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Abstract: Precise pear detection and recognition is an essential step toward modernizing orchard
management. However, due to the ubiquitous occlusion in orchards and various locations of image
acquisition, the pears in the acquired images may be quite small and occluded, causing high false
detection and object loss rate. In this paper, a multi-scale collaborative perception network YOLOv5s-
FP (Fusion and Perception) was proposed for pear detection, which coupled local and global features.
Specifically, a pear dataset with a high proportion of small and occluded pears was proposed,
comprising 3680 images acquired with cameras mounted on a ground tripod and a UAV platform.
The cross-stage partial (CSP) module was optimized to extract global features through a transformer
encoder, which was then fused with local features by an attentional feature fusion mechanism.
Subsequently, a modified path aggregation network oriented to collaboration perception of multi-
scale features was proposed by incorporating a transformer encoder, the optimized CSP, and new skip
connections. The quantitative results of utilizing the YOLOv5s-FP for pear detection were compared
with other typical object detection networks of the YOLO series, recording the highest average
precision of 96.12% with less detection time and computational cost. In qualitative experiments, the
proposed network achieved superior visual performance with stronger robustness to the changes in
occlusion and illumination conditions, particularly providing the ability to detect pears with different
sizes in highly dense, overlapping environments and non-normal illumination areas. Therefore,
the proposed YOLOv5s-FP network was practicable for detecting in-field pears in a real-time and
accurate way, which could be an advantageous component of the technology for monitoring pear
growth status and implementing automated harvesting in unmanned orchards.

Keywords: object detection; agricultural application; transformer encoder; multi-scale feature;
collaboration perception

1. Introduction

Pears are widely cultivated throughout the world [1], and China is the largest pear
producer, contributing to approximately 90% of worldwide pear production. However,
in traditional labor-intensive agriculture, it is often necessary to invest a large number
of human resources for production activities, with a high repetition of labor tasks and
low efficiency, which is not conducive to the long-term development of the pear industry.
Fortunately, the rapid development of artificial intelligence technology and the innovation
of general agricultural equipment has promoted the process of intelligent agriculture and
provided a feasible plan for reducing human workload and promoting the transition to
technology-intensive agriculture [2,3]. At present, precision agriculture technologies have
become integral in collecting information without human intervention on fruit growth
and health evaluation [4–6]. In the pear detection task, due to the similarity of color
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and pattern, complex background, overlapping of densely distributed target pears, ever-
changing illumination conditions, and other factors, it is always greatly difficult and
challenging to effectively and accurately detect target pears. It is of great significance not
only to promote the development of pear growth monitoring, but also to improve the
harvest efficiency and economic benefit of pears if the automatic detection of pears could be
effectively implemented.

In this paper, we implemented the accurate detection of in-field pears by means of
an improved YOLOv5s utilizing a transformer encoder and collaboration perception of
multi-scale features. More specifically, the present work built a pear dataset, including
3680 images captured from cameras mounted on a ground tripod and a UAV platform. Spe-
cific information on the models and parameters of the charge-coupled device (CCD) camera
and the unmanned aerial vehicle (UAV) platform are described in detail in Section 3.1.1.
The optimized YOLOv5s-FP was then introduced with the idea of utilizing a transformer
encoder to couple local and global features between feature maps and channels, and further
conducting collaboration perception of multi-scale features that referred to local and global
attention towards multi-scale features with different receptive fields. The contribution of
this paper can be summarized into the following three aspects.

• The original cross-stage-partial module was optimized to extract non-local features
through a transformer encoder, which was then fused with local features by an atten-
tional feature fusion mechanism, achieving the mutual embedding of local features
and global features.

• A modified path aggregation network oriented to collaboration perception of multi-
scale features was proposed by incorporating a transformer encoder and the opti-
mized CSP module into the paths, and new skip connections were made to transfer
information between paths to enhance information exchange and prevent network
degradation [7].

• Quantitative and qualitative controlled experiments were carried out to compare the
detection results of pears at a variety of sizes, illuminations, and viewpoints. The
experimental results indicated the beneficial impacts of the improved network on pear
detection tasks in natural environments, demonstrating the good potential in assisting
pear growth monitoring and automatic harvesting.

The rest of the paper is structured as follows. Section 2 introduces the construction of
the dataset and describes the improved YOLOv5s network, as well as the optimization ideas
of CSP and multi-scale feature collaboration perception. Section 3 presents experimental
findings for the improved network and the original network for controlled detection of
tasks refined at various sizes, illuminations, and viewpoints. Finally, conclusions are drawn
in Section 4.

2. Related Works

With the deepening of the combination of artificial intelligence technology and agricul-
ture, deep learning technology has promoted innovation in technology and pattern of many
applications in agriculture [8,9]. In the field of agricultural object detection, there have
been several studies geared toward fruit detection utilizing convolutional neural networks
(CNNs) [10,11]. CNN-based detection networks have demonstrated that accuracy improve-
ment in object detection could be usually performed in two classes of networks: one-stage
networks and two-stage networks. Specifically, typical two-stage detectors, e.g., faster
R-CNN and mask R-CNN, have been widely used in agricultural scenes, e.g., the detection
and segmentation of crops and fruits [12,13]. However, there were computational time
constraints associated with meeting the requirements for embedded real-time detection
in practical applications. As a result, a one-stage object detection network was preferred
because of its better balance among computational cost and detection accuracies [14], such
as SSD [15], FCOS [16], and the YOLO series [17–19]. Among them, the You Only Look
Once (YOLO) series were the most widely used one-stage object detection network nowa-
days because of its superior transferability and ease of deployment on portable devices. In
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this case, numerous scholars attempted to further improve the practical performance by
modifying the original architecture of the YOLO networks to ensure accuracy and real-time
characteristics. X. Li et al. proposed a recognition method for green peppers by combining
an attention module with an adaptive spatial feature pyramid [20]. Lu et al. added the
convolutional block attention module to the generic YOLOv4, improving the detection
accuracy of mature apples by focusing on the target canopies [21]. Fu et al. developed one
kiwifruit detection network by adding two convolutional kernels of 3 × 3 and 1 × 1 to the
fifth and sixth convolution layers of the YOLOv3-Tiny [22].

