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Abstract: The mathematical model of a fragment of a high-voltage electric network is developed in
this paper. The network consists of a long power line with distributed parameters and an equivalent
three-phase active-inductive load. Neumann and Robin—Poincare boundary conditions were used to
identify the boundary conditions for the long line equation. The parameter output voltage (voltage at
the end of the line) is introduced into the paper for further universal use of the developed line model.
On the basis of the developed mathematical model, the program code is written in the algorithmic
language Visual Fortran. By means of it, oscillograms of transient electromagnetic processes of
voltages and currents in the form of spatial, temporal and temporal-spatial distributions during
remote two-phase short circuits in the transmission line of high voltage are obtained. Two transient
electromagnetic processes are analyzed in the present work. The first one was analyzed during
the switching on of the line to the normal mode of operation with the subsequent transition to the
emergency mode. The second one was analyzed during the switching on the line in the mode of
a remote two-phase short circuit to the ground. The results of transient electromagnetic process
simulation in the form of analyzed figures are shown. All the results presented in this paper were
obtained exclusively using numerical methods.

Keywords: transient electromagnetic processes; long power line; mathematical simulation;
Hamilton–Ostrogradskii principle; boundary conditions; short circuit; electrical network

1. Introduction

It is crucial to take into account the matter of emergency modes when designing
electrical networks. It is important to do as they are usually accompanied by damage to the
elements of electrical networks. The most dangerous and common emergency mode is a
short-circuit mode. After all, there are important short-circuit currents in the components
of electrical networks. Thermal and electrodynamic actions are brought about by them and
are also accompanied by a sharp voltage decline in the electrical grid.

Short-circuit currents can heat up conductive parts or even melt wires (temperatures
can be as high as 20,000 K). Therefore, there comes a fragmentary or complete termination
of the electricity supply to users. Additionally, such damage leads to the destruction
caused by an electric arc that occurs at the point of the short circuit and may alter adjacent
objects. The voltage is decreased by short circuits at the network nodes, which modify the
steadiness processes disruption and the stability of the power system as well.

Relay protection and automation must be properly designed for electrical networks
in order to avoid the above-mentioned consequences of short circuits. It is necessary to
perform a comprehensive study of emergency mode parameters. This requires an analysis
of transient electromagnetic processes in the appropriate operation modes. Two-phase
short circuits are no exceptions.

The method of mathematical modeling is one of the most effective and optimal current
ways of analyzing transient electromagnetic processes in electrical network elements.
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Talking about the mathematical modeling of transient electromagnetic processes in the
elements of electrical networks, we can apply circular and field approaches.

Today, many researchers prefer circular approaches to the analysis of transient pro-
cesses in electrical network elements. This approach is based on the equivalence of the
well-known telegraph equation with a circular electric circuit of substitution. This means
that from the field level, they descend to the circle level; that is, from the field setting of the
problem, they move to the circle level, thus reducing a priori the degree of adequacy of the
model of the line and therefore the degree of adequacy of the model of the entire object. It
cannot be said that such an approach will be wrong, but it is clear that when it is used, the
physical essence of the telegraph equation itself is lost.

The circular approach is considered to be a common tool that has already reached
its limits in transient process modeling. Its application is based on the use of RLC
substitution schemes.

Nowadays, there is a tendency to improve the methods and means of mathematical
modeling of processes and systems. Thus, the reference publication of the International
Council on Large Electrical Systems from February 2020 notes the need to use more ad-
vanced tools and methods for modeling power systems, including transient electromagnetic
processes. The use of models that allow real-time evaluation of the studied parameters is
especially relevant. Therefore, the field approach, in which the models are based on the
theory of the electromagnetic field, is widely supported. This approach makes it possible
to reproduce transient electromagnetic processes solely on the basis of the fundamental
laws of applied physics.

Our research also includes ultra-high-voltage power lines. As is known [1–3], these
lines have considerable lengths, which are commensurate with hundreds of kilometers.
Therefore, changing operating modes have waved processes. For adequate reproducing
of these processes, it is necessary to solve the long line differential equation (telegraph
equation) [4,5].

However, there are some nuances. A long line differential equation is a partial differen-
tial derivative equation. It is known that in order to solve such equations, it is necessary to
have boundary conditions. To find these boundary conditions, you need to use a mathemat-
ical model of the whole subsystem (both at the beginning and the end of the line), which, in
the case of volumetric subsystems, creates a rather difficult task. The problem is that they
are usually unknown or vaguely given. It is advised to use the boundary conditions of the
second and third genera (Neumann and Robin—Poincare boundary conditions) to solve
the long line differential equation.

Actually, in this paper, a technique of the mentioned boundary conditions identifica-
tion to the long line differential equations is considered. On the one hand, this approach
makes it possible to calculate transient electromagnetic processes with a high degree of
adequacy. On the other hand, it is possible to use the model of a three-phase power line
autonomously when modeling electrical networks that contain other elements.

