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Abstract: Despite the fact that COVID-19 is no longer a global pandemic due to development and
integration of different technologies for the diagnosis and treatment of the disease, technological
advancement in the field of molecular biology, electronics, computer science, artificial intelligence,
Internet of Things, nanotechnology, etc. has led to the development of molecular approaches and
computer aided diagnosis for the detection of COVID-19. This study provides a holistic approach on
COVID-19 detection based on (1) molecular diagnosis which includes RT-PCR, antigen–antibody, and
CRISPR-based biosensors and (2) computer aided detection based on AI-driven models which include
deep learning and transfer learning approach. The review also provide comparison between these
two emerging technologies and open research issues for the development of smart-IoMT-enabled
platforms for the detection of COVID-19.

Keywords: biosensors; COVID-19; artificial intelligence; computer-aided detection (CAD); Internet
of Medical Things (IoMT)

1. Introduction

The year 2020 has witnessed a massive global burden due to the spread of the pneu-
monia causing virus known as SARS-CoV2 or COVID-19. The disease has led to massive
screening, quarantines, restriction of movement, closure of land and borders, lockdowns,
closure of educational, sportive and entertainment centers, and forced people to work from
home [1,2]. In order to control the disease, scientists from different fields work hand in
hand together to develop diagnostic approaches, prediction models, treatment control
strategies, vaccines, etc. Screening of SARS-CoV-2 using a lab-bench assay is regarded as
the first line of action in terms of minimizing spread and allowing for early treatment of
the disease. This prompted the Chinese government to enact several testing points [2–4].

Medical experts rely on two main molecular approaches, which include RT-PCR and
antibody–antigen based techniques, for the detection of the disease. However, among these
two molecular testing approaches, RT-PCR is regarded as the gold standard technique due
to it specificity and accuracy. The tests allow healthcare experts to detect viral nucleic acid
from patient samples collected using a nasal swab, which is amplified using PCR machine.
Antigen–antibody revolves around the binding between a synthesized recombinant antigen
and the antibodies present in the body, which elicit an antigen–antibody reaction [5–7].

Even though molecular techniques such as RT-PCR and antibody testing are regarded
as the standard procedures for the detection of SARS-CoV-2, they are hindered by several
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challenges, which include the incidence of false positive results, which can lead to misdi-
agnosis. These testing procedures are also costly, especially in remote areas and countries
with substandard healthcare systems. As an alternative, healthcare professionals employ
radiographic screening using X-ray imaging and CT-scan imaging, which allow scientists
to discriminate between positive and negative cases. Others employ these techniques
as a follow-up approach or as confirmation tests. As a result of massive or large-scale
screening of radiographic images, these techniques can be tedious for radiologists and can
led to misinterpretation [3,4,8,9].

In order to address these issues, scientists merge radiographic imaging with com-
puter applications to develop computer-aided diagnosis (CAD), which allows screening of
thousands of images with high accuracy, precision, and specificity [10,11]. CAD has been
shown to aid medical experts in the past in the detection of different types of cancer, such as
breast cancer [12], colon cancer [13], prostate cancer [14], brain cancer [15], tuberculosis [16],
bacterial pneumonia [17], non-COVID-19 viral pneumonia [18], and skin diseases [19].

The integration of IoT with medical care, known as IoMT, is changing the landscape
of patient care, diagnosis, and treatment. IoMT revolves around the interconnection
between medical devices using internet. The platform enables machine–machine communi-
cation, patient–machine communication, machine–medical professional communication,
etc. Examples of IoMT system include patient tracking devices, remote patient monitoring,
medication tracking devices, etc. [20–22].

The prospect of smart diagnosis has been gaining ground in the last decade. The
integration of smart technologies, such as AI and IoMT, with conventional diagnostic
approaches has the potential to improve diagnosis and real-time, or point-of-care, detection,
as well as to minimize errors and allow the sharing of medical data between devices, end
users, and hospital cloud systems [23,24].

1.1. Comparison with Similar Studies

Detection of COVID-19 has been crucial for treatment and for controlling the spread
of the virus. Scientists employ several emerging technologies, which include the use of
CAD-based-on-AI driven models, AI/IoT enabled systems, molecular testing based on
RT-PCR, and CRISPR/Cas based biosensors. Innumerable studies in the literature only
concentrate on one or the other of these emerging technologies. However, this study
evaluated each technique separately and compared them in terms of cost, performance
(accuracy, sensitivity, specificity), deployment, etc.

The review provided by Samson et al. [25] focused on the application of biosensing
technology for the detection of COVID-19. The review discusses nucleic acid-based biosen-
sors, such as CRISPR/Cas9 strip-based biosensors, aptamer-based biosensors, surface
plasmon resonance, and antigen–Au/Ag nanoparticles-based biosensors, as well as exist-
ing challenges and future perspectives. However, the review differs from the current study
in terms of radiographic detection of COVID-19, AI-powered detection, and IoT-enable
detection of COVID-19.

The study conducted by Santiago et al. [26] presented trends and innovations in
biosensing technology for the detection of COVID-19. The study covers several molecular
testing approaches, which include antigenic and serological rapid testing, as well as CRISPR-
based biosensors. However, the study does not cover the use of medical imaging technology
for the detection of COVID-19, computer aided detection, and IoT-enabled detection of
COVID-19.

Another review that focusses on molecular and conventional testing was provided
by Falzone et al. [27]. The study covers a wide range of diagnostic assays ranging from
rapid antigen testing, antibody-based detection, immunoenzymatic serological testing, and
RT-PCR. Other techniques covered include CRISPR/Cas-based approaches, nucleic acid
amplification techniques, and digital PCR methods. The review also covers challenges and
future perspectives.
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The review conducted by Huang et al. [28] focuses on the application of AI-Powered
detection of COVID-19 (which include ML, DL, and TL) using medical data such as elec-
tronic medical records and medical images (X-ray, CT scans, and ultrasound). The review
also highlighted current challenges and future perspectives. Some of the topics not covered
include molecular testing, biosensing technology, IoT-enabled detection, and comparisons
between AI-powered systems and biosensors. The summary of the comparisons with
similar studies is provided in Table 1.

Table 1. Comparison with similar studies.

Reference COVID-19
Pandemic

Molecular Diagnostic
and Biosensors

Medical
Imaging

AI, ML, DL
and TL IoT/IoMT Comparison Open Research Issue

[25] X X - - - - X

[26] X X - - - - -

[27] X X - - - - X

[28] X - X X - - X

This review X X X X X X

1.2. Scope

The main aim of this review is to provide a holistic approach on emerging technologies
that aid in the detection of COVID-19, such as RT-PCR, antigen–antibody, and CRISPR-
based biosensors, as well as computer aided detection using AI-driven models. Moreover,
the review also covers the integration of IoMT and AI for the development of a smart
system for the detection of the disease.

Section 2 discusses the COVID-19 pandemic. Section 3 presents an overview on
molecular approaches for the detection of COVID-19 using RT-PCR and CRISPR-based
biosensors. Section 4 discusses computer aided detection of COVID-19 from radiographic
images. Section 5 presents diagnostic imaging, which includes X-rays and CT scans.
Section 6 discusses comparisons between molecular approaches and computer aided
detection, as well as smart AI/IoMT-enabled platforms for the detection of the disease.
Section 7 discusses open research issues and concluding remarks.

2. COVID-19

For the first time in a century, the world witnessed another global pandemic caused by
a coronavirus known as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2).
The virus is traced back to a sea food market in Wuhan, Hubei province, China, in late
December, 2019. Coronaviruses are positive, single-stranded RNA viruses which belong to
the Coronaviridae family, which also include SARS-CoV-1 and MERS-CoV. Both the two
coronaviruses have caused epidemics and endemics in the last few years [1,29].