Despite the positive results obtained in precedent research on fruit detection tasks,
there are still deficiencies in pear detection in the natural environment; in particular, the
inability to accurately detect small and occluded pears still exists. Due to the spatial resolu-
tion limitations of universal two-dimensional data acquisition equipment, it is difficult to
collect spatial depth information, resulting in a large number of acquired images containing
these difficult-to-detect pears. Although three-dimensional data acquisition equipment can
offer options for retrieving depth information, their high economic costs and specialized
knowledge requirements preclude them from meeting the requirements of practical ap-
plication [23,24]. On the other hand, it might be more practical and appropriate to obtain
good detection performance by improving the network structure. In general, due to low
arithmetic power and data requirements, CNN-based detection frames are the preferred
benchmark for object detection. However, it tends to lose feature information of small
objects because of the over-convolution and pooling of CNNs for low-dimensional feature
maps [25]. Additionally, as a consequence of its limited long-range perception, the features
extracted from the severely occluded fruits are relatively isolated and unconnected. The
feature of the same fruit might be regarded as two distinct sets of aggregation features,
which might result in the misclassification of the detector and turn to the degradation of
accuracy. In summary, it is critical to develop novel approaches for resolving these issues.

With a strong ability to extract contextual information, transformers have made signif-
icant advancements in the field of natural language processing in recent years [26]. Because
of the exceptional contribution of transformers to long-range feature perception, some
researchers have attempted to incorporate them into the field of computer vision (CV) to
overcome the limitations of CNN-based networks. Dosovitskiy et al. proposed the Vision
Transformer (ViT), which, for the first time, applied a transformer to a CV without modi-
fication, performing the state-of-the-art (SOTA) on large-scale datasets, but poorly when
fitting small-scale datasets [27]. In comparison to the ViT, the Pyramid Vision Transformer
(PVT) [28] reduced the computational complexity of large-scale feature maps by gradually
shrinking the pyramid structure, while densely dividing the image pixels with high detec-
tion accuracy for dense scenes. However, because the ViT and PVT completely omitted the
convolutional structure, they usually converged slowly and required large-scale datasets to
fit. Thus, some combinations of transformers and CNNs have been proposed for reduc-
ing the computational cost and number of parameters [29]. D’Ascoli et al. introduced a
positional self-attention mechanism equipped with convolutional inductive bias, adjusting
the attention to positional and contextual information through learnable gating parame-
ters [30]. BotNet [31] embedded multi-head self-attention (MHSA) in three bottlenecks of
C5 in ResNet-50 [32] and outstood in object detection and instance segmentation tasks [33].
In summary, the architectures of the Vision Transformer contributed to the improvement of
detection performance, especially for objects will a small size and serious occlusion [34]. If
they were transferred to pear detection tasks, they might exhibit even greater potential in
application scenarios, particularly for small and occluded pears.

A summary of the strengths and weaknesses of the aforementioned network architec-
ture is shown in Table 1. It can be seen that the network based on the combination of CNNs
and the ViT can take into account both detection accuracy and computational cost, which is
beneficial to the implementation of object detection tasks in agricultural scenes with limited
computing resources. Therefore, this paper explores an appropriate combination strategy
and constructs an effective network for in-field pear detection.
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Table 1. The comparison of the strengths and weaknesses of the different network architectures.

Network Architecture Strengths Weaknesses

Based on CNNs Low computational cost, strong real-time
performance, and easy to deploy.

The detection accuracy of small and occluded
objects can be improved.

Based on the ViT
It is beneficial to the detection of small and
occluded pears, and the accuracy can be
significantly improved.

The computational cost and memory usage
are too high, which is not conducive to
real-time detection.

Based on a combination of
CNNs and the ViT

Taking into account both accuracy and
computational cost, it is helpful in the
detection of small and occluded pears.

An inappropriate combination can still result
in a significant increase in computational cost
and memory usage.

3. Materials and Methods
3.1. Datasets
3.1.1. Data Acquisition and Analysis

The data collection was conducted at a standardized pear planting demonstration base
in Dangshan County, Suzhou City, Anhui Province, China, at the coordinates of 33◦37′51′′ N
and 116◦53′42′′ E. The orchard is depicted in Figure 1 from a preview of the ground and
aerial viewpoints. The pear trees at the base followed a standardized planting pattern
with approximately equal distances between rows, providing favorable environmental
conditions for data acquisition. The collection took place in September 2021, during which
time the pears transitioned from the growing stage to the ripening stage. Hence, the pears
were of dynamically varying sizes and colors. Data collection was carried out on sunny and
cloudy days between 7:00–8:00 A.M., 10:00–11:00 A.M., 2:00–3:00 P.M., and 6:00–7:00 P.M.,
thus covering four different illumination conditions of weak light, normal light, and strong
light in the daytime, as well as artificial light in the nighttime.
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mounted on the ground tripod, (b) Image captured by the camera mounted on the UAV platform.

In this paper, the images of pears were recorded by utilizing CCD cameras mounted
on a ground tripod and a UAV platform. In order to minimize the demand for equipment
in practical applications, in this paper, we only collect RGB images as the original data,
abandoning the collection of information, such as depth, NIR, and so on. The process of
joint data acquisition is illustrated in Figure 2. The CCD camera on the ground tripod was
a Kodak AZ651 (Eastman Kodak Company, Rochester, NY, USA), with an effective pixel
count of 20.68 million and an aperture range of F2.9–F6.7. The resolution of the image
was set to 1280 × 720 pixels during the acquisition process to save memory size and to
optimize the shooting frame rate. When conducting the ground photography, the CCD
camera was tripod mounted and moved smoothly in parallel towards the tree trunks. The
elevation angle of the camera varied ranging from 20◦ to 80◦, whereas the distance of the
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camera from the tree varied from 2 m to 4 m for simulating the movement path of automatic
picking platforms.
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Figure 2. Schematic illustration of joint data acquisition.

During the aerial photography, the DJI Phantom 4 (DJI technology, Shenzhen, China),
was chosen as the UAV platform, with a maximum horizontal flight speed of 20 m/s, and a
vertical hovering accuracy of ±0.1 m in environments with a light intensity greater than
15 Lux. The CCD camera planted on the UAV platform provided an effective pixel count
of 12.4 million, a controlled rotation ranging from −90◦ to +30◦, and a field of view (FOV)
of 62.7◦. The resolution was set to 1280 × 720 pixels, the same as the CCD camera on the
ground. The UAV platform was deployed to fly at a height of 0–4 m above pear trees with
the lens vertically downward, and the average flying speed was set to roughly 1 m/s to
avoid motion blur during the photograph. In total, 7541 images were captured from ground
and aerial viewpoints, containing pears of various sizes and illumination conditions. Due
to the nature of the acquisition process, the speed of the acquisition device could not be
adequately controlled, which might result in the emergence of images with an excessive
degree of resemblance. Hence, the ORB algorithm [35] was used to select 3680 images by
means of clearing and excluding those with an excessive resemblance. Ultimately, these
images comprised a diverse pear dataset.