2. Examination of a Recent Study

There are a large number of works devoted to the analysis of transient electromagnetic
processes in power lines during short circuits in the scientific literature. Let us consider
some of them close to the current work.

A mathematical model for the calculation of electromagnetic transient processes
in three-phase lines has been developed in [6]. The basis of the developed model is
differential equations with partial derivatives. They describe the electromagnetic state of
the object under study. The boundary and initial conditions for the study of a wide range
of practical problems are also displayed. The developed mathematical model is suitable for
the calculation of transient electromagnetic processes in emergency modes in particular. In
addition, the model can be used in two-phase short circuits as well.

This dissertation [7–9] shows a mathematical model of the transmission line that is
based on the methods of lost elements and the space state of the line. The method that
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is introduced is an uncomplicated and practical procedure for modeling the three-phase
transmission line directly in the time domain without explicit usage of inverse transforms.
The line model considers the frequency-dependent parameters, taking into account the
impact of the soil. In addition, it has been suggested in the paper to apply the procedure
of analytical integration of equations of electromagnetic state, which makes it possible to
study the transient and steady-state modes of line operation. The obtained results were
verified in a satisfactory way and the performance of the EMTP-RV software suite has
been presented.

In [10–12], a mathematical model of a power transmission line with classified parame-
ters was created. It is based on the equations of a long line of the first order with a given
boundary condition of voltage and current along the sides of the line.

In [13], the application of first-order long line equations for the study of transient
processes in the ground wire is studied. The imitation is conducted in the frequency domain
with the subsequent transition to time.

The paper [14] shows the mathematical model of a perfectly transposed three-phase
power line. It is allowed by the model to calculate phase currents and voltages along the
line as a function of the time coordinate. Currents and voltages are recorded in the form
of equations of the state of the replacement electrical circuit. The phase and interphase
parameters of the power line are taken into account. In this way, the mathematical model
of the line is calculated in the software package EMTP-RV. The evaluation of the computer
simulation’s results, which turns on the power line in the non-working stroke model, is
introduced in the paperwork.

The three-phase power lines with distributed parameters pattern has been created
in [15] with the usage of the software package PSCAD. This model can be used to imitate
transient electromagnetic processes while switching short circuits and other modes of the
line operator. The simulation of various modes is carried out by additional involvement of
R, L and C elements. The traveling wave method was used to solve the long line equation.

The [16] presents the examination of overvoltages in the line of high voltage that
was carried out. The transmission line in this case is represented by a number of connec-
tions of alternate electrical networks. The computer simulation was executed in the ATP
software package.

In [17], surge simulations in the 500 kV line during a lightning strike were simulated
with the support of the PSCD software package. The coronation phenomenon of wires was
neglected during the simulation, and the running phase and interphase active conductivities
were not taken into account.

For the analysis of transient processes in a three-phase power line with arbitrary
voltage and current distributions in the line, it is suggested to use the numerical inverse
Laplace transform algorithm in [18]. Here, the Laplace transform methodology is also
applied to find voltages and currents along the line edges. Phase voltages and currents are
obtained as logical functions of their frequency. It is indicated how the numerical inverse
Laplace transform can be applied to gain the distribution of electromagnetic waves in a
transmission line.

The transient electromagnetic processes in symmetric and asymmetric short circuits in
different places of the high-voltage power line connected to the generating unit busbars
are scrutinized in [19]. The equations of voltages and currents of the transmission line
and substation buses are introduced in phase coordinates. It gives the possibility to model
different asymmetric states easily. Here, a model for temporary electromagnetic process
analysis has been developed in the MatLab/Simulink software package.

The available literature’s analysis has shown that most studies of transient electro-
magnetic processes in power lines are conducted by replacing the equation of the long line
(telegraph equation) with a circular equivalent [14–17], which is not always effective. More-
over, it is possible to say that insufficient attention is given to the mathematical modeling of
these processes in long power lines at the field level. Indeed, this work has been underway
for a long time. Commonly used approaches require well-defined boundary conditions
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for the long line equation [6,10,13,18], or they are burdened by analytical integration [7–9].
With regard to the MatLab/Simulink software package, the distributed parameter line model
built into the Simulink library is made easy. This prototype does not take into consider-
ation the running resistance, phase and interfacial conductivity in order to simplify the
calculations by the method of D’Alembert [19–21]. The same approaches are used in other
software tools [22]. However, this may result in inaccuracy of the results.

Hence, the aim of the work is to improve methods of mathematical modeling and analysis
of transient electromagnetic processes in long three-phase power lines in emergency modes.

3. Presentation of Basic Material

There are usually two main approaches to obtaining equations for the electromagnetic
state of the studied objects. The first is a classical approach derived from the law of
energy conservation. The second one is a variational approach based on minimizing the
functionality of the examined object. Each of these approaches has its disadvantages and
advantages, but when used correctly, they both lead to accurate results [23].