SARS-CoV-1 was first identified in the year 2003 in China, where bats are regarded as
the main reservoirs. The virus has spread to four other countries, causing global epidemics.
SARS-CoV-1 affected close to 8000 people with an approximately 10% mortality rate.
The World Health Organization, along with other international and non-Governmental
organizations, collaborated to control and prevent further spread of the virus [30,31].

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is another virus that
belongs to Coronaviridae family that caused a global burden in the year 2012. The virus was
first identified in Saudi Arabia, and later spread to 27 countries, leading to approximately
2600 cases. The disease has infected thousands, and approximately 35% of patients died
from the disease. Dromedary camels were linked with the transmission of the virus to
human primates [32,33]. Figure 1 shows the differences and similarities between SARS-
CoV-1, MERS-CoV-2, and SERS-CoV-2 in terms of number of cases, fatality rate, mortality
rate, reservoir, etc.
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2.1. Transmission of SARS-CoV-2

Unlike previous coronavirus diseases that are associated with animal transmission,
such as bat in SARS-CoV-1 and dromedary camels in MERS-CoV, no animal reservoir
has been found for SARS-CoV-2 [34]. Several studies have shown that the virus can be
spread directly from one person to another (Human–human transmission) via sneezing
or coughing, or indirectly, such as by coming in contact with surfaces infected with the
virus [34,35].

2.2. Symptoms of SARS-CoV-2

The clinical spectrum of the COVID-19 disease ranges from asymptomatic to severe
acute respiratory disease and death. People infected with the disease display pneumonia
symptoms, which include shortness of breath, sore throat, fever, fatigue, and cough. Peo-
ple that are at risk of COVID-19 include elderly people who are suffering from chronic
diseases, such as chronic lung disease, cancer, hypertension, renal and kidney diseases,
diabetes, cardiovascular diseases, etc. [35,36]. The clinical manifestations of SARS-CoV-2
are presented in Figure 2 (redesigned using Biorender [27]).
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3. Molecular Diagnosis of COVID-19

Early and accurate detection of COVID-19 disease is crucial for timely management
and prevention. The field of disease detection has been transformed from conventional
diagnosis, such as microscopy, with lower sensitivity and specificity, to molecular diag-
nosis, such as antigen–antibody, enzyme-substrate and NA probe-target, and biosensing
technologies [5,37], as shown in Figure 3. Diagnostic imaging based on CT scans, X-rays
and ultrasound imaging are currently in use as an alternative or confirmatory approach for
the detection of COVID-19 [38,39].
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Enzymatic Serological Tests. 2. Firstly Used Diagnostic; A. Viral Culture; B. Next Generation
Sequencing (NGS) Methods; C. Radiological Investigation; D. Clinical Examination; 3. Research-used
Diagnostic Methods; A. Isothermal Amplification Techniques; B. Electron microscopy-based Methods;
C. Biosensors; D. CRISPR/Cas9-based Diagnostic Methods. E. Droplet digital PCR (ddPCR).

3.1. Laboratory Assays

Accurate, sensitive, and rapid laboratory assays for the detection of SARS-CoV-2
are crucial for the treatment and control of COVID-19 infection. Currently, there are
a myriad of tests available in the market. However, the adoption of appropriate laboratory
testing techniques and types of specimen (nasopharyngeal aspirates, nasopharyngeal
swabs, mid-turbinate swabs, oropharyngeal swab, etc.) is one of the cornerstones for the
timely management and control of the disease. The literature encompasses several studies
focusing on laboratory testing procedures, which include nucleic acid amplifications,
antigen tests, antibody tests, and point-of-care testing. These procedures are currently
employed in the detection of SARS-CoV-2 in clinical diagnosis of symptomatic patients,
asymptomatic population screening, contact investigations, targeted high-risk population
screening, retrospective population screening, monitoring of infectivity, disease severity
monitoring, etc. [38–40].

3.1.1. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

RT-PCR is regarded as the most reliable approach for the detection SARS-
CoV-2 [5,41,42]. RT-PCR is a nuclear-derived approach for the detection of the genetic con-
tent of pathogens, such as viruses (such as Zika and Ebola) and bacteria. The early RT-PCR
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testing employ radioisotope markers which are subsequently replaced by fluorescent dyes.
As shown in Figure 4, the procedure for conducting RT-PCR test follows four steps:
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Sample collection: Nasal swab and nasopharyngeal samples are collected by medical
experts. The samples are sealed and transported to the laboratory for detection.

Extraction: This step allows medical technologies to extract or isolate viral NA. This
stage revolves around the use of chemicals to remove components such as fats and proteins.

PCR: The isolated viral NA is further amplified using a PCR machine, also known
as a thermal cycler. PCR machines amplify thousands of complies of the viral NA, which
increases the sensitivity and specificity of detection. Reverse transcription is carried out in
order to convert RNA strands of the virus to DNA.

Detection: After the RNA is transcribed to DNA and amplified, the machine detects
the presence of virus DNA due to the release of fluorescent dye, which can be measured in
real-time and presented on the computer screen.

The RT-PCR method is highly specific and sensitive compared to the antigen–antibody
method. The test can take between 3 and 6 h to process and obtain results. Moreover, this
approach has shown to be faster, reliable, and to present a lower rate of errors or false
positive results compared to other approaches. One of the disadvantages of RT-PCR is that
it can’t be used to identify past diseases, which is crucial for understanding the pathology
and spread of the diseases [43,44].

3.1.2. Antibody-Based Method

The emergence of SARS-CoV-2 has prompted scientists to develop viable diagnostic
assays that can accurately detect the presence of the virus from biologically derived samples.
The antigen–antibody approach, as the second standard approach, revolves around the
binding between a synthesized recombinant antigen (produced in the laboratory which
mimics specific structures of SARS-CoV-2) and the antibodies present in the body, which
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elicit an antigen–antibody reaction. Unlike the RT-PCR, the specificity of antigen–antibody
testing approach relies on the affinity of target antigen designed. Therefore, designing
an antigen specific to the antibodies produced as a result of the present of the virus is crucial
for increasing specificity and minimizing the probability of false positive results [45,46].

3.1.3. Antigen-Based Method

The COVID-19 antigen test is another popular diagnosis approach, used as an alter-
native to the RT-PCR approach. This test is mostly used for early detection of the disease
and determining if a patient is contagious. COVID-19 antigen testing revolves around
the use of different type samples, which include oral, nasal, and respiratory tracts. The
advantages of this approach are that it is very easy to operate, and that it can be used for
early detection (i.e., 2 days before the onset of the symptoms). Antigen-based method can
be divided into lateral flow rapid-test cassette format and enzyme-linked immunosorbent
assay (ELISA) [46,47].

The lateral flow assay-based COVID-19 antigen test, also known as the antigen rapid
test, revolves around the collection of plasma, serum, or blood bleed from the fingertip
of suspected person, which is subsequently transferred to the test cassette. The test lasts
for 20 min, after which the result is displayed. Compared to the lateral flow assay, ELISA-
based COVID-19 antigen tests produce accurate and more reliable results. One of the
disadvantages of this approach is the requirement of an intensive laboratory procedure,
which can be challenging for remote areas with limited healthcare resources [46,48].

