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Abstract: This paper presents a detailed algorithm for determining the curvature of a track axis with
the use of a moving chord method, and then discusses the procedure for identifying the geometric
layout of an exploited railway route on the basis of the determined curvature. In the moving chord
method, the measured coordinates of the track axis allow one to directly determine the existence of the
horizontal curvature without the need for additional measurements. This enables comprehensively
identifying the existing geometric elements—straight lines, circular arcs, and transition curves. The
conducted activities were illustrated with a calculation example, including a 5.5 km long test section
with five areas of directional change. This showed a sequential procedure that led to the solution
of the given problem. Based on the curvature diagram, the coordinates of the segmentation points,
which define the connections of the existing geometric elements with each other, were determined.

Keywords: railway track; curvature of the track axis; moving chord method; identification of
geometric layout

1. Introduction

Identification of the geometric layout of a railway route consists in determining the
location of the existing straight and curved sections, as well as determining the appropriate
numerical parameters (turning angles of the route, radii of circular arcs, and lengths of
transition curves). Of course, the above data are included in the design documentation of
the railway line, but operational factors and maintenance processes mean that the validity
of the documentation may be limited and it becomes necessary to verify it periodically. To
do this, you need the right tools.

Determining the geometric shape of a railway route is based on the measured coor-
dinates of the track axis in the linear and Cartesian reference system. The currently used
measurement methods are similar in different railway administrations [1–8]. In classic
geodetic techniques, distances and angles are measured using tachymeters in relation to the
spatial geodetic network. Further possibilities are provided by stationary satellite measure-
ments based on the global navigation satellite system (GNSS) technique. This solution does
not require using the point network of the railway geodetic network; the measurement
systems use the so-called active geodetic networks (e.g., networks of reference stations
operating in a real time network (RTK) [9–11]). Mobile satellite measurement methods are
also being introduced, in which (apart from GNSS receivers) inertial navigation system
(INS) devices [12] are used as supporting devices, as well as optical methods such as
terrestrial laser scanning (TLS) [13]. Research is being conducted on the possibility of using
systems consisting of satellite receivers mounted on various types of vehicles [14–18].

Determining the coordinates of the track axis makes it possible to visualize a given
railway route, giving a general orientation of its location. However, since the purpose of
the measurements is to determine the geometrical parameters (i.e., identification) of the
measured route, appropriate calculation algorithms should be used (referring, for example,
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to the principles of the analytical design method [19–22]). As it turns out, the problem can
be effectively solved by using the obtained measurement data to determine the existing
curvature of the geometric layout. Papers [23–25] present relevant analysis relating to the
proposed new method of determining the curvature of the track axis, referred to as the
“moving chord method”. They concern the application of this method for model geometric
layouts (described with mathematical equations). Papers [26–28] address the issue of its
use for the estimation of the horizontal curvature of the axis of the exploited railway track
based on Cartesian coordinates obtained by direct measurements.

This work presents a detailed procedure for identifying the chosen geometric layout of
the exploited railway route based on the curvature of the track axis. The length of this route
is 5.5 km, with five curved sections located on it. The computational algorithms presented
in paper [27] were used to determine the curvature.

As a result of geodetic measurements, Cartesian coordinates of railway route points
are determined in the appropriate national spatial reference system. In Poland, for plane
coordinates, the PL-2000 system [29] is enforced, created based on a mathematically un-
equivocal assignment of points of the GRS 80 reference ellipsoid [30] to appropriate points
on the plane according to the Gauss–Krüger mapping theory [31].

2. Determination of the Curvature of the Track Axis Using the Moving Chord Method

In the given case (i.e., examining the horizontal plane), the analysis is based on the
determined values of the plane’s eastern coordinates Yi and the northern Xi coordinates
of a given measurement point in the PL-2000 system. However, the proper identification
of the track axis is provided by the appropriate graphs referring to the length parameter
L. Therefore, in order to create the possibility of further analysis, it is necessary to refer
to the linear system, which means determining the distances (variable L) of individual
measurement points from the chosen starting point O(Y0, X0) (i.e., point i0).