3.1.2. Image Annotation and Data Enhancement

LabelImg (Windows version with Python 3.6, version 1.5.0, Heartex, San Francisco,
CA, USA) was used to manually label the pears in these 3680 images, and the pear outlines
were ensured to be tangent to the bounding boxes. The classification was binary, meaning
that the network just had to distinguish the target pears from the background. The data
was recorded in the YOLO format, with the category and the coordinates of the bounding
box for each pear in each image saved in a separate TXT file. Each record in the file
corresponded to a bounding box on the image and contained standardized annotation,
including coordinates of the upper-left and lower-right corners. Finally, the 3680 images in
the pear dataset were randomly divided into three sub-datasets: 2944 images were used for
training (80%), 368 images were for validation (10%), and 368 images were for a test (10%).
The training set and validation set were used to train the network and visually assess the
convergence in real-time, while the test set was used to evaluate the actual performance of
the pear detection network and verify the generalization ability.

Lots of pears in the field disorderly grew in crisscross branches and leaves, resulting
in an extremely complex background and pear distribution. When labeling the data for
training and validation, it was essential to cover pears regions of varying sizes, densities,
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overlapping environments, and ever-changing illuminations, which would be helpful to
train the detection network with high robustness and facilitate subsequent pear detection
using the trained network.

There have been a variety of data augmentation approaches that have been developed
for enriching the dataset. The approaches used in this paper included random left–right
flip, random up–down flip, hue saturation value (HSV) domain transformation, random
blur, and mosaic enhancement [18]. These approaches were randomly selected during
the image reading stage of the training process, simulating complex data distribution and
noise in the environment of a natural orchard and significantly increasing the diversity and
reliability of training data.

3.2. The Proposed YOLOv5s Improvement
3.2.1. Network Architecture

The YOLOv5 was one of the most widely used object detection networks in the
YOLO series. The overall structure of the YOLOv5 could be divided into three parts:
backbone, neck, and head. The backbone took charge of extracting high-dimensional
features, the neck took charge of extracting multi-scale low-dimensional features, and the
head generated prediction boxes based on the extracted features. The YOLOv5s (small),
YOLOv5m (middle), YOLOv5l (large), and YOLOv5x (extra-large) were the four sub-
versions of the YOLOv5. These sub-versions were designed based on the same network
structure as the main version, but with different network depths and widths. In previous
experiments, it has been proved that the deeper and wider the network, the higher the
detection accuracy might be [36]. However, with the increase of the depth and width of the
network, the computational cost increased as well, making it unsuitable for deployment in
practical application scenarios with limited computing resources. Thus, the YOLOv5s was
chosen as the benchmark network in this paper.

The YOLOv5s used CSPDarknet as the backbone and the path aggregation network
(PANet) as the neck. As illustrated in Figure 3, the YOLOv5s also aggregated many essential
modules, including Focus, CBS (convolution, batch normalization, and Sigmoid-ReLu),
CSP (cross-stage partial module), and SPP (spatial pyramid pooling). The CSP module was
designed based on CSPNet to enhance the learning ability of the network by implementing
more abundant gradient combinations. It was available in two types within the YOLOv5s:
CSP1 and CSP2. Each type decomposed the input feature map into a feature extraction path
and a residual connection path and then fused the cross-level features. The distinction was
that in the feature extraction path, CSP1 additionally used n residual units compared with
CSP2. CSP1 was used in the backbone for extracting rich high-dimensional feature maps,
whereas CSP2 was used in the neck for preventing low-dimensional feature redundancy.

To further enhance the local and global perception of multi-scale features, we im-
proved the structure design, which could be divided into two parts: optimizing a feature
fusion-based CSP structure and proposing a collaboration perception-oriented PANet. The
network’s perception of local and global features was improved by establishing short-
range and long-range feature dependencies and aggregating collaboration perception
effectively, leading to increased robustness against background noise. Therefore, the im-
proved YOLOv5s was designated as the YOLOv5s-FP (Fusion and Perception) and, with the
application of the aforementioned improvements, it significantly improved the detection
accuracy of in-field pears, particularly in the case of small pears and occluded pears.

CioU (Complete Intersection over Union) loss [37] regards the aspect ratio of the
bounding box as a penalty to generate more realistic prediction bounding boxes, but when
the loss converges to a linear proportion between the width and height of the prediction
bounding box and the ground-truth bounding box, the width will not increase or decrease
with the height. To minimize this impact, we replaced CioU loss with EioU (Efficient
Intersection over Union) loss [38] as the border loss function in the head of the YOLOv5s.
By clearly measuring the difference in overlap area, center point, and edge length, EIoU
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loss tackled the dilemma of existing losses and obtained a faster convergence speed and
superior regression results. The formulas were as follows:

IoU =
A ∪ B
A ∩ B

(1)

EIOULoss= 1− IoU+
ρ2(b, b gt

)
c2 +

ρ2(w, w gt
)

C2
w

+
ρα(h, h gt

)
C2

h
(2)

where A and B represented the area of the prediction bounding box and the ground-truth
bounding box, b, bgt represented the center point of the prediction box and the ground-truth
box, ρ2(·) represented the Euclidean distance, w and h represented the width and height
of the bounding box, gt represented the ground-truth bounding box, c represented the
diagonal distance of the smallest outside rectangle formed by the prediction bounding box
and the ground-truth bounding box, and Cw and Ch represented the width and height of the
smallest enclosing bounding box covering the prediction bounding box and ground-truth
bounding box.
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3.2.2. Feature Fusion-Based CSP

It has been discovered that the convolution operation had deficiencies in perceiving
and modeling global features, which made it difficult to constitute long-range dependencies
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in the spatial domain and channel domain. Nowadays, deep neural networks became
deeper and wider through the stacking of convolution, but dense or huge convolution
kernels might filter out features that were vital for small targets, resulting in a reduc-
tion in detection accuracy. In addition, the receptive field of small convolution kernels
was relatively local, whereas the features of severely occluded objects were relatively dis-
crete. Therefore, it was more likely to misidentify them as two objects when using small
convolution kernels.