3.2. Strengths and Weakness of Molecular Testing

Currently, there are several techniques developed for the detection of pathogens
(such as viruses and bacteria). Among these techniques, molecular testing is the most
prepared approach, due to its high sensitivity and specificity. These molecular tests include
antibody, antigen, and RT-PCR, which can also be subdivided into the molecular test and
the serological or antibody test. Molecular testing revolves around the detection of viral
RNA in the human body while the virus is still replicating, while antibody assays detect
the presence of antibodies produced as a result of human immune response against the
virus [7]. In terms of specificity, the antibody assay has a higher specificity, as it can detect
if a patient has had COVID-19. One of the limitations of this approach is that antibodies
may not be detectable until 1–3 weeks after infection. The antigen test is one of the most
rapid and simple technique that can be used to detect SARS-CoV-2 in both asymptomatic
and symptomatic patients. Just like the antibody test, the virus can be detected between 5
and 12 days after contact, or after onset of symptoms, and results can be generated after
15 min [49,50]. Despite the test being rapid, fast, and simple, it is hindered by several
challenges, which include low sensitivity compared to RT-PCR and the likelihood of false
negative results [51].

RT-PCR is the most preferred approach, as it can detect the presence of the virus in
an early stage of infection. Even though this test is regarded as the standard approach,
one of its limitations is the likelihood of false negative results. Thus, repeated testing is
required to overcome this challenge, which increases testing time and cost. Quantitative
RT-PCR (RT-qPCR) is another highly sensitive molecular method that can be employed
for the detection of COVID-19. The method revolves around the combination of real-time
quantification and RT-PCR using fluorescent probes. However, this technique is less widely
use due to its expensive instrumentation [52,53].

3.3. Application of Biosensors for the Detection of SARS-CoV-2

The application of a rapid, ultra-sensitive, and quantitative electrochemical biosensor
for the detection of SARS-CoV-2 was proposed by Alateef et al. [54]. The biosensor is
designed using gold NPs (AUNPs) which is capped with highly specific antisense oligonu-
cleotide, while the sensing probe was immobilized on a paper-based electrochemical device.
The sensing mechanism revolves around the interaction between the antisense SSDNA and
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sensing probe, which generate readout results that can be seen on a hand-held reader. In
order to analyze the sensing viability of the paper-based electrochemical biosensor, the
developed platform was tested using clinical and vero cells infected with the virus. The
performance evaluation of the biosensor resulted in sensitivity of 231 (copies µL−1)−1 and
6.9 copies/UL LOD. Subsequent testing of the device using both samples obtained from
22 patients tested with SARS-CoV-2 confirmed using RT-PCR and 26 healthy patients
resulted in 100 accuracy, sensitivity and specificity.

The development of a cheap CRISPR-based POC testing platform known as miSHER-
LOCK for the detection of SARS-CoV-2 was proposed by de Puig et al. [55]. The sensing
mechanism revolves around the collection of unprocessed saliva, followed by extraction,
purification, concentration, amplification, and detection based on the interaction between
viral NA and guide RNA binds with Cas12a to produce fluorescent visual output within
1 h. The performance of the platform resulted in highly sensitive and multiplexed detection
of the virus and mutations associated with two different variants, leading to different LOD
in cp/mL. Another distinction of this approach is the application of adjunct smartphones
to enable quantification of output, automated interpretation, and the prospect of remote
and distributed result reporting.

Song et al. [56] developed an antifouling electrochemical biosensor for the detection of
SARS-CoV-2 NA. The nanobiosensor is designed based on electropolymerized polyaniline
nanowires and a synthesized Y-shaped peptide which poses antifouling properties. The
mechanism behind the working principle of the biosensor revolves around the interaction
between immobilized biotin-labeled probes and COVID-19 NA. Evaluation of the perfor-
mance of the genosensor led to a 3.5 fM detection limit and a wide linear range of 10–14 to
10–9 M.

Detection of SARS-CoV-2 from clinical samples using a field-effect transistor (FET)-
biosensor was proposed by Seo et al. [57]. The biosensor was constructed by coating
a graphene sheet of the FET with a specific antibody against the viral spike protein. In order
to test the viability of the immunobiosensor, several samples, such as antigen proteins,
cultured virus, and nasopharyngeal swab samples collected from patients suffering from
COVID-19 pneumonia. The performance of the FET-based biosensor for the detection of
SARS-CoV-2 spike protein yielded 100 fg/mL concentration in clinical transport medium
and 1 fg/mL concentration in phosphate buffer saline. The biosensor was able to detect
SARS-CoV-2 in cultured medium with 1.6 × 101 pfu/mL LOD and clinical samples with
2.42 × 102 copies/ML.

Tian et al. [58] developed an electrochemical aptamer-based biosensor for the detection
of COVID-19. The biosensor was constructed using metal-organic frameworks MIL-53(AI)
which is decorated using AU@Pt NPs and enzymes. The surface of the electrodes was im-
mobilized with dual aptamer as biorecognition element. SARS-CoV-2 is detected based on
the interaction between immobilized 2 thiol-modified aptamers (N48 and N61) and SARS-
CoV-2 nucleocapsid via the co-catalysis of the nanomaterials, G-quadruplex DNAzyme, and
Horseradish Peroxidase (HRP). Evaluation of the biosensor demonstrated 8.33 pg mL−1

LOD and a wide linear range of 0.025 to 50 ng ML−1.
Buyuksunetci et al. [59] developed an electrochemical biosensor for the detection of

SARS-CoV-2. The device was constructed using a gold screen printed electrode (AuSPE)
and subsequently immobilized with either angiotensin-converting enzyme 2 or CD147. The
biosensor is designed based on the interaction between the spike protein and receptors such
(ACE2) or CD147. Evaluation of the performance of the biosensor yielded 29,930 ng ML−1

LOD and a linear detection range of 700 ng ML−1 to 1500 ng ML−1, and 1500 ng ML−1 to
7000 ng ML−1 for the detection of spike protein using ACE2, while detection of spike protein
using CD147 yielded 38.99 ng ML−1 LOD and linear detection ranges of 500 ng ML−1 to
5000 ng ML−1. The biosensor was also evaluated using clinical samples confirmed with
RT-PCR method.

The development of a multiplexed grating-couple fluorescent plasmonic biosensor
for the detection of SARS-CoV-2 using either a dried blood spot sample or human blood
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serum was proposed by Cady et al. [60]. Detection of COVID-19 relied upon the interaction
between antibody (IgG) and antigen (nucleocapsid protein, Spike S1 and Spike S1 S2).
The performance evaluation of the immunobiosensor produced linear response for serum
samples diluted to 1:1600 dilution. The biosensor was also compared with two commercial
COVID antibody testing kits (which include Luminex-based microsphere immunoassay
and ELISA), which resulted in 100% correlation. Moreover, 63 samples of dried blood spots
were tested using the constructed immunobiosensor, which yielded 86.7% sensitivity, and
100% selectivity for detection prior to COVID-19 infection.

Kim et al. [61] developed a sensitive electrochemical biosensor for point-of-care detec-
tion of COVID-19. The genobiosensor was designed using a multi-microelectrode array
and relied upon the interaction between probes and target genes (N gene and RdRP gene)
amplified using Recombinase Polymerase Amplification (RPA) and subsequently detected
using pulse voltammetry. This process involved hybridization between thiol-modified
primers immobilized on the surface of WE and RPA amplicon, which resulted in reduction
of current density due to accumulation of amplicons. The performance of the assay yielded
3925 fg/µL LOD for N gene and 0.972 fg/µL for RdRP gene.

4. Computer-Aided Diagnosis (CAD) and Internet of Medical Things (IoMT)

Computer aided diagnosis (CAD) is regarded as one of the technologies that is trans-
forming medical diagnostics. This technology revolves around the use of computer applica-
tions, software, and algorithms for detection of diseases that often require human expertise,
prolong procedures, the use of chemicals or radiations, etc. [10]. CAD technology is driven
by Machine Learning (ML), Deep Learning (DL) as sub-field of ML, and transfer learning,
which allows the transfer of knowledge learned from trained networks to perform similar
functions on different tasks [62].