The distance between two consecutive measurement points is

∆Li÷i+1 =

√
(Yi+1 −Yi)

2 + (Xi+1 − Xi)
2, i = 1, 2, . . . , n (1)

The linear coordinate Li, i.e., the distance from the point O(Y0, X0), is determined from
the formula

Li =
n−1

∑
i = 0

∆Li÷i+1 (2)

From a practical point of view, it is beneficial to transfer the measurement data to the
local x, y coordinate system. In most cases, this operation will consist of shifting the origin
of the PL-2000 system to the chosen point O(Y0, X0). Then, the following transformation
formulas are used:

xi = Yi −Y0 (3)

yi = Xi − X0 (4)

Additionally, sometimes it may be advisable to rotate this system by the angle β. The
relevant formulas are then as follows:

xi = (Yi −Y0) cos β + (Xi − X0) sin β (5)

yi = −(Yi −Y0) sin β + (Xi − X0) cos β (6)

The positive value of the angle β occurs when the system is rotated to the left.
In the local coordinate system, the linear coordinate Li determined by the Formula (2)

still remains valid.
The methodology for determining the curvature of the track axis has been explained in

detail in [27]. The sequence of actions to determine the curvature value at any measurement
point is shown in Figure 1.
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Figure 1. Explanation of the method for determining the curvature value at any measurement point
using the moving chord method.

We start determining the curvature κi from the measurement point i, which is located
in such a way that it allows the projection of a virtual chord length lc backward; the end of
calculations must take place at a point from which a virtual chord of the same length can
still be placed forward. The basic operation that must be carried out first is determining
the numbering of the points defining the intervals in which the ends of the virtual chords
drawn from point i are located.

For a chord drawn from point i forward, the interval in which the end of the chord
occurs is determined by the points pi − 1 and pi (Figure 1). We determine it by successively
checking the distances between point i and consecutive measurement points, in accordance
with the direction of increasing numbering. These distances are

li÷(i+k) =

√
(xi − xi+k)

2 + (yi − yi+k)
2, k = 1, 2, . . . (7)

After each step of the calculations, we check whether the condition li÷(i+k) ≥ lc has
been met. The first value of i + k that meets the compulsory condition is marked pi. Since the
coordinates of points pi − 1 and pi are known, it is possible to write the equation of a straight
line that goes through these points analytically. This equation has the following form:

y = api + bpix (8)

As can be seen in Figure 1, the end of the front chord (i.e., point Pi) lies on the straight
line described by Equation (8), at a distance lc from point i. It is therefore the point of
intersection of the circle with radius lc and center at point i with the straight line (8). The
coordinates of the Pi point are determined from the following formulas:

xPi =
−BPi ±

√
B2

Pi − 4APiCPi

2APi
(9)

yPi = api + bpi

−BPi ±
√

B2
Pi − 4APiCPi

2APi
(10)
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where

APi = 1 + b2
pi

BPi = −2
(
xSpi + bpiySpi − apibpi

)
CPi = x2

Spi + y2
Spi − 2apiySpi + a2

pi − l2
c +

[(
xi − xSpi

)2
+
(
yi − ySpi

)2
]

xSpi =
bpi

1+b2
pi

(
yi +

1
bpi

xi − api

)
ySpi = 1

1+b2
pi

(
b2

piyi + bpixi + api

)
The xSpi and ySpi values are the coordinates of the Spi point (Figure 1), which lies at the

intersection of line (8) with the line perpendicular to it passing through point i.
The “+” sign in Formulas (9) and (10) occurs when the values of Y abscissas of the

measured route points are increasing, while the “−” sign is valid for decreasing abscissas.
When operating with the local coordinate system, this note applies to abscissa x.

For a chord drawn from point i backward, the interval in which the end of the chord
occurs is determined by the points qi and qi + 1 (Figure 1). We determine it in the same way
as in the case of the forward chord, successively checking the distances between point i and
consecutive measurement points, going in decreasing numerical order. These distances are

l(i−k)÷i =

√
(xi − xi−k)

2 + (yi − yi−k)
2, k = 1, 2, . . . (11)

After each step of the calculations, we check whether the condition l(i−k)÷i ≥ lc has
been met. The first value of i − k that meets the condition is marked as qi. Since the
coordinates of points qi and qi + 1 are known, it is possible to write the equation of a straight
line that goes through these points analytically. This equation is as follows:

y = aqi + bqix (12)

