Delay-Packet-Loss-Optimized Distributed Routing Using Spiking Neural Network in Delay-Tolerant Networking
Abstract
:1. Introduction
1.1. Satellite and Terrestrial Integrated Networks
- Service continuity in areas where terrestrial networks are not available
- Service ubiquity to provide resilient service during terrestrial network failures
- Scalability to load-balance the traffic demands exceeding the terrestrial network’s capacity [3].
1.2. Space-Based Information Networks
1.3. Challenges in Space Communication
- Inter-satellite links (ISLs): links between satellites in the same layer; for example, satellites in LEO have four ISLs to connect with four neighbors on the same orbit. Satellites in MEO connect with their immediate neighbors in their orbit.
- Inter-orbital links (IOLs): satellites in different orbits communicate through IO; for example, communication links between GEO and MEO, GEO and LEO, and MEO and LEO.
- User data links (UDLs): communication links between satellites and ground stations, also known as feeder links. A satellite can maintain several UDLs to multiple ground stations, and a ground station can directly connect to many satellites in any orbit.
1.4. Our Routing Approach
1.5. HDTN
1.6. CSG
1.7. Advantages of Using SNN for Satellite On-Board Routing
2. Related Work
2.1. Routing in LEO Satellite Networks
2.2. Routing in Multi-Layer Satellite Networks
2.3. Routing in Earth Observation Satellite Constellations
2.4. Multi-Objective Optimization Routing in Satellite Networks
3. Routing Approach Used-Snnr
3.1. Latency-Packet-Loss-Optimized Routing Objective
3.2. System Implementation
- snndp—optimizes both the response time and packet loss using a linear cost function as below:
- snnd—optimizes only the response time in delivering data from a satellite node to a ground station. The optimization of to optimize the delay is computed for an outbound link i at a satellite node at t, computed as
- snnp—optimizes only the packet loss in delivering data. The optimization to minimize the packet loss ratio is computed for an outbound link i at a satellite node at t as
- static—this is the same as CGR, which selects the earliest link in the shortest path between two satellite nodes.
4. Experimental Methodology
Experimental Setup
5. Results
5.1. Topology 1: Results
5.1.1. Scenario 1
5.1.2. Scenario 2
5.1.3. Scenario 3
5.1.4. Scenario 4
5.1.5. Scenario 5
5.1.6. Scenario 6
5.2. Topology 2
5.2.1. Scenario 7
5.2.2. Scenario 8
5.2.3. Scenario 9
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CGR | Contact graph routing |
CNC | Cognitive network controller |
CSG | Cognizant space gateway |
DTN | Delay-tolerant networking |
EO | Earth observation |
GS | Ground station |
HDTN | High-rate delay-tolerant networking |
ISL | Inter satellite link |
IOL | Inter orbital link |
SNN | Spiking neural network |
NASA | National Aeronautics and Space Administration |
QoS | Quality of service |
References
- Kawamoto, Y.; Nishiyama, H.; Fadlullah, Z.M.; Kato, N. Effective data collection via satellite-routed sensor system (SRSS) to realize global-scaled Internet of Things. IEEE Sens. J. 2013, 13, 3645–3654. [Google Scholar] [CrossRef]
- Matasaru, P.D.; Scripcariu, L.; Diaconu, F. On the QoS for Satellite IP networks: A Follow-Up. In Proceedings of the 2019 International Symposium on Signals, Circuits and Systems (ISSCS), Iaşi, Romania, 11–12 July 2019; pp. 1–3. [Google Scholar]
- Rinaldi, F.; Maattanen, H.L.; Torsner, J.; Pizzi, S.; Andreev, S.; Iera, A.; Koucheryavy, Y.; Araniti, G. Non-terrestrial networks in 5G & beyond: A survey. IEEE Access 2020, 8, 165178–165200. [Google Scholar]
- Du, J.; Jiang, C.; Guo, Q.; Guizani, M.; Ren, Y. Cooperative earth observation through complex space information networks. IEEE Wirel. Commun. 2016, 23, 136–144. [Google Scholar] [CrossRef]