To solve these problems, we introduced the transformer encoder. As we know, the
transformer encoder was first put forward to deal with natural language processing, where
it was used to encode long-range semantic information in one-dimensional sequences,
allowing for the establishment of long-range dependencies. The transformer encoder
has been proven to apply to the field of computer vision as well; namely, it could han-
dle two-dimensional strongly correlated data. Encoding a two-dimensional matrix in a
two-dimensional spatial domain could be accomplished by partitioning the image into
numerous patches and downscaling each patch to a one-dimensional sequence. The use of
the transformer encoder, with the ability to construct global features, made it possible to
extract long-range features while preserving the spatial structure of the data. A reasonable
combination of the features extracted from convolution and the transformer encoder would
improve local and global perception simultaneously.

In Visformer (a vision-friendly transformer) [39], one improved transformer encoder
was proposed by replacing multi-layer perceptron layers designed in the ViT with convo-
lutional layers, making it friendlier for visual recognition tasks and showing a promising
performance when it was evaluated on small datasets. Drawing on the above work, we
made similar improvements to the transformer encoder to make it more effective for visual
detection tasks. As illustrated in Figure 4, the improved transformer encoder was composed
of two sublayers: the first was a multi-head attention sublayer, while the second was a
feed-forward layer. The multi-head attention was similar to multi-kernel convolution in
CNNs, which extracted information from multiple dimensions by dividing the parameter
matrix into multiple subspaces. The feed-forward layer remapped the subspaces to the
target space by convolution, achieving information aggregation of multi-head attention,
while the dropout layer was used to disregard some of the concealed nodes to prevent over-
fitting and increase generalization ability. The output feature map contained long-range
dependencies of global features, which could be embedded into any part of the network
due to invariant scale. In comparison to convolution, the transformer encoder enlarged the
receptive field of the feature map at the expense of slightly increased computational cost,
hence delivering more rich semantic information for downstream detection tasks.

The transformer encoder was more adept at extracting long-range features, reflecting
complex spatial transformers and long-range dependencies. However, it ignored local
feature details, which decreased the discriminability between background and foreground.
The convolutional operation was more concerned with integrating local information, but
experienced difficulty in capturing global features. We referred to the two styles of features
with deviations in the distribution of perceptual domains extracted from the transformer
encoder and convolution as global and local features. The receptive fields of these two-type
features were highly complementary, and they were also inextricably correlated, which
meant sufficient aggregation of these features would hold the potential to consistently yield
feature maps of higher quality. Traditionally, the typical method for fusing the two-style
features was to concatenate the feature maps directly. However, the direct concatenation of
these features might allocate the features with fixed weights regardless of the variance of
contents, resulting in the scale inconsistency issue among input features and a decrease in
the quality of output feature maps.

As a result, we introduced the attentional feature fusion mechanism (AFF) [40], which
could add local channel contexts to the global channel-wise statics. The structure of AFF
was depicted in Figure 5. With the combination of a multi-scale channel attention module
and long-skip connections, it could aggregate local and global contexts and achieve the
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fusion of feature maps with larger and smaller receptive fields. In this study, the given
two-style feature maps are as follows: X, Y ∈ RC×H×W , where X referred to the CNN-
extracted feature maps and Y referred to the transformer encoder-extracted feature maps.
The equations for AFF were defined as follows:

Output = M(X ⊕ Y) ⊗ X + (1 − M (X ⊕ Y)) ⊗ Y (3)

where ⊕ denoted broadcasting addition, ⊗ denoted the element-wise multiplication, M de-
noted multi-scale channel attention mechanism, and M(X) ∈ RC×H×W denoted attentional
weights generated by M.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 3. Structure of the YOLOv5s-FP (where TE corresponds to the transformer encoder in Figure 
4, CSP-FF corresponds to feature fusion-based CSP in Figure 6, and PANet-CP corresponds to col-
laboration perception-oriented PANet in Figure 7), with structural improvements marked in red 
boxes, new skip connections marked with red lines, and removed connections marked with dashed 
lines. 

 
Figure 4. Structure of the improved transformer encoder (TE).

Sensors 2022, 22, x FOR PEER REVIEW 10 of 22 
 

 

C × H × W

C × H × W

GlobalAvgPooling

C × 1 × 1

⊕ Point-wise Conv
and BatchNorm

C/r × 1 × 1

Point-wise Conv and 
BatchNorm

C/r × W × H

ReLu and
 Point-wise Conv

ReLu and
 Point-wise Conv

C/r × 1 × 1

C × 1 × 1

Sigmoid

⊗

⊗

⊕ 
C × H × W

Multi-scale channel attention moudule

 
Figure 5. Structure of attentional feature fusion, where the dashed line denotes 1 െ M(X ⊕ Y). 

 
Figure 6. Structure of feature fusion-based CSP (CSP-FF). 

In the structure of the YOLOv5s, CSP2 in the PANet decomposed the input feature 
map into two routes through the use of 1 × 1 convolution kernels. One of the routes was 
connected for residuals, while the other was in charge of implementing feature extraction. 
The feature maps delivered to the feature extraction route were extracted by n bottlenecks, 
which might result in certain undesirable effects such as overfitting, gradient disappear-
ance, and accuracy degradation. Aiming to exploit the advantages of two-style features 
and overcome the limitations in the receptive field, we designed the feature fusion-based 
CSP (CSP-FF). As a solution, we replaced the bottlenecks with the transformer encoder in 
the original CSP2 and implemented convolution and encoding in parallel, and the struc-
ture of CSP-FF is shown in Figure 6. In this case, the two pathways output the feature map 
with a smaller receptive field and the feature map with a larger receptive field, which 
corresponded to the X and Y of AFF. Following the integration and redistribution of the 
fused information, the overall distribution of the output feature maps tended to be uni-
form after transmission to AFF, offering more valuable aggregated features in both local 
and global receptive fields. The final output was adjusted using another 1 × 1 convolution 
kernel to balance the channels while maintaining a consistent scale between the input and 
output. CSP-FF was utilized to replace CSP2 inside the PANet to alleviate the problems 
arising from complex background noise and scale variation of in-field pears. 

3.2.3. Collaboration Perception-Oriented PANet 
In the YOLOv5s, PANet was employed as the neck network to provide large, me-

dium, and small-scale feature maps with the head for implementing object detection. Af-
ter downsampling, PANet resampled the feature maps and obtained the information be-
fore and after sampling by horizontal skip connections. High-dimensional semantic infor-
mation was transferred to low-dimensional semantic information, which improved the 
representation of low-dimensional information. Meanwhile, low-dimensional semantic 
information was transferred to high-dimensional semantic information, which improved 
the utilization of the underlying information. However, the information loss caused by 

Figure 5. Structure of attentional feature fusion, where the dashed line denotes 1−M(X⊕Y).