As can be seen from Figure 1, the end of the back chord (i.e., point Qi) lies on the
straight line described by Equation (12) at a distance lc from point i. Thus, it is the point
of intersection of the circle with radius lc and center at point i with straight line (12). The
coordinates of the Qi point are determined from the following formulas:

xQi =
−BQi ±

√
B2

Qi − 4AQiCQi

2AQi
(13)

yQi = aqi + bqi

−BQi ±
√

B2
Qi − 4AQiCQi

2AQi
(14)

where

AQi = 1 + b2
qi

BQi = −2
(
xSqi + bqiySqi − aqibqi

)
CQi = x2

Sqi + y2
Sqi − 2aqiySqi + a2

qi − l2
c +

[(
xi − xSqi

)2
+
(
yi − ySqi

)2
]

xSqi =
bqi

1+b2
qi

(
yi +

1
bqi

xi − aqi

)
ySqi = 1

1+b2
qi

(
b2

qiyi + bqixi + aqi

)
The xSqi and ySqi values are the coordinates of the Sqi point (Figure 1), which lies at the

intersection of line (12) with the line perpendicular to it passing through point i.
The “−” sign in Formulas (13) and (14) occurs when the abscissa values of the mea-

sured route points are increasing, while the “+” sign is valid for decreasing abscissas. Thus,
what we are dealing with here is the opposite situation to the case of a forward chord.
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Having the Cartesian coordinates of point i (obtained from measurements) and the
coordinates of the ends of virtual chords drawn forward and backward, we are able to
determine the curvature values at a given measurement point. A forward chord connects
point i with point Pi and its coordinates are given by Formulas (9) and (10). It is described
by the equation

y = yi −
yPi − yi
xPi − xi

xi +
yPi − yi
xPi − xi

x (15)

The angle of inclination of straight line (15) is

Θi÷Pi = Θ(+)
i = arctan

yPi − yi
xPi − xi

(16)

The backward chord connects point i with point Qi, and its coordinates are given by
Formulas (13) and (14). It is described by the equation

y = yQi −
yi − yQi

xi − xQi
yQi +

yi − yQi

xi − xQi
x (17)

The angle of inclination of straight line (17) is

ΘQi÷i = Θ(−)
i = arctan

yi − yQi

xi − xQi
(18)

In this situation, the curvature value at a given measurement point is determined
using the formula

κi =
Θ(+)

i −Θ(−)
i

lc
(19)

A positive value of the curvature determined by Formula (19) corresponds to a
curve with convexity directed downward, and a negative value a curve with convexity
directed upward.

The presented procedure is sequential and consists in using the given calculation
formulas. Determination of the curvature value does not require the development of
special computer programs, and the entire operation can be carried out, for example, in
a spreadsheet.

3. Determination of the Curvature Values for the Test Section

The procedure for identifying the geometric layout of the exploited railway route has
been illustrated with a calculated example consisting of a test section with a length of 5.5 km.
Cartesian coordinates of individual measurement points were determined at intervals of
about 5 m, and the maximum error of this operation was ±10 mm. Figure 2 shows the
visualization of the course of the route on the test section in the local coordinate system.
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Figure 2. The course of the route on the test section in the local coordinate system.

As can be seen, the test section consists of six straight lines Sj and five arcs Aj÷j+1
connecting these lines with each other. The course of the route is quite gentle, and the
existing geometric layout in the horizontal plane allows for the relatively fast speed of
trains. Since, as it turns out, the values of the radius of the circular arcs are greater than
1400 m here, there is a possibility of using a speed of V = 160 km/h.
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In paper [26] it was shown that the curvature graphs of the axis of an exploited railway
track clearly differ from the graphs obtained for model layouts; they have a less regular,
oscillatory character, which results from measurement error and the deformations of the
ballasted track [32–34]. However, this did not prevent the basic geometrical parameters of
the measured layout from being estimated.

When choosing the length of the mobile chord that would correspond to the situation
on the test section, the recommendations formulated in [28] were followed. Based on the
analysis carried out there, it was clearly demonstrated that the length of the chord used
to determine the curvature in an exploited railway track should depend on the value of
the radius of the circular arc. The criterion for choosing the length of the chord was the
minimization of the deviations of the curvature value from the theoretical course, i.e., zero
on straight sections of the track, horizontal (but not zero) along the lengths of circular arcs,
and changing linearly on transition curves. The following approximate lengths of lc have
been proposed, depending on the range of RCA values:

• for RCA ≤ 600 m lc = 20 m;
• for 600 < RCA ≤ 1000 m lc = 30 m;
• for 1000 < RCA ≤ 1400 m lc = 40 m;
• for RCA > 1400 m lc = 50 m.