The field of medical diagnosis is undergoing revolution due to the integration of CAD,
automated detection, and smart sensing. Medical imaging based on diagnostic radiology is
one of the major fields that is transforming to a more accurate, reliable, fast, cost-effective
diagnostic. CAD is currently aiding medical experts in appropriate decision making. The
history of application of CAD technology can be traced back to 1960s. However, it wasn’t
until the 1980s when this technology started gaining ground due to the fundamental change
in the approach on the use of computer output from automated computer diagnosis to
CAD [10,11].

4.1. Artificial Intelligence (AI) and Machine Learning (ML)

The concept of AI is dated back to 19th century, when it started as a theory. The field
has now exploded into different disciplines ranging from marketing, business and finance,
advertisement, and smart devices, to agriculture and medical care. The transformation in
the field of data storage and data analytics has driven the field and transformed our daily
lives [63,64]. AI and ML are used interchangeably, and there are several misconceptions
about the exact meaning of each concept. AI intelligence revolves around the use of
a computer to mimic human cognitive functions, such as learning and problem solving or
decision making. In other words, AI is the application of computer program that enables
machine to perform specific tasks [63].

The concept of ML revolves around the use of algorithms whose performance improve
as a result of exposure to large amounts of data over time. In ML, a series of algorithms
is applied to allow computer to learn, analyze data, and make decisions based on the
learned knowledge. ML models are either used for classification, regression, or clustering.
An example of traditional ML models uses for classification include SVM and Naive Bayes
classifier. Clustering ML models include K-means and tree-based clustering, while Linear
regression, Random Forest, and KNN models are used for regression tasks [65,66]. ML
models require large amounts of data in other to make appropriate decisions. Just like the
way cars are driven by fuels, ML models are driven by large amounts of data. Some of
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the applications of ML can be found in Information Technology (IT) applications, weather
forecasting, gaming, robotics, stockbroking, etc. [64].

ML models learn through a process known as gradient descent or loss function, where
models minimize errors between a predictive value and the actual or ground truth value.
After every iteration, the models compare the actual value with the objective or predictive
value and adjust parameters so that the error becomes smaller [67]. ML algorithms can
be classified into Supervised Machine Learning (SML), Unsupervised Machine Learning
(UML), and Reinforcement Machine Learning (RML) [68].

4.1.1. Supervised Machine Learning

Supervised Machine Learning (SML) is a branch under ML where computer algorithms
are trained using labelled data. The ML models are trained using backpropagation until
they can detect underlying patterns and the relationship between the input data and the
labelled output. The model is subsequently evaluated using test sets (unseen or untrained
datasets) [69]. SML has shown to achieve high performance, however, one of the challenges
associated with this type of ML is “overfitting”, where models perform very well on the
training set but perform poorly on test sets. Thus, scientists proposed several ways to
counter this issue, through cross validation, data augmentation, regularization, the use of
ensemble models, etc. [67,70].

There are several applications of SML which include classification and regression tasks.
Several studies have reported the application of classification algorithms for detection of
clinical diseases [65,66]. SML models can be used to classify diseases into binary cases
(disease/healthy, positive/negative, findings/no findings etc.), ternary, and quaternary
classification in the case of different grades of tumors etc. [71]. Regression models, on the
other hand, produce numerical correlations between the input data and output data [66].
Several prediction models are used in healthcare settings for the prediction of disease and
drug discovery [71].

4.1.2. Unsupervised Machine Learning

Unsupervised Machine Learning (USML) is a sub-branch of ML where algorithms are
trained using an unclassified or unlabeled dataset. Unlike SML, where data are labelled
and models optimized between the predicted value and the actual value, USML learns or
recognizes patterns in data and groups them or clusters them together. USML algorithms
are trained using unsorted data, where models sort out the data based on similarities and
differences. Another difference, and limitation, of USML is that they can be unpredictable
compared to SML. Some of the advantages of USML include being less costly, faster, easier
(which are associated with less manual work in labelling data), the ability to use real-time
data, etc. [68,72].

Clustering algorithms are the most common USML algorithms used for clustering un-
structured and unsorted data into different groups. Some of the classifications of clustering
algorithms include hierarchal, overlapping exclusive, and probabilistic algorithms. Com-
mon examples of clustering algorithms include K-means clustering, Gaussian Mixture mod-
els, and Principal Component Analysis (PCA) [66,73]. USML are currently applied in health-
care settings for classification, segmentation and medical image detection, detection of
anomalies in medical data, health index monitoring, drug discovery, genomics, etc. [65,74].

4.2. Deep Learning (DL)

Deep Learning (DL) is a subfield of ML which is inspired by how human brains
function due to connections or synopsis of nerve cells or neurons. DL is a sub-field of ML
which revolves around the use of multiple perceptron, where each layer of the network
is connected to another layer. Just like ML, DL models learn from a vast amount of data,
which is crucial for high performance in terms of accuracy [75,76].

One of the advantages of DL over ML models (known as flat models) such as decision
trees, logistic regression, SVM, etc. is that DL models can take raw input in the form of
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images and texts without the need of preprocessing steps. Example of DL applications
include Google translation, chatbots, self-driving cars, Netflix movie suggestions, and per-
sonal Assistant such as Siri and Alexa [75,77]. The current boom of big data is transforming
DL models, which are powered by massive amounts of data. Another advantage of DL
models over traditional ML models is that DL models tend to result in higher accuracy with
an increase in the amount of training and testing datasets, while ML can become saturated
and stop improving [76].

4.3. Internet of Medical Things (IoMT)

IoMT, also known as IoT of healthcare, revolves around the internet-connection of
medical appliances, hardware, and software. The system enables the wireless connection
between devices and servers, as well as storage of medical data in the cloud and subsequent
analysis using AI-powered models. The application of IoMT is growing exponentially due
to advancements in hardware and software engineering [20–22].

The applications of IoMT include in-hospital, in-home, and on-body. In-hospital
IoMT revolves around the use of sensors to track patients and the transmission of medical
data from one department to another or between hospital devices and physicians [78].
In-home IoMT revolves around the transfer of medical data between users and primary
care providers stationed in healthcare settings. An example of an in-home IoMT is remote
patient monitoring, where medical devices transmit medical data such as heart rate, blood
pressure, and blood oxygen saturation to physicians for evaluation and decision making.
On-body IoMT revolves around the use of wearable devices and implantable-IoT enabled
devices connected with remote tracking systems or monitoring systems. Despite the wide
application and potential of IoMT, it is limited by several challenges [79]. Some of these
challenges include privacy concern, safety, and security [21,22,78].

4.3.1. Advantage of IoT-Based Systems: How IoT Is Shaping Clinical Diagnosis

Recent advances in sensing technology, IT, and software engineering, and its adoption
in healthcare settings, have made remote monitoring, real-time diagnosis, analysis, and
sharing of data possible. This technology has shown to contribute in making diagnosis
more efficient and safer, as well as aiding medical experts in making appropriate diagnoses.
IoT/AI-driven models are applied in medical settings at massive scales in order to relieve
the intensive workload of medical experts, to increase performance and efficiency, and to
minimize long diagnostic processes [80]. Despite the advances made in the last few years,
the world continues to record high mortality rates due to the lack of adequate and advanced
healthcare facilities, such as conducive and hygienic environments, medical diagnostic
kits, and medical devices, as well as the high cost of molecular and imaging diagnosis
and the high rate of misdiagnosis. The application of AI-based systems (also known as
CAD) in part helps address these issues. However, the integration of IoT-based systems
with AI-driven models contributes to real-time diagnosis without the need of an experts or
in-clinic diagnosis procedures [80,81].