In the structure of the YOLOv5s, CSP2 in the PANet decomposed the input feature
map into two routes through the use of 1 × 1 convolution kernels. One of the routes was
connected for residuals, while the other was in charge of implementing feature extraction.
The feature maps delivered to the feature extraction route were extracted by n bottlenecks,
which might result in certain undesirable effects such as overfitting, gradient disappearance,
and accuracy degradation. Aiming to exploit the advantages of two-style features and
overcome the limitations in the receptive field, we designed the feature fusion-based CSP
(CSP-FF). As a solution, we replaced the bottlenecks with the transformer encoder in the
original CSP2 and implemented convolution and encoding in parallel, and the structure
of CSP-FF is shown in Figure 6. In this case, the two pathways output the feature map
with a smaller receptive field and the feature map with a larger receptive field, which
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corresponded to the X and Y of AFF. Following the integration and redistribution of the
fused information, the overall distribution of the output feature maps tended to be uniform
after transmission to AFF, offering more valuable aggregated features in both local and
global receptive fields. The final output was adjusted using another 1 × 1 convolution
kernel to balance the channels while maintaining a consistent scale between the input and
output. CSP-FF was utilized to replace CSP2 inside the PANet to alleviate the problems
arising from complex background noise and scale variation of in-field pears.
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3.2.3. Collaboration Perception-Oriented PANet

In the YOLOv5s, PANet was employed as the neck network to provide large, medium,
and small-scale feature maps with the head for implementing object detection. After down-
sampling, PANet resampled the feature maps and obtained the information before and after
sampling by horizontal skip connections. High-dimensional semantic information was
transferred to low-dimensional semantic information, which improved the representation
of low-dimensional information. Meanwhile, low-dimensional semantic information was
transferred to high-dimensional semantic information, which improved the utilization of
the underlying information. However, the information loss caused by the convolution of
low-dimensional features was amplified because upsampling exacerbated the information
loss caused by the convolution of high-dimensional features. This resulted in a reduction
in detection accuracy for small and occluded pears. In order to make full use of the feature
information of each dimension, it was necessary to modify some modules and connections
of PANet to minimize information loss caused by network degradation. Therefore, if one
expected to enhance the overall perception of the network, it was also of great importance
to formulate specific perception approaches for each scale of the feature maps to enhance
the overall perception of the network.

PANet could be classified as P1, P2, and P3 based on the size of the extracted feature
maps, which corresponded to high-resolution, medium-resolution, and low-resolution
feature maps, respectively. These feature maps with different resolutions provided a diverse
set of multi-scale feature information, which was beneficial to the extraction of feature
descriptors of different dimensions. In this paper, we embedded a transformer encoder and
CSP-FF into PANet to improve the ability of local and global feature extraction, forming
the collaboration perception with different receptive fields towards multi-scale features.
The structure of the collaboration perception-oriented PANet (PANet-CP) is illustrated in
Figure 7.

The transformer encoder was embedded into P3 to replace the original CSP2 for
processing low-resolution feature maps and achieving low-dimensional information refine-
ment. On the other hand, the accuracy of the network was more dependent on the quality
of the medium-resolution feature maps, which should contain more spatial information.
Therefore, by substituting CSP-FF for the original CSP in P2, it was possible to acquire and
integrate global and local information concurrently. P1 retained its structure in order to
reduce the loss of local information caused by the frequent use of the transformer encoder
to extract features, as well as to avoid the explosion of network parameters. The proposed
feature perception approach was called multi-scale feature collaboration perception, al-
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lowing the network to accomplish detection for different objects at different scales and
providing a solution to precisely embed local and global features into each other.
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In addition, the methods of information propagation were improved for preventing
network degradation. In the original PANet, the feature map received by P2 was extracted
by multiple CSP2s in P1, and the feature map received by P3 was extracted by multiple
CSP2s in P1 and P2, forming a cascade relationship that caused the network to become
rather dense. Additionally, due to the incorporation of CSP-FF and the transformer encoder,
the computational complexity of the neck network was increased. Here, to lessen the
network depth and achieve valid information transmission, two new skip connections
were made for bypassing the feature extraction module in P1 and P2. The feature maps
passed to P2 and P3 bypassed one and two feature extraction modules, respectively, which
reduced the risk of losing some important features for medium and small objects, as well
as avoided the decrease in information transmission efficiency caused by bypassing too
many modules. By the modification of information propagation, the output multi-scale
feature maps of PANet-CP contained denser local and global information, offering a good
ability to implement real-time and efficient detection tasks of pears in the orchard.

4. Experimental Results and Analysis
4.1. Network Training

The training platform included one NVIDIA GTX 2080Ti GPU (NVIDIA Corporation,
Santa Clara, CA, USA) with 12GB of memory and a six-core Intel Xeon E5-1650 processor
(3.60 GHz) (Intel, Santa Clara, CA, USA). On the training platform, the system environment
was comprised of CUDA (version 10.2, NVIDIA Corporation, Santa Clara, CA, USA),
CUDNN (version 7.6.5, NVIDIA Corporation, Santa Clara, CA, USA), and Python (version
3.8, Python Software Foundation, Wilmington, DE, USA), with the deep learning framework
Pytorch (version 1.8.0, Meta, Menlo Park, CA, USA). With the network trained on the
training set of pears using eight images as a batch, the training loss was updated per
iteration for a total of 200 epochs. To economize on the time and data required to train a
network from scratch to achieve the desired level of operational accuracy, we employed
transfer learning by retraining on the pre-trained weights from the MS COCO dataset. The
network was optimized using SGD, the initial learning rates of all layers were set to 0.01,
the weight decay rate was set to 0.00048, and the momentum factor was initially set to
0.937 and decayed to 1E-4. The images were scaled to a resolution of 640 × 640 pixels and
input which accelerated the network training, in which the size of small pears was further
reduced, making accurate detection more challenging.
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4.2. Network Evaluation

Comprehensive performance evaluation metrics were required for object detection
networks in order to evaluate the network and thus provided feedback for manual op-
timization of the training hyperparameters. The precision, recall, F1-score, and average
precision (AP) were used as evaluation metrics for the YOLOv5s-FP in this paper. The
F1-score was composed of two components: precision and recall. Precision was the ratio
of correctly predicted positives to all positive predictions, recall was the ratio of correctly
predicted positives to all actual positive predictions, and F1-score was the harmonic mean
of precision and recall. Equations (4)–(6) give the calculation formulas of precision, recall,
and F1-score. TP (True Positive) denoted the number of predicted positive samples, FP
(False Positive) denoted the number of predicted positive but negative samples, and FN
(False Negative) denoted the number of predicted negative but positive samples.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1− score =
2 ∗ Precision ∗ Recall

Precision + Recall
(6)

The calculation formula for AP was shown in Equations (7) and (8). Here, r denoted
the integration variable for calculating the integral product of precision and recall. AP50
was defined as the average value of precision when the intersection over union (IoU) was
0.50 and AP50:95 was the average value of all ten IoU thresholds with a uniform step size of
0.05 in the range of [0.50, 0.95].