In the considered case, a virtual chord with a length of lc = 50 m was used to determine
the horizontal curvature. The calculations carried out used the procedure described in
Section 2. Figure 3 shows the obtained curvature diagram along the length of the test section,
and Table 1 shows a fragment of the calculations carried out in the area of curve A1÷2.
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Figure 3. Curvature diagram along the length of the test section obtained using a chord of length
lc = 50 m.

Table 1. Chosen fragment of the performed calculations of curvature κi in the area of arch A1÷2.

Point i Li
[m]

xi
[m]

yi
[m]

xPi
[m]

yPi
[m]

Θi÷Pi
[rad]

xQi
[m]

yQi
[m]

ΘQi÷i
[rad]

κi
[rad/m]

153 760 758.967 38.063 808.588 44.201 0.12309 709,193 33.313 0.09513 0.00055911
154 765 763.940 38.629 813.546 44.890 0.12557 714.182 33.720 0.09834 0.00054459
155 770 768.916 39.179 818.502 45.602 0.12881 719.169 34.160 0.10055 0.00056514
156 775 773.872 39.776 823.443 46.312 0.13109 724.143 34.583 0.10404 0.00054093
157 780 778.834 40.368 828.585 47.055 0.13414 729.119 35.040 0.10676 0.00054746
158 785 783.812 40.975 833.344 47.802 0.13696 734.112 35.507 0.10959 0.00054756
159 790 788.774 41.581 838.285 48.60 0.14004 739.086 36.011 0.11164 0.00056806
160 795 793.731 42.214 843.221 49.33 0.14288 744.058 36.505 0.11442 0.00056911
161 800 798.679 42.863 848.150 50.14 0.14553 749.022 37.015 0.11724 0.00056584

The curvature diagram in Figure 3 identifies the geometric layout along almost its
entire length. Minor disturbances do not affect the overall assessment of the situation. On
straight segments, the curvature is equal to zero, and on circular arcs it has a fixed value
(resulting from the value of the radius). Variable curvature occurs only on transition curves
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and, as can be seen, it is linear there. The linear L coordinate allows one to specify the
location of individual geometric elements.

In this situation, full identification of the layout still requires determination of bound-
ary points between straight sections, transition curves, and circular arcs. These are the
so-called segmentation points. The straight line Sj is connected to the beginning of the
transition curve TCj÷j+1(a), and on the other side of curve Aj÷j+1 the straight line Sj+1 is
connected to the beginning of transition curve TCj÷j+1(b). In turn, the ends of the transition
curves TCj÷j+1(a) and TCj÷j+1(b) determine the location of the beginning and end of the
circular arc CAj÷j+1, respectively.

Therefore, the moving chord method does not allow for direct determination of
the segmentation points of the geometric layouts—it becomes necessary to carry out
an additional procedure. It becomes clear, however, that the transition curves play the
main role here, and determining the location of their extreme points makes it possible to
determine the segmentation points and lengths of individual curves. The next section of
this paper focuses on these problems, examining the individual arc sections separately.

4. Determining the Location of Segmentation Points
4.1. Arc Section A1÷2

Figure 4 shows the curvature diagram along the length of arc section A1÷2. The
average value of curvature on a circular arc is also marked. The values κi for i ∈ 〈147; 167〉
(corresponding to L ∈ 〈730; 830〉 m) were used for determining κCA. The result was
κCA = 0.0005561 rad/m, with standard deviation of σCA = 0.000009372 rad/m (which is
1.684% of the mean value). The calculations show—as the inverse κCA—the radius of
circular arc CA1÷2 equal to 1798.233 m.
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Figure 4. Curvature diagram along the length of arc segment A1÷2 obtained using a chord of length
lc = 50 m (the value of the average curvature on the circular arc is marked in red).