It is advised to use a modified Hamilton–Ostrogradsky principle (variational ap-
proach) for the analysis of transient electromagnetic processes in the elements of electrical
networks [24]. This viewpoint avoids the decomposition of a single dynamic system. The
first equations of the object’s electromagnetic state under study can be obtained purely on
the basis of a single energy approach by constructing an extended Lagrange function [24].
This method is especially relevant for systems with distributed parameters, particularly for
long power lines.

This thesis of transient electromagnetic process analysis in long power lines based on
variational approaches in a single-line version was extended in [25] and further developed
in [25]. To entirely duplicate these processes in long power lines, which often operate in
asymmetric modes, they must be modeled in multiphase execution. On this account, there
will be built a mathematical model of the line in three-phase execution.

Figure 1 shows the calculation scheme of the electrical network’s fragment we are
studying. The crucial element is a long power line. It is depicted in a three-phase design as
a line with distributed parameters (here are shown only the first and last discrete nodes
of the line). A voltage is applied to the beginning of the line. In the end, an equivalent
three-phase active-inductive load is connected to it.
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Figure 1. Calculation scheme of the studied fragment of the electrical network (for the first and last 
discrete sections of the line). 
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Figure 1. Calculation scheme of the studied fragment of the electrical network (for the first and last
discrete sections of the line).

3.1. Hamilton–Ostrogradsky Principle

We have already mentioned that when building mathematical models of components
of electrical networks and systems, we use the Hamilton–Ostrogradsky principle. This
principle [24] extends the classical Lagrangian principle by adding two more components:
the energy of dissipative forces in the system and the energy of non-potential forces acting
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on the object from the outside. Therefore, four types of energy act on the research object.
Since we are considering an object with distributed parameters, we also use the concept of
linear energy density. Next, based on the Hamilton–Ostrogradsky principle, an extended
action functional is formed, after which it is minimized. As a result, the extremum of the
action functional is obtained, which can be interpreted as a solution of the Euler–Lagrange
equation for the subsystem with lumped parameters and the Euler–Poisson equation for
the subsystem with distributed parameters. These solutions represent the mathematical
model of the object under study. There are elements with both the concentrated and the
distributed parameters in the fragment of an electric network we investigated. Therefore,
the Hamilton–Ostrogradsky action functional looks like this [24]:

S =

t1∫
0

L∗dt +
t1∫

0

∫
l

Lldldt, I =
∫
l

Lldl, (1)

where S—action according to Hamilton–Ostrogradsky; I—energy functional; L*—extended
Lagrange function, Ll—linear density of the modified Lagrange function [25]:

L∗ = T̃∗ − P∗ + Φ∗ − D∗, Ll = T̃l − Pl + Φl − Dl , (2)

where T̃∗—kinetic coenergy, P*—potential energy, Φ*—energy dissipation, and D*—energy
of outside nonpotential forces, with index l being the corresponding linear densities
of energies.

You can get a detailed look at the derivation of the equation of a long line with
distributed parameters by our scientific association in the work [26] and other elements
of electrical networks in the works [27,28]. Therefore, in order to reduce the volume of
material, we propose ready-made equations for the studied fragment of the electrical
network (Figure 1).

3.2. Mathematical Model of a Fragment of the Electric Network

The final equations of the electromagnetic state of the studied fragment of the electrical
network in matrix-vector form are presented:

∂2u
∂t2 = (L0С0)

−1
(

∂2u
∂x2 − (L0G0 + R0С0)

∂u
∂t
−R0G0u

)
; (3)

diH
dt

= L−1(u2 −RHiH), (4)

where
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RH = diag
(

R(A)
H , R(B)

H , R(C)
H

)
, LH = diag

(
L(A)

H , L(B)
H , L(C)

H

)
. (7)

In Equations (5)–(7) R0, g0, C0, L0—resistance, conductivity, capacitance and inductance
per unit length of the line, respectively; g, C—phase-to-phase conductivity and capacitance
per unit length, respectively; М—mutual inductance per unit length; RZ—earth resistance
per unit length; RH

(k), LH
(k)—resistance and inductance of the corresponding phase of the

equivalent load; k = A, B, C—the phase name.
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The judgments presented by us require, during the study of transient processes in
power lines, the solution of differential equations with partial derivatives (equations of
a long line). Today, solving these equations is not a problem. Here, you can use such
methods as the traveling wave method (D’Alembert’s method), the method of separation
of variables, the method of straight lines, etc. Actually, the problem is finding the boundary
conditions for the equation of a long line. It is known that there are boundary conditions of
the first, second and third orders. In modern literature, boundary conditions of the first
kind are often used to solve the equation of a long line. The use of boundary conditions of
the first kind will be appropriate when the boundary conditions at the beginning and end
of the line are known (currents, voltages, charges are given functions); on the other hand,
in real problems of applied electrical engineering, the mentioned functional dependences
of the boundary conditions are not always known, especially when it concerns the analysis
of complex electrical networks that are connected by a long line. In this case, it is known
that the voltage at the beginning of the line (u1 = uxх = 0), but not at the end of it. Ergo, it is
necessary to locate only the boundary condition at the end of the line. Note that the line is
loaded with an equivalent three-phase active-inductive load. We see that it is not possible
to use this method in full. Therefore, we propose using boundary conditions of the second
and third kinds. This approach makes it possible to solve the equation of a long line in the
absence of the boundary stress function using an equation relative to its spatial derivative.
The application of boundary conditions of the second and third kinds makes it possible to
exclude the boundary stress from the system of differential equations in such a way that the
sought stress is taken into account consistently during the integration of the latter. Thus,
everything is connected in one system of equations.

