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Abstract: In this paper, we present a hybrid refractive-diffractive lens that, when paired with a deep
neural network-based image reconstruction, produces high-quality, real-world images with minimal
artifacts, reaching a PSNR of 28 dB on the test set. Our diffractive element compensates for the
off-axis aberrations of a single refractive element and has reduced chromatic aberrations across the
visible light spectrum. We also describe our training set augmentation and novel quality criteria
called “false edge level” (FEL), which validates that the neural network produces visually appealing
images without artifacts under a wide range of ISO and exposure settings. Our quality criteria (FEL)
enabled us to include real scene images without a corresponding ground truth in the training process.

Keywords: diffractive-refractive hybrid optics; computational imaging; deep learning; lens
optimization; image reconstruction

1. Introduction

The joint use of diffractive and refractive elements in optical imaging systems was first
proposed in work [1], where diffractive optical elements were used to design a varifocal
lens. However, the proposed design worked well only for monochromatic light. When used
with white light, all shortcomings of the diffractive optics became apparent, producing
strong image degradations due to heavy chromatic aberrations. It took 18 years until the
next work [2] was published, which became foundational in the use of diffractive elements
as chromatic aberration correctors. Since then, there has been an increase in the number
of publications dedicated to this topic. In paper [3], it was shown that in addition to
compensating for chromatic aberration, diffractive lenses were capable of compensating for
spherical aberrations as well. In Ref. [4], industrially manufactured hybrid diffractive achro-
mats were presented by Eastman Kodak Company. Unfortunately, another shortcoming
of diffractive lenses, high-level light scattering, has prevented the wide use of refractive-
diffractive systems in imaging optics, prompting continuing research efforts to address the
said shortcoming [5–7]. Suggested solutions [5–7] require the manufacturing of 2-to-3-layer
diffractive structures on spherical surfaces, which requires a more complex manufacturing
process immensely to produce this refractive-diffractive lens, rarely available even in ad-
vanced labs. A diffractive lens on a flat substrate, on the other hand, can be produced with
widely available fabrication equipment, enabling a wide range of applications. For instance,
in Ref. [8], the diffractive lenses were used for a composite imaging system identical to a
facet insect eye. In Ref. [9], the refractive-diffractive elements were used as a component
of an artificial eye. In [10], a hybrid system was also used to increase the focal depth. The
diffractive structure was constructed as a binary lens simultaneously exhibiting both light
converging and diverging properties. As a result, two spatially separated on-axis foci were
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formed, between which images of near-same sharpness could be formed, thus eliminating
the need for the focal length adjustment of this artificial lens.

A significant number of publications were dedicated to the analysis of refractive-
diffractive lenses [11–13]. A reflecting lens that reflects light inside the glass and has an
annular aperture, with a diffractive element being the only element used to compensate for
chromatic aberration, was analyzed in the paper [14]. While the idea proposed in paper [1]
was extended and implemented at a new, higher-quality technology level in paper [15], the
lens still exhibited the old shortcomings.

A combination of refractive-diffractive lenses with computational image reconstruc-
tion allowed us to reach the image quality that real-world applications demand. In previous
works [16–19], deep learning-based image reconstruction was successfully used to compen-
sate for the chromatic distortions typical in an optical system with a harmonic diffractive
lens. Despite good results of the deep learning-based correction as measured by the peak
signal-to-noise ratio (PSNR) on a test set at about 27 dB [16,20], reconstructed real scene
images showed visible reconstruction artifacts. These artifacts were caused by the follow-
ing features specific to real scenes as opposed to the training set: high dynamic range
(HDR), camera gain, and lossy video compression. We modified our training procedure to
overcome these reconstruction artifacts.

In this work, we propose a hybrid refractive/diffractive camera lens based on the
design proposed in work [3], where the capabilities of the diffractive optics to compen-
sate for both chromatic and spherical aberrations was first demonstrated. Analyzing the
performance of this lens, we show that the lens-aided aberration compensation creates an
excellent point spread function (PSF) near the optical axis, with the off-axis PSF rapidly
increasing with a growing angle and reaching unacceptable values at viewing angles as
little as 6–8◦. These off-axis aberrations play a key role in image degradation. In this work,
we compensate for both chromatic and off-axis aberrations with a single diffractive lens
designed specifically to perform the corrective function.