There are transition curves on both sides of the circular arc. They can be easily
identified on the κ(L) diagram: the curvature ordinates oscillate around a linear course.
In order to determine the linear coordinates of the beginnings and ends of the transition
curves, it is necessary to determine the coefficients of the least squares lines describing the
regions of the κ(L) graph with variable curvature values. Least squares lines in the form

κ(L) = a + b L (20)

determine the linear coordinates of their points of intersection with curvature diagrams
on straight sections of the track (coordinates LBTC of the beginnings of curves) and on the
circular arc sections (coordinates LETC of ends of curves).

For the beginning of a given transition curve (BTC point), the value of curvature κ = 0,
hence its linear coordinate is

LBTC = − a
b

(21)
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and for the end of the curve (ETC point), the curvature value κ = κCA, so its linear coordinate
is equal to

LETC =
κCA − a

b
(22)

The values of the determined LBTC and LETC coordinates directly result in the length
of the transition curve.

lTC = |LETC − LBTC| (23)

The further calculation procedure will take place in the x, y rectangular coordinate
system, therefore appropriate Cartesian coordinates of the segmentation points should also
be determined. For the linear coordinate LBTC one should find such a range of measurement
points i ∈ 〈i, i + 1〉 that LBTC ∈ 〈Li, Li+1〉. The abscissa xBTC and ordinate yBTC can now be
determined from the following formulas:

xBTC = xi +
xi+1 − xi
Li+1 − Li

(LBTC − Li) (24)

yBTC = yi +
yi+1 − yi
Li+1 − Li

(LBTC − Li) (25)

In an analogous way, the values of the abscissa xETC of the transition curve end, as
well as the corresponding yETC ordinate, are determined.

Figure 5 shows the effects of identifying the transition curve TC1÷2(a) located on the
left side of the geometrical layout under consideration.
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Figure 5. Identification of transition curve TC1÷2(a) on the test section (curvature diagram obtained
using a chord of length lc = 50 m).

In the conducted analysis, the values of κi were used for i ∈ 〈121; 140〉 (which corre-
sponds to L ∈ 〈600; 695〉 m). The equation of the curvature was obtained by the method of
least squares.

κ(L) = −0.00273287 + 0.0000046745 L

On the basis of Formulas (21) and (22), the linear coordinates of LBTC and LETC were de-
termined. They are: LBTC = 584.630 m and LETC = 703.595 m. Hence, based on Equation (23),
the length of the considered transition curve is 118.964 m.

To determine the Cartesian coordinates xBTC and yBTC, it must be taken into account
that LBTC ∈ 〈580; 585〉m, so the limits of the given interval are designated by i = 117 and
i = 118. Since in this case xi = 57.423 m, yi = 26.007 m, and xi+1 = 584.406 m, yi+1 = 26.229 m,
Formulas (24) and (25) show that xBTC = 584.038 m and yBTC = 26.212 m.

To determine xETC and yETC coordinates, it is necessary to take into account that
LETC ∈ 〈700; 705〉 m, so the limits of a given interval are determined by i = 141 and
i = 142. Since xi = 699.226 m, yi = 32.533 m, and xi+1 = 704.222 m, yi+1 = 32.920 m, based on
Formulas (24) and (25) we see that xETC = 702.818 m and yETC = 32.811 m.

Figure 6 shows the identification of transition curve TC1÷2(b) located on the right side
of the geometrical layout under consideration.
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Figure 6. Identification of transition curve TC1÷2(b) on the test section (curvature diagram obtained
using a chord of length lc = 50 m).

Using the κi values for i ∈ 〈175; 197〉 (corresponding to L ∈ 〈870; 980〉m), the follow-
ing curvature equation was obtained:

κ(L) = 0.00435742 − 0.0000044463 L

Using the Formulas (21) and (22), the linear coordinates of LBTC and LETC were deter-
mined, which are: LBTC = 980.001 m and LETC = 854.931 m. This results in the length of the
given transition curve lTC = 125.070 m.

Since LBTC ∈ 〈980; 985〉 m, the limits of the interval are determined by i = 197 and
i = 198. In this case, xi = 975.927 m, yi = 73.976 m, and xi+1 = 980.837 m, yi+1 = 74.946 m,
hence, based on Formulas (24) and (25), xBTC = 975.928 m and yBTC = 73.976 m. In
turn, LETC ∈ 〈850; 855〉 m, so the limits of an interval are determined by i = 171 and
i = 172. Since xi = 848.162 m, yi = 50.116 m, and xi+1 = 853.095 m, yi+1 = 50.906 m, from
Formulas (24) and (25) it is obtained that xETC = 853.030 m and yETC = 50.895 m.