4.3.2. Disadvantage of IoT-Based Systems

Despite the fact that IoT offers several benefits in healthcare settings, one of the major
challenges limiting its application are security threats, such as data theft, device hijacking,
system attacks (e.g., Distributed Denial of Service or DDoS), data ownership disputes, etc.
The interconnection between IoT-based devices with the internet makes them prone to
cyber-attacks or hacks [82,83]. Moreover, the use of IoT-based devices requires the use
of data storage, such as the cloud, as well as the transfer of a patient’s data through the
internet, which raises issues regarding privacy and security [84]. In the last few years,
several companies have developed encrypted approaches to prevent fraudulent attacks and
breaches of privacy. Despite their efforts, IoT medical devices continue to be targets of cyber-
attacks. To increase security levels, these companies developed an authentication approach
which gives access to only a few staff members with clearance. Other practices that can
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increase security include implementing security protocols through tracking and monitoring,
network segmentation, monitoring of inventories of devices, and encryption [82–84].

4.3.3. Deployment of IoT-Based Systems

Deployment of IoT systems for diagnosis of pathological diseases requires several
features, which include medical data (such as images acquired from CT scans, X-rays,
MRIs, PETs, SPECTs, hybrid systems, electrophysiological devices, human faces, skin, etc.),
AI-driven models trained and validated using large amounts of data, and websites that can
be used to deploy the model for real-time classifications [80]. Currently, there are several
IoT/AI-powered websites that allow users to upload pictures of their faces or skin taken
using mobile phones for dermatological or disease detection. Handfuls of these platforms
have been developed for the detection of COVID-19 using CT scan and X-ray images.
However, these systems still require the use of radiographic images from clinical settings.
Thus, IoT-based artificial intelligence systems have shown to serve as a confirmatory system
that can be used to aid clinicians in making appropriate decisions [81,85].

The cost of deployment of IOT/AI-based systems depends on the type of infectious
disease, the complexity of the system, and the requirement of medical devices for the
generation of medical data. Image of skin and faces for dermatological-AI/IoT systems
only require the use of mobile phones to capture images, and subsequent upload of the
images into the system results in classification in real-time. While other systems rely on
medical images generated from medical devices such as microscopes, X-rays, ultrasound,
etc., which increases processing time and cost [86,87].

5. Diagnostic Imaging

Diagnostic imaging is a sub-field under medical diagnostic that allow medical tech-
nologies and radiologists to view the interior of the human body and to analyze the
presence of injury or other health complications. This type of diagnostic uses several types
of machines, which allow the reconstruction of structures inside the body. Some of these
devices include MRIs, CT scans, X-rays, ultrasound, mammography, arthrogram, and bone
density scan [79].

5.1. Radiographic Imaging of COVID-19

The field of medical imaging has transformed from conventional imaging such as
X-rays, CT scans, MRIs, and ultrasound imaging, to nuclear imaging based on PET, SPECT,
and hybrid imaging such as PET/CT, PET/MRI, SPECT/PET, SPECT/MRI etc. [10,79].
Medical imaging revolves around the application of different imaging modalities to help
physicians diagnose several conditions affecting patients. The use of medical imaging
devices allows medical experts to view internal organs and tissues, and confer diagnostics
such as fracture, dislocation, cancer, pneumonia, tuberculosis, etc. [88]. Detection of pneu-
monia using X-ray images and CT scan machines has become an alternative or confirmatory
test for detection of non-COVID-19 (such as bacterial and influenza viral) pneumonia and
COVID-19 [4,88,89]

5.1.1. X-ray Imaging

X-ray imaging is one of the most common techniques used in clinical and other
healthcare settings for the diagnosis of a wide range of diseases. The advantages of X-ray
imaging over other imaging techniques include low radiation, availability (i.e., due to high
demand), low cost, moderate sensitivity, and low radiation dose [90]. The classification
of chest X-ray images by radiologists include posteroanterior, anteroposterior, and lateral
views, as shown in Figure 5. These classifications are based on the position and orientation
of patient parallel to the X-ray source and detector panel. Side view or lateral view differs
from both anteroposterior and posteroanterior (which are known as frontal views). The side
view is obtained as a result of the combination of posteroanterior view and projection of the
x-ray from one side of the patient to the other or right to left. The frontal views are based
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on the positioning of the X-ray source to the front or rear of the patient. Posteroanterior
X-ray imaging is generated in erect standing position of the patients, while anteroposterior
X-ray image is obtained from patients in the supine position [90,91].
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5.1.2. CT Scan Imaging

CT scan imaging modality is perceived by many scientists as the most efficient tech-
nique for screening for pulmonary diseases. One of the major differences between the CT
scan machine and the X-ray machine is that X-ray machine uses a very small amount of
radiation. The CT scan is more detailed, as it provides 3D images of tissues and organs,
while X-ray provides 2D images. CT scan has shown to be more effective and sensitive
in terms of imaging the chest, with outstanding spatial resolution. However, the limiting
factors of using CT scan machine include exposure to high radiation and high cost [92].
The images of COVID-19 and normal cases are presented in Figure 6.
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5.2. Radiographic Dataset

Ever since the WHO declared COVID-19 as global pandemic, medical experts have
curated several radiographic datasets from clinical settings into an online repository. Kaggle
and GitHub are among two of the most popular domains that are easily accessible. These
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repositories contain thousands of radiographic images of both X-ray and CT scan images of
bacterial pneumonia, COVID-19 pneumonia, non-COVID-19 viral pneumonia, and healthy
cases. One of the challenges of using collections of more than one dataset is the likelihood of
reputation and the diversity of images acquired from different types of devices and settings.

(A) JP Cohen COVID-19 Xray Dataset

The dataset provided by Cohen et al. [93] is the most popular dataset used by scientists
for CAD of COVID-19 and healthy cases. The dataset titled “covid-chestxray-dataset”
comprises over 200 COVID-19 X-ray images, which are updated frequently on a GitHub
repository. The images are curated from several medical and scientific platforms. The
dataset contains both X-ray and CT scan images of COVID-19, MERS, SARS, ARDS, and
other diseases. The images curated comprise four different views, which include lateral,
anteroposterior, anteroposterior supine, and posteroanterior. The images are acquired from
both male and female patients between the age range of 50 and 80 years old, and is available
on https://github.com/ieee8023/covid-chestxray-dataset (accessed on 25 November 2022).

(B) COVID-19 Radiography Dataset

The COVID-19 radiography dataset is made available on the Kaggle repository
(https://www.kaggle.com/tawsifurrahman/covid19-radiography-database, accessed on
25 November 2022). The dataset contains different collections of pneumonia cases, which
include 3616 COVID-19 images, 1345 viral pneumonia X-ray images, 10,192 normal X-ray
images, and 6012 lung opacity (non-COVID lung diseases). The dataset is curated by
a group of scientists from different universities and medical institutions within Asia. The
database is updated regularly. The first release contains 219 COVID-19, 1341 normal, and
1345 viral pneumonia chest X-ray (CXR) images. Since the first release, the database has
been updated twice. In the first update, the COVID-19 CXR images were increased to
1200 images, and to 3616 in the second update.

(C) COVIDx Dataset

COVIDx dataset is provided by Wang et al. [94]. The dataset is made of a collection of
two public dataset, which include an RSNA challenge dataset and a COVID-19 Image Data
Collection. Unlike the one provided by [93] which contains binary classes, this dataset con-
tains three classes, which include normal, non-COVID-19 viral, and COVID-19 pneumonia.
The dataset comprises 13,800 total images acquired from 13 thousand people. The overall
dataset is partitioned into training (13,569) and testing (231). The images are available at
https://github.com/lindawangg/COVID-Net (accessed on 25 November 2022).

(D) HCV-UFPR COVID-19 Dataset

This dataset is made available by Hospital da Cruz Vermelha, in the southern part of
Brazil. The dataset is composed of 281 COVID-19 and 232 normal CXR images. Unlike the
rest of the dataset mentioned, the HCV-UFPR COVID-19 dataset is private, but access can
be granted when requested [95].