In order to address image degradations with image post-processing, deep learning-
based methods can be used. To eliminate reconstruction artifacts for real scenes, we
augmented the training set to better simulate the variety of the scenes. Our augmentation
procedure includes two types of simulated image degradations: the camera gain (ISO) and
the exposure shift. To measure the artifact levels, we designed our own criteria, which
we called a false edge level (FEL), to select the best point of the model parameter space,
resulting in artifact-free image reconstruction. We use a lighter version of U-Net [21]
architecture which has a fast-training process with the best image reconstruction quality.

The main contribution of this paper is two-fold.

(1) On the optical side, we describe our design process for the hybrid refractive-diffractive
lens that minimizes chromatic and geometric aberrations from the concept to the
manufactured prototype.

(2) On the software side, we present our deep-learning image reconstruction that com-
bines a lab-captured dataset with real images extended with our image augmentation
to obtain artifacts-free image reconstruction, with PSNR reaching 28 dB on test images
and delivered a good visual quality for the captured real scenes.

2. Chromatic Aberration Compensation Design of the Diffractive Element of Our
Refractive-Diffractive Optical System

When incorporating diffractive optics into classical imaging lens systems, we can
exploit the key difference between the two types of optics to yield the chromatic aberration
correction effect: the refractive lens material’s dispersion and the dispersion of the diffrac-
tive lens focusing properties are opposite in sign. As the incident wavelength increases,
the focal length of the refractive lens also increases, while the reverse effect occurs at the
diffractive lens. With the properly selected parameters, a refractive/diffractive lens doublet
(Figure 1) can cancel the chromatic aberration entirely for two incident wavelengths while
reducing it significantly on the interval between them [2]. Although a single glass with
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refractive and diffractive sides is ideal (Figure 1a), this design is challenging to manufacture
cost-effectively. Instead, in this work, we use the design shown in Figure 1b for the numeric
modeling, manufacturing, image quality measurements, and for computational correction.
Optical elements in our test setup are separated by a gap of 1mm, as illustrated in Figure 1b;
the same distance is used in our analytical and numerical modeling.
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Figure 1. Images created with our inhouse-designed Harmony software of the doublet with refractive
and diffractive elements to compensate for chromatic aberrations of two layouts: (a) a single lens with
refractive and diffractive surfaces and (b) a system composed of a flat-convex lens and a diffractive
lens on the surface of a flat substrate.

Historically, this hybrid design was used for illustration purposes only because this
combination of a standard spherical refractive lens and a standard diffractive lens approxi-
mating spherical element results in substantial geometric aberrations. Therefore, diffractive
optics were incorporated into fairly complex optical systems [22,23] only to compensate for
chromatic aberrations or for the combined chromatic/spherical aberrations [3]. However,
the diffractive element is capable of more than just compensating for chromatic aberrations.
Paper [24], where a diffractive element is incorporated into the optical design, is notable
because they had to use a complex arbitrary-shape refractive element to compensate for
geometric aberrations. Work [24] is an example of how the knowledge bias, in this case,
expert knowledge of authors in refractive optics, can result in overlooking the rich capabili-
ties of a well-designed diffractive element. With our experience in diffractive optics, we
know that a single diffractive element is capable of approximating an arbitrary aspheric
surface, however complex it is. In theory, because each individual diffraction zone can be
treated as an optimization parameter, a diffractive element can be designed to compensate
for both geometric and chromatic aberrations.

Unfortunately, popular imaging optics design and modeling software, such as ZEMAX
and CODE V, have poor functionality when it comes to the design of optical systems that
include diffractive elements, let alone optimize their design. To design and optimize
our novel systems with an arbitrary number of diffractive elements, we created our own
software called HARMONY with a set of design and optimization tools that can be used
for multiple refractive and diffractive elements using ray-tracing. We used HARMONY to
design Earth imaging diffractive lens, launched to LEO last year [17]. More details about
HARMONY can be found in [25].

Let us analyze the key formulae used when designing a refractive-diffractive achro-
matic doublet [9]. For the achromatization condition to be met, the focal lengths of a
two-lens system at two different wavelengths need to be the same. For a refractive element,
the focal length at the wavelength λ1 is given by the formula

f (λ1) =
R1R2n(λ1)

[n(λ1)− 1][n(λ1)(R1 + R2)− d(n(λ1)− 1)]
, (1)



Sensors 2023, 23, 415 4 of 20

where R1 and R2 are the radii of curvatures of the first and second surfaces, respectively, d
is the lens thickness, and n(λ1) is the refractive index at the wavelength λ1. For a diffractive
lens, the focal length is given by the formula

f d(λ1) =
λ0 f0

λ1
, (2)

where λ0 is the operating wavelength, and f 0 is the calculated focal length. The wavelength
λ2 is derived using the same Equation (1):

f (λ2) =
R1R2n(λ2)