In [25] symmetrical modes were considered for homogeneous long power lines. This
is why the line was formed in a single-phase (single-line) design. It is suggested to
use the boundary conditions of the second and third genera (boundary Neumann and
Robin–Poincare conditions). Moreover, the equation can be obtained by Kirchhoff’s second
law for electric circuits with distributed parameters. It is proposed to use this technique for
three-phase systems. The mentioned equation in matrix-vector form is written below:

− ∂u
∂x

= R0i + L0
∂i
∂t

. (8)

By discretizing Equations (1) and (6) with the method of lines, using the notion of the
central derivative, we obtain:

dvj

dt
= (L0C0)

−1

(
1

(∆x)2

(
uj−1 − 2uj + uj+1

)
− (L0G0 +R0С0)vj −R0G0 uj

)
,

duj

dt
= vj; (9)

dij

dt
= L0

−1 1
2∆x

(
uj−1 − uj+1

)
− L0

−1R0ij, j = 2, . . . , N. (10)

Write Equations (9) and (10) for the last discrete node of the line (j = N):

dvN
dt

= (L0C0)
−1

(
1

(∆x)2 (uN−1 − 2uN + uN+1)− (L0G0 +R0С0)vN − R0G0 uN

)
,

duN
dt

= vN ; (11)

diN
dt

= L0
−1 1

2∆x
(uN−1 − uN+1) − L0

−1R0iN . (12)

Analyzing Equations (11) and (12), we see that they have an unknown voltage in the
fictitious node uN+1. This makes it impossible to find the voltage at the last discrete node of
line uN Equation (11). Additionally, we cannot find the current in the last discrete branch
of line iN Equation (12). The voltage uN+1 does not exist in nature, and it has no physical
meaning. It is a purely fictitious mathematical quantity.

The method of finding this voltage is described and tested in the work [29], however,
it is not perfect, because in order to build mathematical models of electrical networks
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of various configurations of line connections with other elements, the fictitious voltage
uN+1 will also change, which additionally requires changes in line models. We propose to
make the line model more autonomous (universal); for this, we will introduce the “output
voltage” parameter into the mentioned model (voltage at the end of the line u2 = uxх = l
(uN 6= uxх = l), see Figure 1). Let us present the sequence of finding the fictitious voltage
uN+1 at the end of the power transmission line.

For the last discrete contour of the line (see Figure 1), we write the equation according
to Kirchhoff’s second law:

diN
dt

= [∆xL0]
−1(uN − u2 − ∆xR0iN) . (13)

We equate Equation (12) (written for the last discrete node of the line (j = N)) with
Equation (13).

L0
−1 1

2∆x
(uN−1 − uN+1)− L0

−1R0iN = [∆xL0]
−1(uN − u2 − ∆xR0iN). (14)

Expressing from Equation (14) the voltage function of fictitious node uN+1, we obtain:

uN+1 = uN−1 + 2(u2 − uN), (15)

It is possible to avoid the fictitious voltage change when changing the configuration of
the power line connection scheme with other elements of the electrical network. For this,
use expression (15) as a function of the fictitious voltage uN+1. This makes the mathematical
model of the line autonomous (universal). However, there is now a need to find the voltage
u2, which appears in expression (15). This voltage changes depending on the network
circuit configuration. Since it has no direct effect on the line model, the line model will
not change.

The current iN is identically equal to the current iH (see Figure 1). Therefore, taking
into account the initial conditions [24], we can write (equate the derivatives of currents):

iH ≡ iN ⇒ d
dt

iH ≡
d
dt

iN . (16)

where, taking into account Equations (4) and (13), we obtain:

LH
−1(u2 −RHiN) = [∆xL0]

−1(uN − u2 − ∆xR0iN) . (17)

Expressing from Equation (17) the voltage function u2, we obtain:

u2 =
[
L−1 + [∆xL0]

−1
]−1[

[∆xL0]
−1(uN − ∆xr0iN) + L−1ri

]
. (18)

The value of the current in the first discrete branch of the line or, if necessary, in all
discrete line branches, can be calculated by discretizing Equation (8) by the lines method,
but now using the concept of the right derivative:

dij

dt
= L−1

0
1

∆x
(
uj − uj+1

)
− L−1

0 R0ij, j = 1, . . . , N. (19)

The system of differential Equations (4), (9), (10), and (15) is subject to joint integration,
noting Equations (5)–(7), (15) and (18).