(E) SARS-CoV-2 CT Scan Dataset

This dataset is provided by Soares et al. [96]. It is considered one of the largest CT
scan datasets for both COVID-19 and non-COVID-19 CT scan images, with a total of
2481 (1252 COVID-19 and 1229 normal) images. The images are acquired from several
patients in Sao Paulo, Brazil. The dataset is made available on both Kaggle and GitHub
at www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset (accessed on 25 November
2022) and https://github.com/Plamen-Eduardo/xDNN-SARS-CoV-2-CT-Scan (accessed
on 25 November 2022), respectively.

(F) Chest X-ray

Prior to the COVID-19 pandemic, the dataset made available by Kermany et al. [97],
which is available on Kaggle (https://www.kaggle.com/paultimothymooney/chest-xray-

https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://github.com/lindawangg/COVID-Net
www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://github.com/Plamen-Eduardo/xDNN-SARS-CoV-2-CT-Scan
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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pneumonia, accessed on 25 November 2022), is the most widely used dataset for the classi-
fication of non-COVID-19 pneumonia cases. The dataset contains a sum of 5856 images,
which are grouped into training, testing, and validation. The description of the dataset is
curated according to X-ray images collected from retrospective pediatric patients between
the ages of 1 and 5 years old.

(G) ChestX-ray8

The ChestX-ray8 is a large dataset curated by Wang et al. [98]. The dataset contains
108,948 frontal view X-ray images of 32,717 unique patients, classified into eight diseases,
which include pneumonia, pneumothorax, effusion, mass, nodule, infiltration, atelectasis,
and cardiomegaly. The database contains 24,636 X-ray images with one or more clinical
diseases, while the remaining 84,312 X-ray images are healthy cases. The data is available
at https://www.kaggle.com/nih-chest-xrays/data/home (accessed on 25 November 2022).
Table 1 presents the summary of public accessible datasets.

5.3. AI-Powered Detection of COVID-19 from Radiographic Imaging

Since the first declaration of COVID-19 as a global pandemic by the world health
organization, scientists all over the world have contributed immensely to the detection and
prediction of the disease using AI-driven models. Computer aided diagnosis of COVID-19
is limited to the use of X-ray and CT scan images of patients suspected to have the diseases.
Several AI-driven models have been deployed, which include the use of models developed
from scratch, pretrained models, hybrid models, ensembled models, etc. [18].

The literature is copious, with several studies on the use of AI-driven models for the
classification of COVID-19. Some of these studies conducted binary (two-way), ternary
(three-way), and quaternary classifications. Considering the fact that there are several
studies that conducted binary, ternary, and quaternary classifications in one article, this
study will attempt to categorize these studies based on the highest number of classifications.

5.3.1. AI-Powered Detection of COVID-19 from X-ray Images

(A) Binary

The study conducted by Gayathri et al. [99] applied several pretrained networks and
their combinations for detection of COVID-19 from X-ray images. The detection process
revolves around the use of pretrained networks for feature extraction, the use of sparse
autoencoder for dimensionality reduction, and subsequent use of the Feed-Forward Neural
Network for classification of COVID-19 from non-COVID-19 images. The models are
trained and tested using 1046 (504 COVID-19 and 542 non-COVID-19) images obtained
from two public accessible datasets. The performance evaluation of the models has placed
the combination of InceptionResNetV2 as the best performing model, with 0.9578 accuracy
and 0.9821 AUC.

The study conducted by Nayak et al. [100] proposed an automated detection of COVID-
19 from X-ray images. The study evaluated eight TL models, which include ResNet34,
ResNet-50, MobileNet. InceptionV3, SqueezeNet, AlexNet, VGG16, and GoogleNet for
binary classification of COVID-19 and normal cases. The models are trained and tested
using datasets obtain from public domains, which include datasets prepared by JP Cohen,
Covid-chest-X-ray, and ChestX-ray8 datasets with a total of 703 (500 normal and 203 COVID-
19 images). In order to help expand the number of training images, data augmentation
techniques were implemented, which include flipping, rotation, scaling, and Gaussian
noise. The comparison between model performances has shown that ResNet34 achieved
the highest accuracy with 98.33%, a precision of 96.77%, a specificity of 96.67%, and
a 0.9836 AUC and 0.9836 F1-score.

Another study that utilized several pretrained models is provided by Narin et al. [101].
The study applied five TL models, which include InceptionV3, Inception-ResNetV2, ResNet50,
ResNet101 and ResNet152. The study conducted several binary classifications, which
include COVID-19 vs. healthy cases, COVID-19 vs. viral pneumonia, and COVID-19 vs.

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/nih-chest-xrays/data/home
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bacterial pneumonia, using several datasets curated from publicly accessible domains. The
comparison between model performances revealed that ResNet50 achieved the best results
with 96.1% accuracy on the first dataset, 99.5% on the second dataset, and 99.7% on the
third dataset.

The use of CAD of COVID-19 from X-ray images is proposed by Naseer et al. [102].
The study applied two networks, which include the Artificial Neural Network (ANN) and
the Artificial Recurrent Neural Network (Long–Short Term Memory (LSTM)) network.
In order to maximize the amount of training data, the study conducted several data aug-
mentation processes, which included image enhancement, color transformation, geometric
transformation, and noise injection, which yielded 3220 images. Training of the models
revolves around three phases, which include training using raw CXR images, training
using pre-processed images, and training using enhanced images. The classification pro-
cess relies on the use of CNN as a feature extractor, which is fed into the LSTM network
for classification. The performance evaluation outcome of the joined CNN-LSTM model
yielded 99.02% accuracy, 100% sensitivity, and 99% specificity.

(B) Ternary

The binary and ternary classification of X-ray images of COVID-19, non-COVID-19,
and viral pneumonia using pretrained models was proposed by Aziz et al. [103]. The
detection process follows the use of the connected layer of the ResNetV50V2 model for
feature extraction, the use of reduction methods for reduction of feature dimensions, and
the use of Gaussian SVM for classifications. The TL models are trained and tested using
a dataset acquired from Cohen and Morrison, 2020, with 874 images (254 COVID-19,
310 non-COVID-19, and 310 viral pneumonia). In order to increase the number of training
sets, data augmentation was conducted via flipping, rotation, shearing, and height and
weight shift. The result of the model performance evaluation yielded 99.5% accuracy for
binary classification and 95.5% for ternary classifications.

The ternary classification of X-ray images using a DL model known as CVDNet was
proposed by Ouchicha et al. [104]. The model is designed based on a residual neural
network, which is constructed using two parallel levels with different filter sizes in order
to capture both global and local features of the input datasets. The study trained and vali-
dated the model using datasets downloaded from online repositories, which include viral
pneumonia (1345), COVID-19 pneumonia (219), and normal cases (1341). The performance
evaluation of CVDNet based on 5k-fold cross validation resulted in an average accuracy of
96.69%, 96.84% recall, 96.72% precision, and 96.68% F1-score for three-way classification.