[n(λ2)− 1][n(λ2)(R1 + R2)− d(n(λ2)− 1)]
(3)

f d(λ2) =
λ0 f0

λ2
(4)

The combined focal length of the system with refractive and diffractive elements is
given by

F =
f f d

f + f d − D
(5)

where D is the distance between the refractive and diffractive lenses (1 mm in our design).
The condition for the combined focal length to be the same at two wavelengths is:

f (λ1)λ0 f0

λ1

[
f (λ1) +

λ0 f0
λ1
− D

] =
f (λ2)λ0 f0

λ2

[
f (λ2) +

λ0 f0
λ2
− D

] (6)

A simple rearrangement yields:

λ0 f0 =
f (λ1) f (λ2)(λ1 − λ2)− D · [ f (λ1)λ2 − f (λ2)λ1]

f (λ1)− f (λ2)
(7)

Considering that the best result will be achieved if the calculated wavelength is in the
middle between the wavelengths λ1 and λ2 λ0 = (λ1+λ2)

2 Equation (7) can be rearranged to

f0 =
2 · { f (λ1) f (λ2)(λ1 − λ2)− D · [ f (λ1)λ2 − f (λ2)λ1]}

(λ1 + λ2)[ f (λ1)− f (λ2)]
(8)

Using our analytical solution, we calculated the parameters of our refractive-diffractive
doublet and, using our HARMONY software, modeled the focal plane shift as the incident
wavelength increases from 400 n through 670 nm with a step of 30 nm. As Figure 2 shows,
an optical system is configured based on Equations (1)–(8) fails to produce an optimal
result. Specifically, there is a non-zero shift at a second boundary wavelength of 670 nm.

We then performed precise optimizations of the chromatic aberrations in our HAR-
MONY software and produced a different from the analytical solution (Figure 3). The
relative difference between the analytically and numerically designed parameters was
in the range of 5 to 7%. For instance, for a refractive flat-concave lens with a 75-mm
focal length made of BK7 glass, the Equations (1)–(9) gives the f 0 value of 647 mm,
while HARMONY software suggests the right value of f 0 is 626 mm. Figure 3 shows
how the focal plane shifts with the incident wavelength for a system optimized with the
HARMONY software.
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Figure 3. Focal plane shift vs. the wavelength for a refractive-diffractive doublet, optimized in the
HARMONY software, with zero shift at boundary wavelengths.

With our HARMONY software, we also minimized the width of the off-axis PSF.
Microrelief heights in each diffraction zone were treated as free parameters and individual
coordinates, and the optimization was carried out using a coordinate descent solver.

As shown in Appendix A, our optimization successfully achieved the desired achrom-
atization effect, resulting in a minimized point spread function (PSF). The intensity distri-
bution was accurately measured and showed that our optimization significantly reduced
the PSF width from 11.2 µm to 7.1 µm, a 36% decrease.

3. Manufacturing of the Diffractive Lens

To evaluate the imaging quality of the proposed hybrid lens, we constructed a pro-
totype imaging system that combines both refractive and diffractive elements using the
parameters computed in the previous section. The lens was designed for a principal
wavelength of 535 nm, with a resulting optimal microrelief height of 1000 nm.

The diffractive lens was fabricated by the direct laser writing in a photoresist using
a laser writing station CLWS-2014. The diffractive lens has a 626-mm focal length and a
10-mm diameter, as computed in the previous section. The focal length and the diameter
were chosen to match the parameters of our refractive flat-convex optical element. The
image of the central part of the manufactured lens is shown in Figure 4a with the lens radial
cross-section depicted in Figure 4b.
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Figure 4. (a) Our reflecting harmonic lens with the annular microrelief, observed through the
microscope, (b,c) observed and calculated cross-section microrelief profiles, respectively.