- Saeed, N.; Elzanaty, A.; Almorad, H.; Dahrouj, H.; Al-Naffouri, T.Y.; Alouini, M.S. Cubesat communications: Recent advances and future challenges. IEEE Commun. Surv. Tutorials 2020, 22, 1839–1862. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Chen, B.; Zhang, S. Enhancing Earth Observation Throughput Using Inter-satellite Communication. IEEE Trans. Wirel. Commun. 2022, 21, 7990–8006. [Google Scholar] [CrossRef]
- Burleigh, S.C.; De Cola, T.; Morosi, S.; Jayousi, S.; Cianca, E.; Fuchs, C. From Connectivity to advanced internet services: A comprehensive review of small satellites communications and networks. Wirel. Commun. Mob. Comput. 2019, 2019, 6243505. [Google Scholar] [CrossRef]
- Bhasin, K.; Hackenberg, A.; Slywczak, R.; Bose, P.; Bergamo, M.; Hayden, J. Lunar relay satellite network for space exploration: Architecture, technologies and challenges. In Proceedings of the 24th AIAA International Communications Satellite Systems Conference, San Diego, CA, USA, 11–14 June 2006; p. 5363. [Google Scholar]
- Ferreira, P.V.R.; Paffenroth, R.; Wyglinski, A.M.; Hackett, T.M.; Bilen, S.G.; Reinhart, R.C.; Mortensen, D.J. Reinforcement learning for satellite communications: From LEO to deep space operations. IEEE Commun. Mag. 2019, 57, 70–75. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Ekici, E.; Bender, M.D. MLSR: A novel routing algorithm for multilayered satellite IP networks. IEEE/ACM Trans. Netw. 2002, 10, 411–424. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutorials 2016, 19, 57–96. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, E.; Altunbas, I.; Kurt, G.K.; Bellemare, M.; Lamontagne, G.; Yanikomeroglu, H. Site diversity in downlink optical satellite networks through ground station selection. IEEE Access 2021, 9, 31179–31190. [Google Scholar] [CrossRef]
- Al-Anbagi, H.N.; Vertat, I. Cooperative Reception of Multiple Satellite Downlinks. Sensors 2022, 22, 2856. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sun, F.; Zhao, Y. Virtual topology for LEO satellite networks based on earth-fixed footprint mode. IEEE Commun. Lett. 2013, 17, 357–360. [Google Scholar] [CrossRef]
- Blasch, E.; Pham, K.; Chen, G.; Wang, G.; Li, C.; Tian, X.; Shen, D. Distributed QoS awareness in satellite communication network with optimal routing (QuASOR). In Proceedings of the 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC), Colorado Springs, CO, USA, 5–9 October 2014; p. 6C3-1. [Google Scholar]
- Chen, Q.; Guo, J.; Yang, L.; Liu, X.; Chen, X. Topology virtualization and dynamics shielding method for LEO satellite networks. IEEE Commun. Lett. 2019, 24, 433–437. [Google Scholar] [CrossRef] [Green Version]
- Mohorcic, M.; Svigelj, A.; Kandus, G.; Hu, Y.F.; Sheriff, R.E. Demographically weighted traffic flow models for adaptive routing in packet-switched non-geostationary satellite meshed networks. Comput. Netw. 2003, 43, 113–131. [Google Scholar] [CrossRef]
- Papapetrou, E.; Karapantazis, S.; Pavlidou, F.N. Distributed on-demand routing for LEO satellite systems. Comput. Netw. 2007, 51, 4356–4376. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.C.; Yao, S. A Multi-path Routing Algorithm based on Ant Colony Optimization in Satellite Network. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Singapore, 15–17 July 2021; pp. 139–144. [Google Scholar]
- Let, R. On the Throughput-Latency Routing Optimality of a Delay-Tolerant Network. In Proceedings of the NOMA and IEEE 802.11 NETWORKS (MWN-5) Symposium, Globecom 2022, Rio de Janeiro, Brazil, 4–8 December 2022. [Google Scholar]