The use of a CNN-based DL fusion framework for the ternary classification of COVID-
19 and non-COVID-19 cases was proposed by Shorfuzamman et al. [105]. The study
transfer weight (parameters) of three TL models, which include VGG16, ResNet50V2,
and GoogleNet (InceptionV3), which are combined into a single model in order to extract
images and classify the images using a custom classifier, and the subsequent use of gradient-
weighted class activation mapping, in order to view the infected zones. Apart from the
use of model performance metric evaluations, the study also conducted cross validation,
which resulted in average performances of the model on 1848 image datasets obtained
from open domains (Cohen et al. with 616 COVID-19 and Money 2018 with 616 non-
COVID-19 viral pneumonia and 616 healthy cases). ResNet50V2 was the best performing
model, and achieved an overall accuracy of 95.49%, 99.19% sensitivity, 98.27% specificity,
and 95.94% AUC. Workflow of the proposed system is illustrated in Figure 7 (redesigned
using Biorender).
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(C) Quaternary

The study conducted by Li et al. [106] applied the Cov-Net model for the three-way and
four-way classification of COVID-19, non-COVID-19 viral pneumonia, and lung opacities
acquired from two public accessible datasets. The first dataset contains three categories,
named as D1, while the second dataset contained for classes named as D2. One of the
variations of this technique over current techniques is the use of a residual network along
with an asymmetric convolution and attention mechanism embedded as the backbone for
feature extraction, and the subsequent application of skip-connected dilated convolution
with carrying dilation rates in order to attain sufficient feature fusion among low-level detail
and high-level semantic information. The performance of the model on the two datasets
resulted in 0.9966 and 0.9901 accuracies, respectively.

The study conducted by Ibrahim et al. [18] applied a pretrained AlexNet model for
several binary classifications, ternary classifications, and quaternary classifications of X-ray
images of COVID-19, viral pneumonia, bacterial pneumonia, and normal cases. The TL
model was trained and tested using several datasets curated from online sources. The
result of the four-way classification of X-ray images using pretrained AlexNet resulted in
an accuracy of 93.42%, sensitivity of 89.18%, and specificity of 98.92%.

Hira et al. [107] applied DL for the binary and multiclass prediction of COVID-19 from
X-ray images. The study applied nine DL models, which include AlexNet, Se-ResNet50,
ResNeXt-50, Se-ResNeXt-50, ResNet-50, InceptionResNetV2, InceptionV4, GoogleNet, and
DenseNet121. The models were trained and validated using several datasets curated from
open sources. The performance evaluation of the nine models showed that Se-ResNeXt-50
achieved the best performance for three-way classification, with 97.55% accuracy and
96.89% for four-way classifications.

5.3.2. AI-Powered Detection of COVID-19 from CT Scans

The classification of COVID-19 from non-COVID CT scan images using AI-based CAD
was proposed by Syed et al. [89]. Detection of COVID-19 from non-COVID-19 was con-
ducted via four stages, which include curations of CT scans images from two public accessi-
ble repositories, which include SARS-COV2-CT (1229 non-COVID-19 and 1252 COVID-19)
and community acquired pneumonia (1500 CT images), modification of three pretrained s
networks, which include ResNet50, ResNet101 and VGGNet16, a selection of activation
function and enhancing firefly algorithms for feature selection, and, finally, the use of
a descending order serial approach for fusing optimal selected features and classification
using supervised ML, such as SVM classifier. The outcome of the model evaluation has
yielded 97.9% accuracy, 97.63% recall, and 97.63% precision, and approximately 34 s of
computational time.
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The study proposed by Chaddad et al. [108] applied DL-TL for the prediction of
COVID-19 from CT scan images. The study applied six DL architectures, which include
AlexNet, DarkNet, DenseNet, GoogleNet, NasNet-mobile, and ResNet18. The models are
fed with (1) raw datasets and (2) regions of interests corresponding to ground glass opacities,
pleural effusion, and consolidation of 100 lung CT images generated from 60 COVID-19
patients. The comparison evaluation of the model performances has shown that DarkNet
achieved the best result, with an AUC of 88.16% and accuracy of 82% on a raw dataset, and
an AUC of 90.20% and accuracy of 82.30% after incorporating three additional ROIs.

The binary and ternary classification of COVID-19 from CT scan images using two pre-
trained models was proposed by Mishra et al. [109]. The study applied pretrained VGG16
and ResNet to classify non-COVID-19 pneumonia, COVID-19 pneumonia, and normal
cases (400 each in order to achieve class-balanced). The study also conducted data augmen-
tation in order to increase the number of training sets and fine tune the model to optimize
its performance. The model is evaluated on the basis of stratified 5k cross validation, and
the performance shows that both models achieve more than 99% accuracy for binary classi-
fication, while VGG16 achieved 86.74% accuracy and ResNet achieved 88.52% accuracy for
ternary classifications.

The study conducted by Katar and Dumman [110] developed a CNN which consists
of 19 layers for binary classification of COVID-19 and normal cases from CT scan images.
The model was trained (using 1600 images of both positive and negative cases) and tested
(using 400 of both positive and negative cases). The performance evaluation of the model
resulted in 97.5% accuracy. The study conducted by Kogilavani et al. [111] applied several
DL models for binary classification of COVID-19 and normal cases. The study curated
3873 CT (1958 positive cases and 1915 negative cases) scan images, which are partitioned
into 70% for training, 15% for testing, and 15% for validation. The images are trained and
evaluated using DenseNet-121, EfficientNet, MobileNet, NASNet, Xception, and VGG16.
The comparison of the model performances has shown that VGG16 achieved the best result,
with 97.68%.

The application of a pretrained model (modified based on random, Bit-S, and Bit-M)
for the detection of COVID-19 from over 190 thousand CT scan images collected from
4 thousand patients was proposed by Zhao et al. [112]. The study revolved around the use
of pretrained ResNet-V2 (group normalization was replaced with batch normalization and
weight standardization for all the convolutional layers) for the classification of COVIDx-
CT-2A images into normal and control cases. The evaluation of the model performance
resulted in 97.9%, 98.8%, and 99.2% accuracy for Random, Bit-S, and Bit-M, respectively.

The application of a 2D DL approach for the classification of COVID-19 and non-
COVID-19 from CT scans images was proposed by Ko et al. [113]. The model, termed as
Fast-Track COVID-19 Classification Network (FCONet), was designed using one of the three
pretrained networks (Xception inception-V3, ResNet-59, and VGG-16). The designed model
was trained using 3993 total images acquired from the Wonkwang University Hospital,
Chonnam National University, and Italian Society of Medical and Interventional Radiology
public databases. Evaluation of the model performance has shown that FCONet-ResNet-50
achieved the best result, with 99.87% accuracy, 99.58% sensitivity, and 100% specificity.

5.3.3. IoT-Enabled Devices for Detection of COVID-19

Iskanderani et al. [114] proposed an AI/IoT platform for the detection of COVID-19
from Chest X-ray images. The proposed system offers real-time communication and de-
tection of COVID-19 cases. The platform was designed by assembling four DL models,
which include DenseNet201, VGG19, InceptionResNetV2, and ResNet152V2. The working
principle of the framework revolves around the use of medical sensors to obtain CXR im-
ages, which are fed into the ensemble networks for classification. Similarly, Kini et al. [115]
proposed the use of an IoT-DL-based framework for the diagnosis of COVID-19 from
CT scan images. The system was designed to collect CT scan images using medical IoT
devices which transferred the images to an ensemble model (which combined three pre-
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trained networks, which include DenseNet201, InceptionResNetV2, and ResNet152V2).
The ensembled model was able to classify CT scan images efficiently on IoT servers.

Le et al. [116] proposed an IoT-enabled depth-wise separable CNN merged with deep
SVM for the classification of COVID-19 from X-ray images. The process was dictated by
several stages, which included data acquisition using IoT devices which send the images to
cloud server, followed by Gaussian filtering to remove noise, feature extraction, and finally
classification. Another IoT/DL-enabled framework was proposed by Ahmed et al. [117].
The X-ray images were collected using medical sensors, followed by detection using Faster
Region CNN (FR-CNN) and ResNet101 as the backbone network.

Rehman et al. [118] proposed real-time detection of COVID-19 from X-ray images.
The framework was developed based on a CNN-residual neural network (ResNet-50). The
mechanism behind the real-time CAD revolved around the upload of X-ray images from
healthcare centers and remote clinics and subsequent classification using ResNet-50. The
performance of the proposed IoT/CAD system achieved 98% accuracy and 0.975 AUC on
chest X-ray images acquired from online repositories (already augmented and containing
1824 total images, where 912 are non-COVID-19 and 912 COVID-19 cases).