4. Computer Simulation Outcome

The program code in the algorithmic programming language Visual Fortran was written
to perform a computer simulation based on the developed mathematical formula. The code
reproduces transient electromagnetic processes in the studied fragment of the electrical
network (Figure 1).
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4.1. Description of the Order and Parameters of the Simulation

A computer simulation was performed to study transient electromagnetic processes.
They occur in the electrical network fragment presented in Figure 1. The simulation was
performed for two experiments in which remote two-phase short circuits to the ground
were investigated (short circuits at the end of the power line) (point K, see Figure 1).

The simulation was carried out as follows in the first experiment. The transmission line
was turned on at time t = 0 s, with an asymmetric equivalent three-phase active-inductive
load on the normal mode of operation. The specifics of phase-controlled switching (the
switch is not modeled in the current work) were taken into consideration; notably, the line
was switched on so that the phase voltage functions start from zero. Phase A was turned
on at time t = 0 s, phase B − t = 0.00333 s, phase C − t = 0.00666 s. A two-phase short circuit
to ground was imitated after entering the steady condition, at time t = 0.11 s, at the end of
the power line (phases A and B, see Figure 1).

The second experiment showed the power line that was switched on for a two-phase
short circuit at the end of the power line at time t = 0 s (as in the previous experiment, the
short circuit to the ground was simulated in phases A and B).

The operation of emergency automation and relay line protection during the computer
simulations was not taken into account. That is why the simulation results are presented
without switching off short-circuit currents. It is obvious that this option is not entirely
real; however, the simulation of switching processes of short-circuit currents is not in the
scientific interests of the current work.

The parameters of the real power transmission line 750 kV, which connects the substa-
tion “Zakhidnoukrainska” (Ukraine) with the substation “Albertirsha” (Hungary) with a
length l = 476 km, were accepted for research.

The parameters of the long line with distributed constants are as follows:
R0 = 1.9 × 10−5 Om/m, L0 = 1.665 × 10−6 H/m, C0 = 1.0131 × 10−11 F/m,
g0 = 3.25 × 10−11 Sm/m, C = 1.0122 × 10−12 F/m, g = 3.25 × 10−13 Sm/m,
RZ = 5× 10−5 Om/m, M = 7.41× 10−7 H/m. The parameters of the equivalent three-phase
active-inductive load are as follows: RН

(A) = 420 Om, RН
(B) = 380 Om, RН

(C) = 400 Om,
LН

(A) = 0.85 H, LН
(B) = 0.7 H, LН

(C) = 0.75 H. Computer simulation was performed with
the following mode parameters: u1

(A) = 632 sin(ωt) kV, u1
(B) = 632 sin(ωt − 120º) kV,

u1
(C) = 632 sin(ωt + 120º) kV. The step of spatial discretization of differential equations

with partial derivatives by the method of lines is equal to: ∆х = l/20 = 476/20 = 23.8 km
Conventional differential equations were integrated by the 6th order Gir method with a
step of ∆t = 27 µs.

Since we analyze three-phase states, all the distributions of voltage and current func-
tions considered in the article are denoted as follows: phase A—yellow lines,
phase B—green, and phase C—red.

4.2. Experiment No. 1

Figures 2 and 3 present the spatial distributions of phase voltages at time t = 0.001 s
and phase currents at time t = 0.007 s, respectively. These figures very well reflect the course
of wave electromagnetic processes in the power line, so they will be analyzed.

From Figure 2 it can be seen that during the beginning of the transmission line to
normal operation at time t = 0.001 s, the voltage of phase A at the beginning of the line has
a value of 200 kV. It was observed that in the time of 0.001 s, the electromagnetic wave had
not yet reached the end of the line. At a distance of 350 km from the beginning of the line,
the voltage was still zero. Phases B and C have not yet been switched on, so the green and
red lines overlap. However, voltages are present on them (in the middle of the 22 kV line).
This is because the line model takes into account the inter-inductive relationships between
the phases, so the phenomenon of electromagnetic induction can be noticed.

We can see from Figure 3 that the current of phase A at the beginning of the line
has a value of 0.75 kA. It is linearly increasing along the line to a value of 1.3 kA. The
current of phase B at the beginning of the line has a value of 0.27 kA, in the middle of the
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line—0.12 kA, and at the end—0.07 kA. The current of phase C at the beginning of the line
has a value of −1.45 kA and it is decreasing linearly along the line to a value of –0.5 kA.
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We can see from analyzing the voltage transient processes (Figure 4) that despite the
use of controlled switching, overvoltages are still present when the line is turned on. For
example, the phase instantaneous amplitude values of the overvoltages of phases A and B
reached 717 kV, which was 1.11UMW. The instantaneous voltage amplitude values were
approximately 620 kV after entering the steady state. The steady-state amplitude values
of the voltages of phases A and B decreased to 352 kV after the occurrence of a two-phase
short circuit at the end of the line. The voltage of phase C in the middle of the line did not
change in the mentioned short circuit.