4.2. Arc Section A2÷3

Figure 7 shows the curvature diagram along the length of arc section A2÷3, and
Figures 8 and 9 show the identification of transition curves TC2÷3(a) and TC2÷3(b).
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Figure 9. Identification of transition curve TC2÷3(b) on the test section (curvature diagram obtained
using a chord of length lc = 50 m).

Assuming an analogous procedure as in Section 4.1, the radius of the circular arc
CA2÷3 was determined to be 1639.433 m. The linear coordinates of the transition curve
TC2÷3(a) are: LBTC = 1546.687 m and LETC = 1673.502 m. Hence, based on Equation (23), the
length of this transition curve lTC = 127.215 m. For transition curve TC2÷3(b) the following
values were obtained: LBTC = 1949.973 m and LETC = 1823.556 m, so the length of this curve
is 126.417 m. The corresponding values of Cartesian coordinates xBTC and yETC for both
curves are included in the list in Table 2.

4.3. Arc Section A3÷4

Figure 10 shows the curvature diagram along the length of arc section A3÷4, and
Figures 11 and 12 show the identification of transition curves TC3÷4(a) and TC3÷4(b).
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Table 2. List of segmentation points on the test section.

Segm. Point Coordinates
Characteristics of Segmentation Point

Point L [m] x [m] y [m]

1 0.000 0.000 0.000 Beginning of the test section (beginning of the straight line S1;
l = 584.630 m)

2 584.630 584.038 26.212 End of straight line S1
Beginning of transition curve TC1÷2(a); l = 118.964 m

3 703.595 702.818 32.811 End of transition curve TC1÷2(a)
Beginning of circular arc CA1÷2; R = 1798.233 m

4 854.931 853.030 50.895 End of circular arc CA1÷2End of transition curve TC1÷2(b); l = 125.070 m

5 980.001 975.928 73.976 Beginning of transition curve TC1÷2(b)
Beginning of straight line S2; l = 566.686 m

6 1546.687 1531.726 184.552 End of straight line S2
Beginning of transition curve TC2÷3(a); l = 127.215 m

7 1673.902 1656.174 210.943 End of transition curve TC2÷3(a)
Beginning of circular arc CA2÷3; R = 1639.433 m

8 1823.556 1799.220 252.387 End of circular arc CA2÷3
End of transition curve TC2÷3(b); l = 126.417 m

9 1949.973 1918.572 295.991 Beginning of transition curve TC2÷3(b)
Beginning of straight line S3; l = 589.640 m

10 2539.613 2469.412 506.330 End of straight line S3
Beginning of transition curve TC3÷4(a); l = 141.559 m

11 2681.172 2602.432 554.722 End of transition curve TC3÷4(a)
Beginning of circular arc CA3÷4; R = 1460.686 m

12 2932.738 2847.048 612.063 End of circular arc CA3÷4
End of transition curve TC3÷4(b); l = 139.213 m

13 3071.951 2985.378 627.615 Beginning of transition curve TC3÷4(b)
Beginning of straight line S4; l = 662.756 m

14 3734.707 3645.076 691.310 End of straight line S4
Beginning of transition curve TC4÷5(a); l = 135.098 m

15 3869.805 3779.705 702.380 End of transition curve TC4÷5(a)
Beginning of circular arc CA4÷5; R = 1546.006 m

16 4065.732 3975.482 700.341 End of circular arc CA4÷5
End of transition curve TC4÷5(b); l = 143.340 m

17 4209.072 4118.013 685.267 Beginning of transition curve TC4÷5(b)
Beginning of straight line S5; l = 512.980 m

18 4722.052 4627.295 623.819 End of straight line S5
Beginning of transition curve TC5÷6(a); l = 106.209 m

19 4828.261 4732.624 610.136 End of transition curve TC5÷6(a)
Beginning of circular arc CA5÷6; R = 1920.000 m

20 4862.111 4766.053 604.850 End of circular arc CA5÷6
End of transition curve TC5÷6(b); l = 107.805 m

21 4969.917 4872.026 585.089 Beginning of transition curve TC5÷6(b)
Beginning of straight line S6; l = 580.083 m

22 5550.000 5441.295 473.501 End of test section (the end of straight line P6)
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Figure 12. Identification of transition curve TC3÷4(b) on the test section (curvature diagram obtained
using a chord of length lc = 50 m).