- Kleinrock, L. Internet congestion control using the power metric: Keep the pipe just full, but no fuller. Ad. Hoc. Netw. 2018, 80, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Israel, D.J.; Edwards, B.L.; Staren, J.W. Laser Communications Relay Demonstration (LCRD) update and the path towards optical relay operations. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MN, USA, 4–11 March 2017; pp. 1–6. [Google Scholar]
- Dudukovich, R.; LaFuente, B.; Hylton, A.; Tomko, B.; Follo, J. A distributed approach to high-rate delay tolerant networking within a virtualized environment. In Proceedings of the 2021 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW), Virtual, 21–22 June 2021; pp. 1–5. [Google Scholar]
- Hylton, A.; Raible, D.E. High data rate architecture (hidra). In Proceedings of the 34th AIAA International Communications Satellite Systems Conference, Cleveland, OH, USA, 18–20 October 2016; p. 5756. [Google Scholar]
- Lent, R. A cognitive network controller based on spiking neurons. In Proceedings of the 2018 IEEE international Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Lent, R. Enabling Cognitive Bundle Routing in NASA’s High Rate DTN. In Proceedings of the 2022 International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 30 May–3 June 2022; pp. 1323–1328. [Google Scholar]
- Kasabov, N.; Feigin, V.; Hou, Z.G.; Chen, Y.; Liang, L.; Krishnamurthi, R.; Othman, M.; Parmar, P. Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 2014, 134, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.A.; Tran, X.T.; Iacopi, F. A review of algorithms and hardware implementations for spiking neural networks. J. Low Power Electron. Appl. 2021, 11, 23. [Google Scholar] [CrossRef]
- Dong, C.; Xu, X.; Liu, A.; Liang, X. Load balancing routing algorithm based on extended link states in LEO constellation network. China Commun. 2022, 19, 247–260. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, H.; Jin, J.; Tian, F. A Cooperative Routing Algorithm for Data Downloading in LEO Satellite Network. In Proceedings of the 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021; pp. 1386–1391. [Google Scholar]
- Zhang, L.; Yan, F.; Zhang, Y.; Wu, T.; Zhu, Y.; Xia, W.; Shen, L. A routing algorithm based on link state information for leo satellite networks. In Proceedings of the 2020 IEEE Globecom Workshops GC Wkshps, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Geng, S.; Liu, S.; Fang, Z.; Gao, S. An agent-based clustering framework for reliable satellite networks. Reliab. Eng. Syst. Saf. 2021, 212, 107630. [Google Scholar] [CrossRef]
- Na, Z.; Pan, Z.; Liu, X.; Deng, Z.; Gao, Z.; Guo, Q. Distributed routing strategy based on machine learning for LEO satellite network. Wirel. Commun. Mob. Comput. 2018, 2018, 3026405. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, Y.; Sun, F.; Li, H. A survivable routing protocol for two-layered LEO/MEO satellite networks. Wirel. Netw. 2014, 20, 871–887. [Google Scholar] [CrossRef]
- Nishiyama, H.; Kudoh, D.; Kato, N.; Kadowaki, N. Load balancing and QoS provisioning based on congestion prediction for GEO/LEO hybrid satellite networks. Proc. IEEE 2011, 99, 1998–2007. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Nishiyama, H.; Kato, N.; Kadowaki, N. A traffic distribution technique to minimize packet delivery delay in multilayered satellite networks. IEEE Trans. Veh. Technol. 2013, 62, 3315–3324. [Google Scholar] [CrossRef]
- Tani, S.; Hayama, M.; Nishiyama, H.; Kato, N.; Motoyoshi, K.; Okamura, A. Multi-carrier relaying for successive data transfer in earth observation satellite constellations. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–5. [Google Scholar]
- Jiang, F.; Zhang, Q.; Yang, Z.; Yuan, P. A space–time graph based multipath routing in disruption-tolerant earth-observing satellite networks. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2592–2603. [Google Scholar] [CrossRef]