We observed a completely different situation with the transient processes of phase
currents when the line was turned on. Here, controlled switching has affected the shock
currents—they are virtually absent. We can see that the currents acquired instantaneous
amplitude values of approximately 1.33 kA after entering the steady state. The shock
current of phase A reached the value of −8 kA, and phase B—6.78 kA after a short circuit.
There is practically no shock current in phase C. Only after a short circuit did the steady-
state amplitude value of the current of the undamaged phase increase to 2.34 kA.

Figures 6 and 7 show the temporal-space voltage and current distributions of phase B.
These figures are made in 3D format; they combine both the time and space distributions
of voltage and current in a line. These figures show how electromagnetic waves move in
space along the transmission line.
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Figure 6. Temporal-spatial voltage distribution of phase B in line at the time t ∈ (0; 0.03) s.

Analysis of the mentioned figures shows that when the line is switched on for an equiv-
alent asymmetric active-inductive load. The phase B voltage had the largest fluctuations at
the end of the power line (Figure 6). Phase B current—at the beginning (Figure 7).

It is advisable to analyze Figure 6 together with Figures 2 and 4, and Figure 7 with
Figures 3 and 5.
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4.3. Experiment No. 2

Figures 8 and 9 show the spatial distributions of phase voltages and phase currents at
time t = 0.004 s, respectively.
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Figure 8. Spatial distributions of phase voltages in the line at time t = 0.004 s. 

Figure 9 shows that the spatial distributions of the phase currents in the line have 
nonlinear characters. The current of phase A at the beginning of the line was 2380 A, de-
creasing in the middle of the line to 2240 A, and at the end of the line, increasing again to 
2340 A. The spatial distributions of the currents of phases B and C were somewhat similar 
because after switching on phase B (0.0007 s), phase C was generally turned off. That is 
why no significant changes had yet occurred. The current of phase B had a value of −805 
A and phase C −760 A at the beginning of the line. The current of phase B had a value of 
−760 A and phase C −500 A in the middle of the line. The current of phase B had a value 
of −770 A, and phase C −720 A at the end of the line. 
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Figure 9. Spatial distributions of phase currents in the line at time t = 0.004 s. 

Figure 8. Spatial distributions of phase voltages in the line at time t = 0.004 s.
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Analyzing the spatial distributions of phase voltages at time t = 0.004 s (Figure 8),
we see that the voltage of phase A had a value of 600 kV at the beginning of the line. It
decreased linearly along the line to zero. This is due to the fact that the line was switched
on in the mode of a two-phase short circuit to the ground at the end of the transmission
line (phases A and B). As for the voltage of phase B, it had a zero value at the beginning of
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the line, 60 kV in the middle of the line, and at the end of the line. The same as the voltage
of phase A, it was also equal to zero. The voltage of phase C at the beginning of the line
had a value of −130 kV, decreasing in the middle of the line to zero, and at the end of the
line again increased to −10 kV. Since at time t = 0.004 s, phase C was not yet turned on, it
can be concluded that the presence of voltage in this phase was caused by the phenomenon
of electromagnetic induction.

Figure 9 shows that the spatial distributions of the phase currents in the line have
nonlinear characters. The current of phase A at the beginning of the line was 2380 A,
decreasing in the middle of the line to 2240 A, and at the end of the line, increasing again to
2340 A. The spatial distributions of the currents of phases B and C were somewhat similar
because after switching on phase B (0.0007 s), phase C was generally turned off. That
is why no significant changes had yet occurred. The current of phase B had a value of
−805 A and phase C −760 A at the beginning of the line. The current of phase B had a
value of −760 A and phase C −500 A in the middle of the line. The current of phase B had
a value of −770 A, and phase C −720 A at the end of the line.

Figures 10 and 11 show the transients of phase voltages at the last (N-th) discrete
node of the line (24 km to the end of the line) and phase currents in the middle of the
line, respectively.

Sensors 2023, 23, 298 13 of 16 
 

 

Figures 10 and 11 show the transients of phase voltages at the last (N-th) discrete 
node of the line (24 km to the end of the line) and phase currents in the middle of the line, 
respectively. 

In Figure 10, we can see that when the power line was switched on in the two-phase 
short circuit to the ground at the end of the line, the voltages of the damaged phases A 
and B had instantaneous amplitude steady-state values of 33 kV. Additionally, we see that 
when the line was turned on in the mentioned emergency mode on the undamaged phase 
C, there was an overvoltage of 763 kV, which was 1.18UMW. After the transition process, 
the voltage of phase C at the last discrete node of the line acquired a steady-state ampli-
tude value of 572 kV. 

0 0.1 0.2 0.3
800

400

0

400

800

Time t (s)

Vo
lta

ge
 u

 (k
V)

 
Figure 10. Transient processes of phase voltages on the last discrete node of the line (24 km to the 
end of the line). 