Assuming an analogous procedure as in Section 4.1, the radius of the circular arc
CA3÷4 was determined to be 1460.686 m. The linear coordinates of the transition curve
TC3÷4(a) are: LBTC = 2539.613 m and LETC = 2681.172 m. Hence, based on Equation (23), the
length of this transition curve lTC = 141.559 m. For transition curve TC3÷4(b) the following
values were obtained: LBTC = 3071.951 m and LETC = 2932.738 m; therefore the length of
this curve is 139.213 m. The corresponding values of Cartesian coordinates xBTC and yETC
for both curves are included in the list in Table 2.

4.4. Arc Section A4÷5

Figure 13 shows the curvature diagram along the length of arc section A3÷4, and
Figures 14 and 15 show the identification of transition curves TC4÷5(a) and TC4÷5(b).
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Figure 15. Identification of transition curve TC4÷5(b) on the test section (curvature diagram obtained
using a chord of length lc = 50 m).

Assuming an analogous procedure as in Section 4.1, the radius of the circular arc
CA4÷5 was determined to be 1546.006 m. The linear coordinates of the transition curve
TC4÷5(a) are: LBTC = 3734.707 m and LETC = 3869.805 m. Hence, based on Equation (23), the
length of this transition curve lTC = 135.080 m. For transition curve TC2÷3(b) the following
values were obtained: LBTC = 4209.072 m and LETC = 4065.732 m; therefore, the length of
this curve is 143.340 m. The corresponding values of Cartesian coordinates xBTC and yETC
for both curves are included in the list in Table 2.

4.5. Arc Section A5÷6

Figure 16 shows a graph of the curvature along the length of arc segment A5÷6. This
graph significantly differs from the previously studied cases. That is because of the short
length of the circular arc in relation to the moving chord used. If the arc length is less
than lc, the κ(L) diagram lacks the curvature values from which the arithmetic mean (and,
consequently, the radius of the circular arc) can be determined.
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In the studied situation, the radius of the circular arc was determined by the method of
measuring the horizontal arrows. The assumed value of R = 1920 m was used to determine
the segmentation points, assuming linearity of the curvature course on both transition
curves. The discussed situation is shown in Figure 17.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 17 
 

 

lc, the κ(L) diagram lacks the curvature values from which the arithmetic mean (and, 
consequently, the radius of the circular arc) can be determined.  

 
Figure 16. Curvature diagram along the length of arc segment A5÷6 obtained using a chord of length 
lc = 50 m. 

In the studied situation, the radius of the circular arc was determined by the method 
of measuring the horizontal arrows. The assumed value of R = 1920 m was used to 
determine the segmentation points, assuming linearity of the curvature course on both 
transition curves. The discussed situation is shown in Figure 17. 

 
Figure 17. Identification of the geometric layout consisting of transition curves TC5÷6(a) and TC5÷6(b). 

In the case of the TC5÷6(a) transition curve (left in Figure 17), the values of κi for 
948;963i∈  (which corresponds to 4,735;4,810L∈  m) were used. The equation of 

curvature was obtained by the least squares method. 

κ(L) = 0.02315629 − 0.0000049039 L 

Based on Formulas (21) and (22), the linear coordinates of LBTC and LETC were 
determined. They are as follows: LBTC = 4722.052 m and LETC = 4828.261 m. Therefore, based 
on Equation (23), the length of the considered transition curve is 106.209 m.  

In the analysis of the TC5÷6(b) transition curve (on the right in Figure 17), the values 
of κi for 975;993i∈  (corresponding to 4,870;4,960L∈  m) were taken into 
account. The equation of curvature was obtained by the least squares method. 

κ(L) = −0.02401088 + 0.0000048312 L 

The determined linear coordinates of LBTC and LETC are: LBTC = 4969.917 m and LETC = 

4862.111 m. Hence, the length of the studied transition curve is lTC = 107.805 m. It also 
becomes possible to determine the length of the circular arc as the difference between the 
ends of both transition curves: it is 33.851 m. 

Cartesian coordinates xBTC and yETC of the transition curves shown in Figure 17 were 
determined in the same way as the transition curve TC1÷2. Their values are included in the 
collective list in Table 2.  