AP =

1∫
0

(precision ∗ recall)dr (7)

AP50:95 =
1

10
(AP 50+AP55 + · · ·+AP90+AP95

)
(8)

The trained YOLOv5s-FP was validated and tested to verify the performance of the
network. Images were scaled to the same resolution as the training input. The performance
of the network was represented by the values of the five evaluation metrics defined in
Equations (4)–(8) through validation, which provided quantitative evidence for early
intuitive evaluation of the improvement effects. The results of the test reflected the final
performance of the network, and the numerical findings were considered the controlled
object for the controlled experiments.

4.3. Quantitative Performance of the YOLOv5s-FP

This paper aimed to develop a pear detection network with higher accuracy and
less computational cost. Hence, the YOLOv5s-FP should be accurate and fast enough to
detect a variety of pears in the natural environment, particularly in the case of small and
occluded pears. Accordingly, the performance of the network should be discussed in three
straightforward aspects: accuracy, detection time, and computational cost. Apart from the
mentioned accuracy evaluation metrics AP50, AP50:95, and F1− score, we also measured
the detection time, memory usage, and FLOPs of the network. Table 2 summarizes the
quantitative performance of 368 images in the test set on these indicators. It could be
concluded that the YOLOv5s-FP achieved accurate pear detection with less detection time
and computational cost. The memory usage and FLOPs of the YOLOv5s-FP were 50.01 MB
and 18.2 G, respectively, which was suitable for use on portable devices with limited
computing power and storage space.
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Table 2. Overview of accuracy, detection time, and computational cost of the YOLOv5s-FP.

Networks AP50
(%)

AP50:95
(%)

F1-Score
(%)

Detection
Time (ms)

Memory
Usage (MB) FLOPs (G)

YOLOv5s-FP 96.12 68.22 89.73 13.2 50.01 18.2

4.4. Comparison with the YOLO Series Networks

Table 3 presents the quantitative evaluation results of the YOLOv5s-FP, as well as the
other five typical YOLO networks. The small sub-versions of these networks were selected
for making comparisons in order to reduce the interference of different sub-versions on
the results, ensuring that the experimental results were of reference significance. The
comprehensive evaluation metrics were identical to those described previously in terms
of accuracy, detection time, and computational cost. It could be observed that the AP50,
AP50:95, and F1-score of the YOLOv5s-FP attained the highest level, outperforming other
typical networks on all three metrics of accuracy, particularly the YOLOv3s, YOLOv4s, and
YOLOv5s. In comparison to the YOLOXs, YOLOv5s-FP achieved a certain improvement
in accuracy with less detection time and computational cost. This was reflected in the
reduction of 14.22 MB and 8.6 G in memory usage and FLOPs, respectively. The exper-
imental results demonstrated that by using the transformer encoder and collaboration
perception of multi-scale features, the proposed network could improve detection accuracy
without significantly increasing the computational cost. It is worth mentioning that the
YOLOv5s-FP achieved better performance compared to the other evaluated networks,
except that in terms of detection time, the YOLOv5s-FP was slightly (2 ms) slower than the
original YOLOv5s, but it did not suppress the real-time performance, even in application
scenarios with extremely limited computing power.

Table 3. Accuracy, detection time, and computational cost of the YOLOv5s-FP and typical networks
of the YOLO series.

Networks AP50
(%)

AP50:95
(%)

F1-Score
(%)

Detection
Time (ms)

Memory
Usage (MB) FLOPs (G)

YOLOv3s 86.51 59.42 83.72 16.1 120.32 157.1
YOLOv4s 89.98 62.83 85.62 20.2 246.34 137.2
YOLOv5s 89.09 63.09 84.35 11.2 13.70 16.4
YOLOXs 92.62 64.31 86.23 14.3 64.23 26.8

YOLOv5s-FP 96.12 68.22 89.73 13.2 50.01 18.2

4.5. Ablation Experiments

Although the effectiveness of the YOLOv5s-FP based on the transformer encoder
and collaboration perception-oriented PANet has been demonstrated above, the underly-
ing mechanisms of the improvements remained unknown. Hence, ablation experiments
were carried out to ascertain the effectiveness of these mechanisms and their influence on
pear detection. Specifically, four ablation networks, named the YOLOv5s, YOLOv5s-SC,
YOLOv5s-TE, and YOLOv5s-TC, were established for controlled experiments. Based on the
YOLOv5s and YOLOv5s-SC-modified PANet with new skip connections, the YOLOv5s-TE
replaced CSP2 in P3 with a separate transformer encoder and the YOLOv5s-TC replaced
CSP in P2 with a separate CSP-FF. The loss of the YOLOv5s-FP and four ablation networks
on the training and validation sets are illustrated in Figure 8. The figure shows that the
loss of both training and validation sets for all networks exhibited a single peak, i.e., the
loss value appeared to increase during the early training period and then resumed its
decreasing trend as the epoch progressed. The analysis of the loss of training set revealed
that the loss value of the YOLOv5s-SC increased to the least degree and reached the min-
imum at the end of the training, whereas the loss value of the YOLOv5s-FP was higher
than other networks. The validation set loss was then analyzed, and while the peak of
the YOLOv5s-SC remained the lowest, the validation set loss at the end of the training
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was also the greatest compared to the other four ablation networks. The validation set
loss of the YOLOv5s-FP was significantly lower than that of other ablation networks, and
the curve was smoother. Therefore, it could be concluded that the new skip connections
realized the reduction in network depth and effective information transmission, preventing
network degradation to a certain extent and making the network converge faster. How-
ever, the YOLOv5s-SC performed well on the training set but poorly on the validation set,
revealing that its generalization ability was weakened and overfitting might occur. Both
the transformer encoder and CSP-FF offered the ability of the YOLOv5s-FP to prevent
overfitting and the loss of the training set and validation set was relatively stable and
low. However, the transformer encoder caused a significant increase in validation loss
at the early stage, implying that the network was more difficult to fit. The validation
loss of the YOLOv5s-FP was the lowest, indicating that it had the strongest generaliza-
tion ability and was more suitable to handle unevenly distributed data acquired from
natural environments.
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From the experiment result for each network in Table 4, it can be concluded that new
skip connections resulted in a greater increase in accuracy at a relatively less cost in terms
of detection time and computational cost. The transformer encoder and CSP-FF provided
greater gains in accuracy but at the expense of increased detection time and computational
cost. The transformer encoder had the primary effect of increasing the memory usage
of networks, whereas the CSP-FF had the primary effect of increasing detection time
consumption. The YOLOv5s-FP combined three improvements into the PANet to form
new components, named PANet-CP. It can be seen that the YOLOv5s-FP is significantly
superior to other ablation networks in all three accuracy metrics: AP50, AP50:95, and F1-score.
Although the YOLOv5s-FP increased detection time and computational cost, the boosted
value remained small and less than that of most typical object detection networks in Table 3.
In summary, the abovementioned improvements contributed to better performance and
stronger stability of the YOLOv5s-FP in terms of detection accuracy, detection time, and
computational cost.