Making an analysis of Figure 11, we can see that when the line was switched on for 
a two-phase short circuit at the end of the line, there were shock currents in the middle of 
the line on phases A and B having values of 6.27 kA and 5.45 kA, respectively. The shock 
current of the undamaged phase had a value of 3.75 kA. There were significant aperiodic 
components in the currents of all phases. They attenuated after the transition process, and 
the phase currents in the middle of the line acquired the following steady-state amplitude 
values: phase A current—4.5 kA, phase B—3.9 kA, and phase C—2 kA. 

0 0.1 0.2 0.3
8

4

0

4

8

C
ur

re
nt

 i 
(k

A)

Time t (s)  
Figure 11. Transient processes of phase currents in the middle of the line. 

Figure 10. Transient processes of phase voltages on the last discrete node of the line (24 km to the
end of the line).

Sensors 2023, 23, 298 13 of 16 
 

 

Figures 10 and 11 show the transients of phase voltages at the last (N-th) discrete 
node of the line (24 km to the end of the line) and phase currents in the middle of the line, 
respectively. 

In Figure 10, we can see that when the power line was switched on in the two-phase 
short circuit to the ground at the end of the line, the voltages of the damaged phases A 
and B had instantaneous amplitude steady-state values of 33 kV. Additionally, we see that 
when the line was turned on in the mentioned emergency mode on the undamaged phase 
C, there was an overvoltage of 763 kV, which was 1.18UMW. After the transition process, 
the voltage of phase C at the last discrete node of the line acquired a steady-state ampli-
tude value of 572 kV. 

0 0.1 0.2 0.3
800

400

0

400

800

Time t (s)

Vo
lta

ge
 u

 (k
V)

 
Figure 10. Transient processes of phase voltages on the last discrete node of the line (24 km to the 
end of the line). 

Making an analysis of Figure 11, we can see that when the line was switched on for 
a two-phase short circuit at the end of the line, there were shock currents in the middle of 
the line on phases A and B having values of 6.27 kA and 5.45 kA, respectively. The shock 
current of the undamaged phase had a value of 3.75 kA. There were significant aperiodic 
components in the currents of all phases. They attenuated after the transition process, and 
the phase currents in the middle of the line acquired the following steady-state amplitude 
values: phase A current—4.5 kA, phase B—3.9 kA, and phase C—2 kA. 

0 0.1 0.2 0.3
8

4

0

4

8

C
ur

re
nt

 i 
(k

A)

Time t (s)  
Figure 11. Transient processes of phase currents in the middle of the line. Figure 11. Transient processes of phase currents in the middle of the line.



Sensors 2023, 23, 298 13 of 15

In Figure 10, we can see that when the power line was switched on in the two-phase
short circuit to the ground at the end of the line, the voltages of the damaged phases A
and B had instantaneous amplitude steady-state values of 33 kV. Additionally, we see that
when the line was turned on in the mentioned emergency mode on the undamaged phase
C, there was an overvoltage of 763 kV, which was 1.18UMW. After the transition process,
the voltage of phase C at the last discrete node of the line acquired a steady-state amplitude
value of 572 kV.

Making an analysis of Figure 11, we can see that when the line was switched on for a
two-phase short circuit at the end of the line, there were shock currents in the middle of
the line on phases A and B having values of 6.27 kA and 5.45 kA, respectively. The shock
current of the undamaged phase had a value of 3.75 kA. There were significant aperiodic
components in the currents of all phases. They attenuated after the transition process, and
the phase currents in the middle of the line acquired the following steady-state amplitude
values: phase A current—4.5 kA, phase B—3.9 kA, and phase C—2 kA.

In Figures 12 and 13, we present the temporal-spatial distributions of phase A voltage
and phase C current, respectively. It better displays the picture of transient electromagnetic
processes in the transmission line when it is turned on in the remote two-phase short circuit
to the ground.

Sensors 2023, 23, 298 14 of 16 
 

 

In Figures 12 and 13, we present the temporal-spatial distributions of phase A voltage 
and phase C current, respectively. It better displays the picture of transient electromag-
netic processes in the transmission line when it is turned on in the remote two-phase short 
circuit to the ground. 

0
500

476
238
0

0.004
0.012

0.02
0.028

500

0

Vo
lta

ge
 u

 (k
V)

 
Figure 12. Temporal-spatial voltage distribution of phase A in line at the time t ∈ (0; 0.03) s. 

0
2

0.004
0.012

0.02
0.028

476
238

0

C
ur

re
nt

 i 
(k

A)

 
Figure 13. Temporal-spatial current distribution of phase C in line at the time t ∈ (0; 0.03) s. 

It is advisable to analyze Figure 12 together with Figures 8 and 10, and Figure 13 with 
Figures 9 and 11. 