As can be seen in Figure 4b, the measured microrelief height matches the designed
target height (about 1000 nm). In order to house both optical elements, the lens dou-
blet was placed in a 3D-printed plastic casing, printed with a resolution of 20 µm. An
exterior view of the prototype camera lens is shown in Figure 5. The Basler acA1920-
40uc USB 3.0 camera was attached to this lens assembly for the image capture and our
reconstruction experiments.
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4. Deep Learning-Based Image Reconstruction
4.1. Deep Learning-Based Image Reconstruction Overview

The image reconstruction that is effective for our diffractive optic-based imaging
system is similar to a single image super-resolution (SISR) task. There are various deep-
learning solutions that can produce visual-pleasing results with high PSNR and SSIM values
for a SISR task [26,27]. Most of these methods are based on the known image degradation
models and range from simple downsampling with a bicubic upsampling [28–32] to more
recent works, relying on blurring kernel degradation [30–32]. When applied to real-world
images, these algorithms suffer from artifacts because the real image degradation is usually
too complex [33] or has a non-local behavior that depends on the image content [16,34].
Artifact-free results can still be achieved with techniques described in [33,35,36]. A meta-
transfer learning-based training procedure [35] can make a network adaptive to a new
degradation within a few iterations at the inference. Work [36] has flexible adaptation to
degradations based on the learned representations. A higher-order degradation process
that is based on simple degradations (such as blur, resize, noise, etc.) is proposed in [33]
to model real-world degradations. A similar approach could be useful for modeling the
degradations that are inherent to diffractive optics.

To build a semi-real dataset for supervised learning, we use a capture-from-screen
laboratory setup [16] with a laptop connected to a UHD LCD monitor and Basler acA1920-
40uc USB 3.0 camera with our doublet lens system. However, this setup has three main
differences from real scene capturing: a higher dynamic range, camera gain, and lossy video
compression. Unlike real-world scene capture, which can involve varying camera gain
(ISO) and exposure, our setup with up to 200 lux of screen illumination produces images
with consistent characteristics. When combined with lossy image compression, these
image-specific parameters can cause reconstruction artifacts, as analyzed in works [16,17].

In this work, we propose a method for eliminating reconstruction artifacts by aug-
menting the training data with simulated image degradations that include variations in
camera gain (ISO) and exposure shift. While lossy compression degradation was addressed
in [16], in this work, we decided not to introduce compression degradation. Although
our data augmentation helped to improve the quality, we decided to evaluate the level of
reconstruction artifacts on real image patches during the training process to identify the best
point in the parameter space. This approach resulted in the nearly complete elimination of
reconstruction artifacts in the reconstructed real-world images.

To measure the artifact levels, we introduced the false edge level (FEL) criteria, which
enabled us to incorporate real-world images into our training process. The FEL criteria are
based on edge detection in real-world images and do not require a ground truth image.
In work [37], a method for evaluating the quality of detail restoration in video super-
resolution was proposed, called edge restoration quality assessment (ERQA), which was
also based on edge detection. While this work showed that edge restoration is critical for
human perception of detail restoration, their method required ground truth images. In
our approach, we can use the edge-based estimation of reconstruction artifacts without
ground-truth information.

As demonstrated in previous works [20,34], diffractive optics can cause two types
of image degradation: local degradation, which is caused by chromatic aberration, and
non-local, content-aware chromatic shift, which is caused by the redistribution of energy
between the secondary diffractive orders of the lens. Since these degradations affect areas
larger than 200 pixels in width in our setup [34], we use a CNN with a receptive field
wider than 200 pixels, which is based on the modified U-Net [21] architecture. U-Net-based
architectures were successfully used for image reconstruction in diffractive optic-based
imaging systems before [16–19].

4.2. False Edge Level (FEL) Criteria

Observing the neural network performance on the real-world images, we noticed that
reconstruction artifacts look resemble contours (Figure 6a,b). To assess the level of artifacts,
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we calculate the percentage of contour pixels in a patch that should not contain contours.
We called this metric “false edge level” (FEL), defined as follows:

FEL =
1

NM ∑
0≤i≤N−1
0≤j≤M−1

Eij·100, (9)

where E is a N ×M binary edge map produced by the Canny algorithm with thresholds
set to 0 and 70, E has to be normalized to [0,1] before calculating the FEL. The thresholds
for the Canny algorithm were experimentally selected to find the optimal match between
visual artifact levels in real-world images, and the percentage of contour pixels after edge
detection was performed. Figure 6 shows examples of the edges detected by the Canny
algorithm for real-world image patches and the corresponding FEL values. Our choice
of the Canny algorithm was inspired by the work [38], where the Canny algorithm was
successfully used for the ERQA metric calculation.
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Figure 6. Edge detection examples: (a,c) reconstructed patches of real-world images with FEL of
30.69% and 1.28%, respectively; (b,d) results of the Canny algorithm of (a,c), respectively.