4.6. Visual Performance Comparison

In the above quantitative experiments, the YOLOv5s-FP has been demonstrated to be
superior to the original YOLOv5s and other typical networks of the YOLO series. However,
the qualitative performance in practical application scenarios remain to be further explored.
In natural environments, the growth of pears was rather disordered. To maximize harvest-
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ing efficiency and monitoring ability during the ripening period, it was typically expected
that the harvesting could be conducted throughout the day. Therefore, the detectors applied
in agricultural management were required to have a strong ability to adapt to the changes
in environmental factors and to implement fruit detection during the day and night. We
made comparisons of visual detection performance between the original YOLOv5s and
YOLOv5s-FP in three aspects: different pear sizes, illuminations, and viewpoints, to ascer-
tain the practical utility of the networks. In the following part, representative images were
selected from the test set as a comparison, with qualitative detection results for the original
YOLOv5s and YOLOv5s-FP being illustrated. The confidence threshold was set at 0.25,
which meant that bounding boxes with a confidence level of less than 0.25 were filtered
out. Meanwhile, the IoU threshold was set at 0.5, which meant those bounding boxes with
lower repetition to the ground truth bounding box were filtered out.

Table 4. Ablation experiments of the YOLOv5s-FP.

Networks AP50
(%)

AP50:95
(%)

F1-Score
(%)

Detection
Time (ms)

Memory
Usage (MB) FLOPs (G)

YOLOv5s 89.09 63.09 84.35 11.2 13.7 16.3
YOLOv5s-SC 89.56 63.39 84.48 11.2 13.9 16.8
YOLOv5s-TE 92.92 63.07 84.61 11.7 42.2 17.8
YOLOv5s-TC 94.58 64.33 86.45 12.4 21.2 17.9
YOLOv5s-FP 96.12 68.22 89.73 13.2 50.0 18.2

4.6.1. Comparison of Test Results at Different Pear Sizes

Various locations of image acquisition resulted in a variation in the size of the pears
in the photographs. Usually, the pears that were closest to the camera were easier to be
detected, as they were relatively larger within the acquired images and thus enjoyed a
higher picking priority. Pears farther away from the camera appeared in relatively small size
within the obtained images, and the accurate detection of these pears provided additional
information for making decisions, e.g., the planning of subsequent picking paths. Spatial
information about the dense regions of unpicked pears would be recorded and arranged
for the upcoming collecting strategy with the assistance of three-dimensional perception
equipment. To further refine the dataset and to provide more detailed data support for the
paper, the pears were classified into three categories according to the size of their bounding
boxes. Specifically, those pears with a radius of fewer than 10 pixels were regarded as small
pears, those with a radius of more than 10 pixels but less than 25 pixels were regarded as
medium pears, those with a radius of more than 25 pixels were regarded as large pears,
and those with a radius of fewer than 5 pixels were omitted. There were a total of 166,580
annotated pears, including 41,596 small pears, 96,950 medium pears, and 28,034 large
pears. It was worth noting that the refinement of the pear dataset was performed only
when conducting the comparison experiment of test results at different sizes, and the
aforementioned categorization patterns were not employed during the training.

Figure 9 depicts the detection results for the original YOLOv5s and YOLOv5s-FP on
representative example images, containing dense regions of large, medium, and small
pears. As illustrated in this figure, both the original YOLOv5s and YOLOv5s-FP detected
large and naked pears well. However, the YOLOv5s-FP was better at focusing on small
pears and those pears occluded by leaves, branches, and each other in the detection
scenario, demonstrating high adaptability to size changes. Table 5 presents the detection
results of the quantitative experiments in the form of numerical values, with AP50, AP50:95,
and F1-score as the evaluation metrics. It could be seen that the detection accuracy of
the YOLOv5s-FP for small-size pears had greatly increased as compared to the original
YOLOv5s, increasing by 5.1% for AP50, 3.8% for AP50:95, and 5.3% for F1-score. Additionally,
a numerical improvement was also observed for medium and large pears, with AP50
increasing by 1.6% and 1.1%, respectively. This showed that overall detection accuracy
has improved, as the YOLOv5s-FP could correctly differentiate pears in the background.



Sensors 2023, 23, 30 16 of 21

The table and images provided strong support for the conclusion that the YOLOv5s-FP
was superior to the original YOLOv5s in detecting pears at different sizes, benefiting from
the joint utilization of local and global features and collaboration perception of multi-scale
features that took full advantage of the two-style feature maps.
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medium, and small pears, respectively.

Table 5. Detection accuracy of two networks at different sizes.

