a1) 

and (b1) are normal insulator images, which can be correctly identified and classified only 

by PSO-SVM; (a2) and (b2) show that the defective insulator images run on CNN and 

PSO-SVM, respectively, and both models can be identified and correctly classified. 

  
(a1) (b1) 

  
(a2) (b2) 

(a) (b) 

Figure 15. Classification results of each model test set: (a) CNN; (b) PSO-SVM. Figure 15. Classification results of each model test set: (a) CNN; (b) PSO-SVM.

5. Conclusions and Next Steps

At present, the identification of insulator shedding state is largely the job of conven-
tional manual detection and a neural network. Manual detection of insulator shedding
involves a large workload and high risk. The neural network method usually requires
a large number of samples for training. In the case of limited samples or small samples,
the neural network is incapable of performing the entire identification work. The support
vector machine algorithm (SVM) is able to handle the issues in nonlinear, high-dimensional
small sample classification, with the recognition accuracy being much higher than the
neural network. The only holdback is the selection of the kernel parameters and penalty
factors of the support vector machine. PSO is an optimization algorithm that works with
particle swarms to optimize the parameters of support vector machines. Nevertheless, due
to the problems of convergence speed and local minimum in the PSO algorithm, there are
advanced PSO algorithms that have overcome the problems of the original PSO algorithm.
Therefore, this paper proposes an insulator state identification method based on the im-
proved PSO algorithm to optimize the support vector machine. This work is concluded
as follows:

• By collecting insulator pictures, preprocessing, feature extraction and selection, the
insulator state recognition dataset was obtained. From the recognition results of
the model, it can be concluded that this dataset stood out with excellent training
performance.

• The improved PSO was used to optimize the parameters of SVM, which solved
the problem that the PSO tended to fall into a local minimum. By avoiding the
inappropriate selection of SVM parameters, the performance of the SVM recognition
model was optimized.

• The results showed that the PSO-SVM insulator state recognition and classification
model, as proposed in this paper, were compared with machine learning methods,
neural network models and optimization algorithms. The final results proved that the
PSO-SVM model was proud of the highest classification performance.
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Currently, deep learning is widely used in machine vision research and has achieved
very good results. There are many mature network models that can achieve better results
in image recognition, such as the classical ResNet network and Yolo network. Therefore,
the focus of our next research will shift to known architectures, such as ResNet and Yolo,
and will use the existing data to conduct deeper research on top of these traditional
classical networks.
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