4.3. Dataset Capture and Data Augmentation Strategy

We collected our dataset using a capture-from-screen laboratory setup successfully
used before, as described in [16,17,20,34]. In this setup, a laptop is connected to the
UHD LCD monitor with an IPS panel and 163 ppi resolution via an HDMI cable, where
this monitor serves as an image generation device, and a Basler acA1920-40uc USB 3.0
camera, which serves as an image capturing device. The software which we developed
automates the process where images are displayed by the monitor and then captured with
customizable timing. A calibration image with markers helps to match captured images
with the original ones. The training, test, and validation sets contained 1244, 613, and 21
pairs of the input and the ground truth 1024*1024 RGB images, respectively. The training
on the display-captured images results in the network with a high level of mean PSNR
value and good visual quality on the test set. However, when applied to real-world images,
a CNN-based reconstruction produced undesirable artifacts [16,17].

Since lossy image compression in this work was not used, we considered two types
of degradations: camera gain noise (ISO noise) and exposure change. We propose to
augment the training dataset by modeling these degradations. To model ISO noise, we
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used Poissonian-Gaussian noise [39,40], where a Poissonian component models the photon
sensing and a Gaussian component for the remaining stationary disturbances in the output
data. We applied Poissonian-Gaussian noise to input images to simulate camera ISO noise
with a probability of 0.5. We used the algorithm implemented in the Albumentations
library [41]. The intensity parameter of the ISO noise modeling algorithm was randomly
selected from {0.1, 0.2, 0.3}.

To adjust the image exposure, we employed a low-light image enhancement algorithm,
as described in [42]. The algorithm is based on a camera response model that relates
the irradiance of the camera sensor to the pixel values in the image. The algorithm for
enhancing images is based on estimating a camera response model using the histogram
characteristics of two images with different exposure settings and an exposure ratio map.
This allows us to adjust the exposure of the image without introducing color and lighting
distortions. We apply this exposure adjustment after adding ISO noise to the image with a
probability of 0.1.

4.4. Network Architecture

We use a modification of the U-Net architecture [26], which was successfully applied
for post-processing images captured by harmonic diffractive lenses [27,28]. The original
U-Net architecture as follows:

C64-C128-C256-C512-C512-C512-C512-C512 (Encoder).
CD512-CD512-CD512-C512-C256-C128-C64-C3 (Decoder), C3.
Each encoder block Ck has a convolutional layer, batch normalization, and a ReLU

activation function, where the number of filters is denoted by k. A dropout layer is added
before each activation layer in decoder blocks. The filter size is 4× 4 pixels. The architecture
has skip connections between each layer i in the encoder and layer (n-i) in the decoder,
where n is the total number of layers. The last layer has a tanh activation function.

In our work, we implemented a lighter architecture:
C64-C128-C256-C512-C512 (Encoder), CD512-C256-C128-C64 (Decoder), C3. (10).
Although this lighter version of the network is faster to train because it has three times

fewer trainable parameters and requires less memory, its image reconstruction quality is
comparable to that of a more computationally expensive architecture, as measured by the
mean peak signal-to-noise ratio (PSNR).

4.5. Training with the FEL Criteria for the Artifact-Free Reconstruction

For our training, we chose an ADAM optimizer [38] with β1 = 0.5 and β2 = 0.999 and
a learning rate of 0.0002. In all our experiments, we used an l2 loss function. In previous
works [16,17], the best point of the parameter space was selected by a mean PSNR value
calculated on the validation set. In our work, we use our FEL criteria on a real-world image
patch to find the best parameters to minimize reconstruction artifacts.

We trained the CNN (10) on the display-captured train set for 200 epochs. The meaning
of PSNR and FEL were calculated after each epoch. We selected two points corresponding
to the maximum mean PSNR on the validation set (max-PSNR criteria) and the minimum
FEL (min-FEL criteria) on the 200× 200 patch of a real-world image. We feed the test set to
both models initialized by two selected parameter points. Figure 7 shows an example of a
test image reconstructed by these models. As can be seen in Figure 7, both reconstructed
images (Figure 7c,d) are almost visually identical to the ground truth image (Figure 7a):
the results for the max-PSNR criteria results in 1.17 dB-higher PSNR value than does the
min-FEL, as measured using the test image.
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Figure 7. An image reconstruction example: (a) the ground truth image; (b) the image captured with
our hybrid lens without post-processing (18.57 dB PSNR); (c,d) reconstructed images with the best
point selected using max-PSNR (28.03 dB) and min-FEL criteria (26.86 dB), respectively.