Networks
Small Medium Large

AP50 (%) AP50:95 (%) F1-Score (%) AP50 (%) AP50:95 (%) F1-Score (%) AP50 (%) AP50:95 (%) F1-Score (%)

YOLOv5 82.8 51.3 84.2 95.1 65.2 87.1 96.2 88.6 89.2
YOLOv5s-FP 87.9 55.1 89.5 97.5 69.3 90.2 97.3 89.5 92.1

4.6.2. Comparison of Test Results under Different Illumination Conditions

In natural environments, the ever-changing illumination conditions could easily lead
to variation in data distribution, resulting in the degraded performance of object detection
networks, which might not be conducive to the long-term development of smart robots.
The adaptability of the networks to illumination changes was regarded as an important
aspect of the network performance evaluation. The test set contained 368 images captured
in a variety of illumination conditions, including weak illumination, normal illumination,
strong illumination in the daytime, and artificial illumination in the nighttime. A handheld
LED rod of 400 lumens was placed 2–3 m from the image acquisition target to make artificial
illumination. Here, non-normal illumination was considered, including weak, strong, and
artificial illumination. They accounted for 60% of the total duration in the dataset which
covered complex scenes and background noise in the natural environment.
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Figure 10 shows the qualitative detection results of the original YOLOv5s and YOLOv5s-FP
under the aforementioned illumination conditions in the test set, and Table 6 summarizes
the quantitative detection results in terms of AP50, AP50:95, and F1-score. Under strong
and weak illumination, the YOLOv5s-FP showed significantly higher detection accuracy
with more small pears in severe occlusion. The reason was the fact that the YOLOv5s-
FP achieved the collaboration perception of multi-scale features, and the local feature
and global feature were constituted, maintaining superior detection performance even in
the presence of varying background noise. Similar results were obtained under normal
and artificial illumination, while the false positive rate of the YOLOv5s-FP was lower
compared to the original YOLOv5s. It was apparent that under artificial illumination with
insufficient lighting, it could easily occur that the human vision system mistook leaves for
pears. Similarly, the original YOLOv5s had the characteristics of misidentifying leaves as
pears. In contrast, the YOLOv5s-FP had a stronger ability to capture information about
the spatial structure of objects and, thus, it could effectively avoid misidentification. In
comparison to the original YOLOv5s, the AP50, AP50:95, and F1-score of the YOLOv5s-
FP increased under artificial illumination by 5.4%, 3.7%, and 6.7%, respectively, which
further assured the advanced robustness and resistance of the YOLOv5s-FP to changes in
illumination. In summary, by combining the transformer encoder and multi-scale feature
collaboration perception, the YOLOv5s-FP was able to focus on the structural features of
pears, which were less susceptible to color and posture changes and more robust to the
dynamic background.
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Table 6. Detection accuracy of two networks under different illumination conditions.

Illumination
Conditions

YOLOv5s-FP YOLOv5s Count of
Images

Count of
Annotated PearsAP50 (%) AP50:95 (%) F1-Score (%) AP50 (%) AP50:95 (%) F1-Score (%)

Strong illumination 95.8 66.2 89.3 90.2 62.3 84.2 80 2066
Normal illumination 97.5 73.2 93.1 95.3 71.9 91.9 124 3690

Weak illumination 96.4 69.9 92.2 92.2 66.2 89.5 96 2630
Artificial illumination 90.8 65.1 88.8 85.4 61.4 82.1 68 784

4.6.3. Comparison of Test Results in Different Viewpoints of UAV

In view of the development of UAV technology, it has shown to be a good prospect
in various industries [41]. As we intended to verify its feasibility in agriculture and the
adaptability of the network to the change of viewpoints, further controlled experiments
were conducted on images captured by the UAV in the side and bird’s-eye viewpoints.
The horizontal viewpoint obtained from the side of trees was considered to be the side
viewpoint, while the UAV image taken from the vertical ground above trees is considered a
bird’s-eye viewpoint. Usually, the greater camera distances away from trees contributed to
a smaller overall proportion of pears in the images, and the disordered growth of branches
and leaves significantly hindered detection ability and caused high false detection.

In this section, the qualitative detection results of drone images captured from two
viewpoints were compared between the original YOLOv5s and YOLOv5s-FP, as illustrated
in Figure 11. The quantitative detection accuracy in terms of AP50, AP50:95, and F1-score are
presented in Table 7. The first row of Figure 11 showed the scene from the side viewpoint,
with plenty of small and occluded pears hidden in leaves and branches. As can be seen,
the YOLOv5s-FP achieved better detection results, with fewer missing pears and a lower
false-positive rate. The YOLOv5 and YOLOv5s-FP both had good detection results for
naked pears, but the YOLOv5s-FP showed a stronger ability to detect small and occluded
pears. It was further supported by the data in the first row of the table, which increased by
3.4%, 2.0%, and 1.6% for AP50, AP50:95, and F1-score compared to the side viewpoint. Similar
experimental results were obtained from the bird’s eye viewpoint, where some extremely
small and occluded pears were missed by the original YOLOv5s but successfully detected
by the YOLOv5s-FP, with AP50, AP50:95, and F1-score increments of 2.8%, 1.5% and 1.8%,
respectively. Although the false detection rate of the two networks both increased, which
might be caused by the complexity of the background, the YOLOv5s-FP was relatively better
at completing the detection task and was more suitable in practical detection scenarios.
In conclusion, it could be drawn that the YOLOv5s-FP would have a better potential for
detecting small and occluded pears in complex orchard scenarios, as well as being extended
to more agricultural management activities, such as pear growth status monitoring and
orchard yield estimation.
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Table 7. Detection accuracy of two networks in different viewpoints of the UAV.

Viewpoint
of UAV

YOLOv5s-FP YOLOv5s Count of
Images

Count of
Annotated PearsAP50 (%) AP50:95 (%) F1-Score (%) AP50 (%) AP50:95 (%) F1-Score (%)

Side viewpoint 96.8 71.4 92.8 93.4 69.4 91.2 1392 262,624
Bird’s-eye viewpoint 83.3 61.0 82.1 80.5 59.5 80.3 648 185,722

5. Conclusions

It is still challenging for traditional object detection networks to effectively detect
in-filed pears with disordered distribution and complex background noise, particularly for
those small and occluded ones in natural orchards. For the purpose of efficiently detecting
pears, a novel pear detection network named the YOLOv5s-FP (Fusion and Perception)
was proposed by improving the neck of the original YOLOv5s in combination with a
transformer encoder, attentional feature fusion mechanisms, and new skip connections.
By means of achieving mutual embedding of local and global features and collaboration
perception of multi-scale features, the proposed network achieved a higher accuracy on
pear detection tasks than most networks of the YOLO series with fewer requirements of de-
tection time and computation resources. Additionally, qualitative comparison experiments
visually showed that the YOLOv5s-FP improved the overall perception results of pears with
differences in size, illumination condition, and viewpoint in practical application scenarios,
demonstrating that it could function as an integral part of monitoring pear growth and
implementing automated harvesting. The proposed YOLOv5s-FP provided a feasible idea
for the innovation of fruit detection technology in modern orchards. Further work includes
the collection of continuous pear images at different growth and phenological stages for
validating its performance and further improving its robustness, which might be more
helpful for conducting pear growth status monitoring and automated harvesting activities.
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