  

Figure 17. Identification of the geometric layout consisting of transition curves TC5÷6(a) and TC5÷6(b).



Sensors 2023, 23, 274 14 of 16

In the case of the TC5÷6(a) transition curve (left in Figure 17), the values of κi for
i ∈ 〈948; 963〉 (which corresponds to L ∈ 〈4735; 4810〉 m) were used. The equation of
curvature was obtained by the least squares method.

κ(L) = 0.02315629 − 0.0000049039 L

Based on Formulas (21) and (22), the linear coordinates of LBTC and LETC were deter-
mined. They are as follows: LBTC = 4722.052 m and LETC = 4828.261 m. Therefore, based on
Equation (23), the length of the considered transition curve is 106.209 m.

In the analysis of the TC5÷6(b) transition curve (on the right in Figure 17), the values
of κi for i ∈ 〈975; 993〉 (corresponding to L ∈ 〈4870; 4960〉m) were taken into account. The
equation of curvature was obtained by the least squares method.

κ(L) = −0.02401088 + 0.0000048312 L

The determined linear coordinates of LBTC and LETC are: LBTC = 4969.917 m and
LETC = 4862.111 m. Hence, the length of the studied transition curve is lTC = 107.805 m. It
also becomes possible to determine the length of the circular arc as the difference between
the ends of both transition curves: it is 33.851 m.

Cartesian coordinates xBTC and yETC of the transition curves shown in Figure 17 were
determined in the same way as the transition curve TC1÷2. Their values are included in the
collective list in Table 2.

5. Full Identification of the Geometrical Layout

The coordinates of the segmentation points determined in Section 4 allow one to fully
identify the geometrical layout present on the test section. It has been presented in the form
of a collective list (Table 2).

The presented calculation procedure allows one to fully use the measured coordinates
of the track axis. Apart from visualizing the course of the route and obtaining a general
orientation of the existing geometric elements (as in Figure 2), these coordinates allow one
to directly determine the horizontal curvature (Figure 3). It is possible thanks to the use
of a new method for determining the curvature. The moving chord method allowed for
comprehensive identification of the existing geometric elements (straight lines, circular
arcs, and transition curves), along with the determination of all segmentation points.

6. Conclusions

Determining the geometrical shape of a railway route is based on the measured coordi-
nates of the track axis in an appropriate reference system. The currently used measurement
methods allow for high precision and a significant reduction in time consumption. These
methods are constantly developing—apart from classic geodetic techniques, satellite mea-
surements are used, both in stationary and mobile versions. Determining the coordinates
of the track axis enables the visualization of a given railway route, giving a general orienta-
tion of its location. However, since the purpose of the measurements is to determine the
geometrical parameters (i.e., identification) of the measured route, some additional actions
should be taken; in the standard approach, this will mean measuring horizontal arrows.

Meanwhile, the measured coordinates of the track axis allow one to directly determine
the existing horizontal curvature, without the need for additional measurements. It is
possible thanks to the development of a new method for determining the curvature, the
so-called method of the moving chord. It allows one to comprehensively identify the
existing geometric elements (straight sections, circular arcs, and transition curves) along
with the determination of segmentation points that define the connections of these elements
with each other.

This paper presents a detailed algorithm for determining the curvature of the track axis
with the use of the moving chord method, and then discusses the procedure for identifying
the geometric layout of an exploited railway route on the basis of the determined curvature.
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The conducted activities have been illustrated with calculation examples, covering a 5.5 km
long test section with five areas of directional change. It showed a sequential procedure that
led to the solution of the given problem. Based on the curvature diagram, the coordinates
of the segmentation points, which allow one to fully identify the geometrical layout present
in the test section, were determined.

The moving chord method does not allow for directly determining the segmentation
points of the geometric layout; it is necessary to carry out an additional procedure. It is
easy to notice, however, that the main role here is played by the transition curves, and the
determination of the location of their extreme points enables one to determine segmentation
points and lengths of individual curves. The significant difficulty of identifying transition
curves makes attempting to use the directional angle of the route to determine the parame-
ters of the geometric layout [35] not fully effective. It is not possible to ensure sufficient
accuracy of calculations with the necessary numerical differentiation of the directional
angle in the areas where the transition curve connects with a straight section and with a
circular arc. This has been explained in [27].
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