An example of real-world image reconstruction is shown in Figure 8, where the black
rectangle in the left upper corner highlights the patch we used for the FEL calculation
(Figure 8a). In Figure 8b,c, we show reconstructed images with the best point selected with
the max-PSNR and min-FEL criteria, respectively. Patches of CNN-reconstructed images
(Figure 8d,e) show that the min-FEL and max-PSNR, when used as optimization criteria,
produce visually different results, where a cleaner image (Figure 8e) has a 16.21% lower
FEL, confirming that min-FEL results in higher quality, as perceived by a human, images.
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Figure 8. An example of real-world image reconstruction: (a) image captured by our hybrid lens with
a 200 × 200 patch highlighted by the black rectangle; (b,c) reconstructed images using the best point
selected by the max-PSNR and by the min-FEL criteria, respectively; (d,e) patches corresponding to
the max-PSNR (FEL is 30.69%) and min-FEL criteria (FEL is 14.48%).

4.6. Data Augmentation Experiments

The inspiration for our data augmentation came from an observation that the recon-
struction artifacts, which we saw with real-world images (Figure 8b–e), are visually similar
to the artifacts generated by the reconstruction of the monitor-generated images with
artificially added camera gain and exposure changes. Figure 9 shows how a test image
(Figure 10a) looks after being captured by our test setup and CNN-reconstructed without
adding any degradations (Figure 10b) and with added ISO noise between the reconstruc-
tion (Figure 9c) and with both ISO noise and exposure increase added (Figure 9d). The
artifacts we observe look similar to those visible in the reconstructed real-world images
(Figure 7b,d).
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Figure 9. Artifacts of the CNN reconstruction of a test image: (a) a ground truth image; (b,c), and
(d) CNN reconstruction of the captured image without any preprocessing, with ISO noise added, and
with both ISO noise added and increased exposure, respectively.

Table 1. Comparison of metrics values for different augmentations.

№ Augmentation The Best Point
Selection Criteria

PSNR of Validation
Set (dB) FEL (%) PSNR of the

Test Set (dB)

Reconstructed
Patch, Min-FEL

Criterion

1 No augmentation Max-PSNR 27.71 30.69 27.68 Figure 8d
Figure 8eMin-FEL 26.56 14.48 27.01

2
ISO noise with a probability of 0.5 and

intensity of 0.1
Max-PSNR 27.52 3.32 28.09 -

Figure 10aMin-FEL 27.13 2.83 27.65

3 ISO noise (0.5 probability), random intensity
0.1, 0.2, 0.3

Max-PSNR 27.42 1.47 27.4 -
Figures 10b and 11aMin-FEL 27.29 1.35 27.37

4
ISO noise with a probability of 0.5, random

intensity 0.1, 0.2, 0.3; varying exposure
Max-PSNR 26.46 1.69 27.08 -

Figures 10c and 11bMin-FEL 26.2 1.29 26.91
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Figure 10. Reconstructed real-world image patches for different data augmentation from Table 1: 
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intensity randomly selected from {0.1; 0.2; 0.3}; (c) ISO noise with a probability of 0.5, intensity 

randomly selected from {0.1; 0.2; 0.3}, and the adjusted exposure. 
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shows the comparison of FEL values while training on the raw data without augmenta-

tion and on the augmented data. While training on the augmented data results in signif-
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with augmented data compared to the raw data (Figure 13b). Our use of FEL comple-
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lution. 

Figure 10. Reconstructed real-world image patches for different data augmentation from Table 1:
(a) ISO noise with a probability of 0.5 and intensity of 0.1; (b) ISO noise with a probability of 0.5,
intensity randomly selected from {0.1; 0.2; 0.3}; (c) ISO noise with a probability of 0.5, intensity
randomly selected from {0.1; 0.2; 0.3}, and the adjusted exposure.

With this observation in mind, we first augmented the training dataset with an ISO
noise modeling algorithm with a probability of 0.5 and the intensity randomly selected from
{0.1, 0.2, 0.3}. Then we shifted image exposure with a probability of 0.1. Reconstruction
results for different train image augmentation parameters are demonstrated in Table 1.