5. Conclusions 
Neumann and Robin Poincare’s conclusion of boundary conditions to identify 

boundary conditions to the differential equation of a long line of the second order makes 
it possible to effectively sort the problems out related to the analysis of transient electro-
magnetic processes in high-voltage lines, where they have to be considered as distributed 
parameters. 

The introduction to the mathematical model of the line is based on a discretized equa-
tion of a long line. To solve this problem, the boundary conditions of the second and third 
genera are applied; the parameter output voltage (voltage at the end of line u2) allows the 
line model to be more autonomous and universal on the one hand. On the other hand, 
pens offer wider possibilities for reproduction of emergency states of operation of the line. 

A comparative analysis of the transient electromagnetic processes of remote two-
phase short circuits to the ground showed that the shock currents of the short circuit that 
occurred after the system entered the steady state (experiment No. 1) were 25% greater 
than when the line was turned on for a similar short circuit (experiment No. 2). After an-
alyzing the overvoltages of the undamaged phase, we can see that when the line was 
started for a two-phase short circuit (experiment No. 2), they were 10% higher than in the 
case of a short circuit that occurred after the steady state of operation (experiment No. 1). 

Figure 12. Temporal-spatial voltage distribution of phase A in line at the time t ∈ (0; 0.03) s.

Sensors 2023, 23, 298 14 of 16 
 

 

In Figures 12 and 13, we present the temporal-spatial distributions of phase A voltage 
and phase C current, respectively. It better displays the picture of transient electromag-
netic processes in the transmission line when it is turned on in the remote two-phase short 
circuit to the ground. 

0
500

476
238
0

0.004
0.012

0.02
0.028

500

0

Vo
lta

ge
 u

 (k
V)

 
Figure 12. Temporal-spatial voltage distribution of phase A in line at the time t ∈ (0; 0.03) s. 

0
2

0.004
0.012

0.02
0.028

476
238

0

C
ur

re
nt

 i 
(k

A)

 
Figure 13. Temporal-spatial current distribution of phase C in line at the time t ∈ (0; 0.03) s. 

It is advisable to analyze Figure 12 together with Figures 8 and 10, and Figure 13 with 
Figures 9 and 11. 

5. Conclusions 
Neumann and Robin Poincare’s conclusion of boundary conditions to identify 

boundary conditions to the differential equation of a long line of the second order makes 
it possible to effectively sort the problems out related to the analysis of transient electro-
magnetic processes in high-voltage lines, where they have to be considered as distributed 
parameters. 

The introduction to the mathematical model of the line is based on a discretized equa-
tion of a long line. To solve this problem, the boundary conditions of the second and third 
genera are applied; the parameter output voltage (voltage at the end of line u2) allows the 
line model to be more autonomous and universal on the one hand. On the other hand, 
pens offer wider possibilities for reproduction of emergency states of operation of the line. 

A comparative analysis of the transient electromagnetic processes of remote two-
phase short circuits to the ground showed that the shock currents of the short circuit that 
occurred after the system entered the steady state (experiment No. 1) were 25% greater 
than when the line was turned on for a similar short circuit (experiment No. 2). After an-
alyzing the overvoltages of the undamaged phase, we can see that when the line was 
started for a two-phase short circuit (experiment No. 2), they were 10% higher than in the 
case of a short circuit that occurred after the steady state of operation (experiment No. 1). 

Figure 13. Temporal-spatial current distribution of phase C in line at the time t ∈ (0; 0.03) s.

It is advisable to analyze Figure 12 together with Figures 8 and 10, and Figure 13 with
Figures 9 and 11.

5. Conclusions

Neumann and Robin Poincare’s conclusion of boundary conditions to identify boundary
conditions to the differential equation of a long line of the second order makes it possible to
effectively sort the problems out related to the analysis of transient electromagnetic processes
in high-voltage lines, where they have to be considered as distributed parameters.
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The introduction to the mathematical model of the line is based on a discretized
equation of a long line. To solve this problem, the boundary conditions of the second and
third genera are applied; the parameter output voltage (voltage at the end of line u2) allows
the line model to be more autonomous and universal on the one hand. On the other hand,
pens offer wider possibilities for reproduction of emergency states of operation of the line.

A comparative analysis of the transient electromagnetic processes of remote two-phase
short circuits to the ground showed that the shock currents of the short circuit that occurred
after the system entered the steady state (experiment No. 1) were 25% greater than when
the line was turned on for a similar short circuit (experiment No. 2). After analyzing the
overvoltages of the undamaged phase, we can see that when the line was started for a
two-phase short circuit (experiment No. 2), they were 10% higher than in the case of a short
circuit that occurred after the steady state of operation (experiment No. 1).

Information about wave processes in the line in 3D format temporal-spatial distribu-
tions of voltages and currents is maximally illuminated. They also confirm the physical
principles of electrodynamics regarding the flow of wave electromagnetic processes in long
power lines. They indicate the high adequacy of the developed mathematical formula.

The content of this work will be used in further research on the joint operation
of turbogenerators, unit transformers, switching facilities and ultra-high voltage long
transmission lines.
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