- Li, T.; Zhou, H.; Luo, H.; Yu, S. SERvICE: A software defined framework for integrated space-terrestrial satellite communication. IEEE Trans. Mob. Comput. 2017, 17, 703–716. [Google Scholar] [CrossRef]
- Long, F.; Xiong, N.; Vasilakos, A.V.; Yang, L.T.; Sun, F. A sustainable heuristic QoS routing algorithm for pervasive multi-layered satellite wireless networks. Wirel. Netw. 2010, 16, 1657–1673. [Google Scholar] [CrossRef]
- Tu, Z.; Zhou, H.; Li, K.; Li, G.; Shen, Q. A routing optimization method for software-defined SGIN based on deep reinforcement learning. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Zhu, Y.; Rui, L.; Qiu, X.; Huang, H. Double-layer satellite communication network routing algorithm based on priority and failure probability. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 1518–1523. [Google Scholar]
- Kumar, P.; Bhushan, S.; Halder, D.; Baswade, A.M. fybrrLink: Efficient QoS-aware Routing in SDN enabled Future Satellite Networks. IEEE Trans. Netw. Serv. Manag. 2021, 19, 2107–2118. [Google Scholar] [CrossRef]
- Shi, X.; Li, Y.; Zhao, S.; Wang, W. Multi-QoS adaptive routing algorithm based on SDN for satellite network. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 16–17 September 2020; Volume 768, p. 052035. [Google Scholar]
- Li, N.; Hu, L.; Deng, Z.l.; Su, T. Agent-Based Load Balancing and Qos Routing for Leo Satellite Networks. DEStech Trans. Comput. Sci. Eng. 2018, 163–171. [Google Scholar] [CrossRef]
- Zhou, J.; Bo, Q.; Sun, L.; Wang, J.; Yan, X. Routing Strategy for LEO Satellite Networks Based on Membership Degree Functions. Secur. Commun. Netw. 2020, 2020, 8822985. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.; Zhang, R. A Routing for Delay-sensitive Traffic in Aerospace Networks. In Proceedings of the 2018 7th International Conference on Energy and Environmental Protection (ICEEP 2018), Shenzhen, China, 14–15 July 2018; pp. 1178–1183. [Google Scholar]
- Fraire, J.A.; De Jonckere, O.; Burleigh, S.C. Routing in the space internet: A contact graph routing tutorial. J. Netw. Comput. Appl. 2021, 174, 102884. [Google Scholar] [CrossRef]
Scenario | h26–h29 | h29–h27 | h26–h30 | h30–h27 |
---|---|---|---|---|
Scenario 1 | 50 ms | 50 ms | 100 ms | 100 ms |
Scenario 2 | 50 ms 5% loss | 50 ms 5% loss | 100 ms | 100 ms |
Scenario 3 | 50 ms loss | 50 ms loss | 120 ms 512 Kb rate limit | 120 ms 512 Kb rate limit |
Scenario 4 | 50 ms | 50 ms | 120 ms 640 Kb rate limit | 120 ms 640 Kb rate limit |
Scenario 5 | 120 ms | 120 ms | 50 ms 640 Kb rate limit | 50 ms 640 Kb rate limit |
Scenario 6 | 200 ms | 200 ms | 50 ms 640 Kb rate limit | 50ms 640 Kb rate limit |
loss | loss |
Scenario | h26–h29 | h29–h27 | h26–h30 | h30–h27 |
---|---|---|---|---|
Scenario 7 | 50 ms loss | 50 ms loss | 100 ms | 100 ms |
Scenario 8 | 50 ms loss | 50 ms loss | 100 ms | 100 ms |
Scenario 9 | 200 ms | 50 ms loss | 50ms loss | 200 ms |
rate 640 kbit | rate 640 kbit |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velusamy, G.; Lent, R. Delay-Packet-Loss-Optimized Distributed Routing Using Spiking Neural Network in Delay-Tolerant Networking. Sensors 2023, 23, 310. https://doi.org/10.3390/s23010310
Velusamy G, Lent R. Delay-Packet-Loss-Optimized Distributed Routing Using Spiking Neural Network in Delay-Tolerant Networking. Sensors. 2023; 23(1):310. https://doi.org/10.3390/s23010310
Chicago/Turabian StyleVelusamy, Gandhimathi, and Ricardo Lent. 2023. "Delay-Packet-Loss-Optimized Distributed Routing Using Spiking Neural Network in Delay-Tolerant Networking" Sensors 23, no. 1: 310. https://doi.org/10.3390/s23010310
APA StyleVelusamy, G., & Lent, R. (2023). Delay-Packet-Loss-Optimized Distributed Routing Using Spiking Neural Network in Delay-Tolerant Networking. Sensors, 23(1), 310. https://doi.org/10.3390/s23010310