Table 1 shows that the highest PSNR value is achieved when we use ISO noise aug-
mentation with the intensity of 0.1 (row 2 in Table 1), while the minimum FEL is achieved
with a higher augmentation variability, including ISO noise with three levels of intensity
and exposure change (row 4 in Table 1). We already know that a smaller FEL corresponds
to the visually better reconstruction quality of real-world images (Figures 8c and 10). How-
ever, the PSNR metric on the test set suffers the more diverse the augmentation we apply.
Figure 10 demonstrates reconstructed patches of a real-world image (Figure 8a) for the
min-FEL criteria. Figure 10b has almost the same FEL value (just 0.06 lower) as Figure 10c,
and the two are not surprisingly subjectively similar. After we visually compared the
full-sized reconstruction images (Figure 11), we chose the augmentation, which includes
applied ISO noise and exposure shift (Figure 11b).Sensors 2022, 22, x FOR PEER REVIEW 14 of 22 
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Figure 11. Reconstruction of the real-world image (Figure 8a) by the CNN trained on the augmented
training set by (a) adding ISO noise with different intensities (Table 1, row 3); (b) by adding both ISO
noise and exposure shift (Table 1, row 4).

Table 1 shows that the highest PSNR value is achieved when we use ISO noise aug-
mentation with the intensity of 0.1 (row 2 in Table 1), while the minimum FEL is achieved
with a higher augmentation variability, including ISO noise with three levels of intensity
and exposure change (row 4 in Table 1). We already know that a smaller FEL corresponds
to the visually better reconstruction quality of real-world images (Figures 8c and 10). How-
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ever, the PSNR metric on the test set suffers the more diverse the augmentation we apply.
Figure 10 demonstrates reconstructed patches of a real-world image (Figure 8a) for the
min-FEL criteria. Figure 10b has almost the same FEL value (just 0.06 lower) as Figure 10c,
and the two are not surprisingly subjectively similar. After we visually compared the
full-sized reconstruction images (Figure 11), we chose the augmentation, which includes
applied ISO noise and exposure shift (Figure 11b).

Figure 12 below shows other reconstruction examples of real-world images captured
under different conditions. As can be seen in Figure 12, augmentation provides a noticeable
improvement in visual quality and lowers the number of artifacts. Figure 13a shows the
comparison of FEL values while training on the raw data without augmentation and on the
augmented data. While training on the augmented data results in significant performance
improvements in terms of the FEL, PSNR became somewhat lower with augmented data
compared to the raw data (Figure 13b). Our use of FEL complements a more traditional
PSNR measure to find an artifact-free image reconstruction solution.Sensors 2022, 22, x FOR PEER REVIEW 15 of 22 
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Figure 12. Reconstruction of the real-world images: (a,b) captured by the hybrid lens; (c,d) recon-
structed with a CNN trained on the data with no augmentation; (e,f) reconstructed with a CNN
trained on the augmented data; (g) a patch of (c); (h) a patch of (e); (i) a patch of (d); (j) a patch of (f);
(k,l) captured by a standard refractive lens.
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Figure 13. Quality metric comparison between the training on the acquired raw data with no
augmentation (Table 1, Row 1) and on the augmented data with added ISO noise and exposure
shift (Table 1, Row 4) (a) FEL calculated on the real-world image patch, (b) PSNR calculated on the
validation set.

4.7. Final Training Settings

For image reconstruction, we used a lightweight version of U-Net as described in
Section 4.4. For datasets captured under different conditions, the light version of U-Net
produced PSNR values on the validation set that fluctuated around PSNR values produced
by the full U-Net. The convergence comparison, shown in Appendix B, confirms our choice
of light architecture to find the best training settings in our research.



Sensors 2023, 23, 415 16 of 20

5. Conclusions

Our ambitious goal was to create a hybrid refractive/diffractive lens duplex, which,
when combined with properly designed software post-processing, can produce visually
high-quality images taken in the real world. To produce the results, we describe in this
paper, we had to overcome a long list of challenges that were difficult individually and
even more complex when combined in a hardware/software system with multiple interde-
pendent components and produced a working system that performs well not only in the
artificial environment of the lab but, more importantly, in the field. Specifically, we were
able to accomplish the following (which we also describe in this paper in detail):

- We designed and optimized our hybrid lens system in the in-house software HAR-
MONY to compensate for the lack of sufficiently powerful capabilities in widely
available optical simulation tools. With full modeling flexibility, we designed the
diffractive element to compensate for off-axis geometric aberrations of the refrac-
tive element and ensured that chromatic aberrations reached zero for two boundary
wavelengths, ensuring robust performance on the whole visible spectrum. For the
manufacturing, we used widely available laser writing hardware, which ensures the
reproducibility of our results and allows for inexpensive mass production later.