Punitha et al. [119] proposed a novel e-healthcare platform for diagnosis of COVID-19
using an optimization algorithm. The framework was designed based on the classification
approach for the detection of abnormalities in lung CT images via Whale Optimization
Algorithms (WOA) optimized Wavelet Neural Network (WNN). The mechanism behind
the e-healthcare system revolves around the extraction of the Laws 16 texture energy
measures from the preprocessed CT lung images, and subsequent classification using
a WNN classifier. Evaluation of the proposed system on publicly accessible datasets
resulted in 84.8% accuracy, 82.0% sensitivity, and 73.3% specificity for binary classification
of COVID-19 and non-COVID-19 cases.

6. Open Research Issue

The increased generation of medical data in healthcare settings has contributed to
the development of high-performance models tasked with identifying patterns, extracting
features, prediction, and classification of medical data [75,77]. Analyzing the large amount
of data generated in medical settings requires the use of reliable, fast, and accurate systems
which can relieve the workload of the medical data analyst. The application ML models
over the last decade have been shown to address this issue. Several ML models are used
in healthcare settings as a form of CAD to assist the physician in conducting accurate
diagnoses and in appropriate decision making [71,76].

Despite the wide application of ML models in healthcare settings, they are hindered
by several challenges, which include the lack of a sufficient amount of data. Training of
ML models using a substantial amount of data is crucial for high performance. In order
to address the shortage of data, scientists developed TL, where weights and features are
extracted from trained models and repurposed on new tasks with insufficient datasets. The
use of TL models, also known as pretrained models, has shown to outperform models
developed from scratch [120,121].

Another challenge facing the application of ML models is underfitting and overfitting.
Underfitting occurs when ML models perform poorly on both training and testing sets
(i.e., when models neither perform well on training dataset nor generalize the new or
unseen dataset). Underfitting is associated with high bias and low variance. Overfitting
occurs when the ML model performs well on training datasets, but performs poorly on test
sets [70,122]. Overfitting is associated with high variance and low bias. The performance of
ML models depends on the types of images use [70]. Poor performance can also be related
to training images with small amounts of data, or data that contains noise. The use of
data augmentation techniques such as rotation, flipping, mirroring, zooming, cropping, etc.
increases the number of training sets [123]. Other pre-processing steps are used to remove
noise from images, resize images to fit into the models, and extract features that can be
classified using classifiers [123,124].
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The landscape of AI-powered models is changing from the application of single
models to a hybrid of ensembled models. Ensembled models combined predictions from
two or more models. Ensembled learning includes parallel ensembled and sequential
ensemble methods. Ensembled learning techniques can also be classified as bagging
(such as bootstrap aggregation), boosting (gradient boosting machine or GMB, LightGBM,
Adaboost, etc.), stacking, and blending. The use of ensembled models is associated with
improving performance (originally developed to reduce variance, thereby improving
performance) and robustness [4,125,126].

The integration of IoT in the medical field, known as IoMT, is transforming healthcare
systems into an interconnected unit which allows wireless exchange of medical data
between devices, medical experts, and medical records storage or cloud systems [127]. The
integration of IoT with CAD detection, also known as AI/IoT-powered systems, has led to
the development of several platforms that enable users to upload medical images (such as
CT scans, ultrasound, X-rays, and microscopic slide images) and non-medical images (such
as skin and facial images) for real-time diagnosis [83,84].

Despite the prospect of AI/IoT-powered detection, the system is challenged by sev-
eral factors, which include the cost of deployment, data ownership, privacy, ethical, and
security issues. The major concern of employing these devices include device hijacking,
cyber-attacks, data theft, etc. In order to address these issues, several medical companies
have developed encrypted methods to prevent fraudulent attacks and breaches of pri-
vacy. However, despite their efforts, the system is still prone to cyber-attacks and device
hijacking. This raises the need for developing a more secured system through encryption,
authentication, tracking, and monitoring protocols [82,84].

7. Conclusions

The global pandemic witnessed as a result of spread of the COVID-19 disease associ-
ated with SARS-CoV-2 has changed the landscape of diseas diagnosis. Several techniques
have been developed and repurposed in order to provide accurate and reliable detection
of the virus. Molecular testing based on RT-PCR is regarded as the standard approach for
the detection of COVID-19, followed by serological antigen-based detection. Despite the
high reliance on these approaches, they are limited by so many challenges, which include
false positive results, low accuracy, the need of trained pathologists, the need for chemicals,
longer processing time, high cost, etc. These factors limit the use of molecular testing in
remote areas and underdeveloped countries. This call for the need to provide an alternative
approach that can provide accurate results, eliminate the need of toxic chemicals, and
reduce the high cost of assays. Thus, healthcare experts turn to medical imaging such as
X-rays, CT scans, and lung ultrasounds as alternative or confirmatory testing. However,
this approach is also clouded by several challenges, which include tediousness in the case
of the interpretation of a large number of cases and misinterpretation.

To address these issues, scientists incorporated CAD using ML models and classifiers.
These models have shown to achieve high performance compared to human interpretation.
In order to allow real-time testing, scientists developed IoT/AI-enabled systems, or e-
healthcare systems, which allow the uploading of medical images and the subsequent
classification of cases into binary (COVID-19 and non-COVID-19), three-way, and four-
way classification (COVID-19, non-COVID-19 viral pneumonia, bacterial pneumonia, and
healthy cases). Thus, this review provides extensive knowledge of the state-of-the-art
detection of COVID-19 using molecular testing, CAD, and IoT/AI-powered detection.
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Abbreviations

Abbreviations Full-Meaning
AI Artificial Intelligence
ANN Artificial Neural Network
AP Anterior–posterior
AUC Area Under the Curve
AUNPS Gold Nanoparticles
AUSPE Gold Screen Printed Electrode
CAD Computer Aided Detection/Diagnosis
CNN Convolutional Neural Network
COVID-19 Coronavirus Disease 2019
CRISPR Clustered Regularly Interspace Short Palindromic Repeat
CT Computed Tomography
CXR Chest X-ray
DL Deep Learning
DNA Deoxyribonucleic Acid
ELISA Enzyme-linked Immunosorbent Assay
FET Field-effect Transistor
Fg Femptogram
fM Fento Molar
FR-CNN Faster Region CNN
GBM Gradient Boosting Machine
HRP Horseradish Peroxidase
IoT Internet of Things
IoMT Internet of Medical Things
IT Information Technology
LOD Limit of Detection
LSTM Long-Short Term Memory
MERS-CoV Middle East Respiratory Syndrome Coronavirus
ML Machine Learning
MRI Magnetic Resonance Imaging
NA Nucleic Acid
NPs Nanoparticles
PA Posterior–anterior
PET Position Emission Tomography
Pfu Plaque-forming unit
POC Point of Care
RML Reinforcement Machine Learning
RNA Ribonucleic Acid
ROIs Region of Interests
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Abbreviations Full-Meaning
RPA Recombinase Polymerase Amplification
RT-PCR Reverse Transcription-Polymerase Chain Reaction
SARS-CoV-1 Severe Acute Respiratory Coronavirus-1
SARS-CoV-2 Severe Acute Respiratory Coronavirus-2
SML Supervised Machine Learning
SPECT Single Position Emission Computed Tomography
SSDNA Single Strand Deoxyribonucleic Acid
SVM Support Vector Machine
TL Transfer Learning
µL Micro Litre
UML Unsupervised Machine Learning
WE Working Electrode
WNN Wavelet Neural Network
WOA Whale Optimization Algorithms
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