- For image post-processing, we deployed an end-to-end deep learning-based image
reconstruction with the architecture inspired by the UNet. To generate images used for
training, we built a straightforward capture-from-screen automated laboratory setup.
Intensive illumination ensured high-quality capture, and we artificially added ISO
noise and exposure adjustments to augment the test set to ensure that our apparatus
could perform well in a variety of lighting conditions outside of the capture setup.

- Initial experiments using a widely used PSNR metric for quality assessment showed
that our neural network training produced inferior results when real-world pictures
were processed. With a non-augmented test set of 613 images, we achieved a PSNR
of 28.09 dB. When augmented with ISO noise and exposure adjustments, PSNR
went down to 27.08 dB on the test set but showed better visual results with real-
world images. Seeing the limitations of PSNR for our scenario, we invented a novel
quality validation criterion that is aligned with human perception of quality, which
we called FEL (false edge level) criteria. This allowed us to confirm that our trained
neural network performs exceptionally well when it reconstructs real-world images
often made under challenging lighting conditions. To argue our selection of this
validation criterion, we present the data and images comparing the performance of
the reconstruction with PSNR versus FEL, with FEL being a clear winner despite the
fact that the resulting images have somewhat lower PSNR on the test set. The key to
this validation advancement was not only the introduction of FEL but our use of a
real image patch during the training without the need to produce a corresponding
ground truth image.

In this paper, we describe the solutions we developed to overcome numerous chal-
lenges in building our hybrid refractive/diffractive camera setup, which can be the basis
for the development of mass-produced, lightweight, high-quality hybrid imaging optics.
Our min-FEL quality criterion can potentially be of greater importance for the broader field
of image processing and will be thoroughly analyzed in subsequent research.

Author Contributions: Conceptualization, N.L.K., R.V.S., A.V.N. and Y.Y.; methodology—optics,
N.L.K. and R.V.S.; methodology—image reconstruction, A.V.N., V.V.E. and Y.Y.; experiments, M.V.P.,
N.A.I., V.V.P., V.V.E. and S.O.S.; optical hardware and engineering, N.A.I., V.V.P., M.V.P. and S.V.G.;
software V.V.E. and M.V.P.; writing—original draft preparation: V.V.E., R.V.S., A.V.N. and V.A.F.;
writing—review and editing: A.V.N., Y.Y. and R.V.S.; project administration: R.V.S., A.V.N. and N.L.K.
All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by Russian Science Foundation grant #22-19-00364.

Data Availability Statement: Not applicable.



Sensors 2023, 23, 415 17 of 20

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Estimation PSF of the Hybrid System

Figure A1 presents PSFs for our refractive-diffractive lens doublet, respectively, before
and after the optimization, computed using our software. Figure A1e,g and Figure 4f show
PSF at wavelengths of 400 nm, 670 nm, and 550 nm, respectively:
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Figure A1. PSF at an 8◦ angle with the axis (a) before and (b) after the optimization within a 64*64 µm
square; their corresponding horizontal sections are shown in (c,d); (e)—after the optimization for
λ = 400 nm, (f) after the optimization for λ = 670 nm, (g) after the optimization for λ = 550 nm.

As shown in Figure A1, our optimization successfully achieved the desired achromati-
zation effect, resulting in a minimized point spread function (PSF). The intensity distribution
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was accurately measured and showed that our optimization significantly reduced the PSF
width from 11.2 µm to 7.1 µm, a 36% decrease.

Appendix B. Comparing Training Convergence of the CNN-Based Image
Reconstruction Models

Figure A2a shows the comparison of PSNR values while training for both architectures
with the same hyperparameters using the dataset captured by the hybrid lens. Figure A2b
shows the same experiment for a dataset captured by the MDL. However, for the FEL metric,
Figure A2c shows the same result for both architectures. At the end of our experiments, we
compared both U-Net versions for the best settings. It turned out that the light architecture
showed better performance than the full architecture in terms of the PSNR (Figure A2a),
while both architectures achieved the same FEL on the real image patch in terms of artifact
level (Figure A2c). These results confirmed our choice of light architecture to find the best
training settings.

For real-world images, we achieved the best performance when our lightweight
U-Net-like architecture (10) was trained with the data augmented with ISO noise and
varied exposure using the min-FEL criteria to select the best point in the parameter
space. The choice of the FEL as an optimization criterion resulted in lowering FEL from
30.69% to 1.29%, which was visually perceived as the disappearance of artifacts in the
real-world images.
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